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Part I : modeling discussion
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Crowds

(lane formation movie)

• Today half of the human population lives in
urban areas, in 1950 ∼ 30%, prediction for
2050 ∼ 70%.

• Fatal accidents in the last decades increased,
e.g. Hadj in Mekka, Love Parade in Duisburg,
Water Festival in Phnom Penh . . ..

• Empirical studies of human crowd started
about 50 years ago, based on observations,
photographs and video data.

• Mathematical modeling and simulations have
been used successfully to secure dangerous
situations (e.g. Jamaraat Bridge after 1000
pilgrim death in 10 years).
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Mathematical modeling of human crowds I

• Microscopic approaches:
Individuals are treated as agents whose motion is determined by the interaction
with the surrounding agents and the goal to reach a desired destination.

Behavioral force models - Helbing and Molnar (1995), Helbing et al. (2002), . . .

Cellular automata models - Burstedde et al. (2001), Kirchner and Schadschneider
(2002), Adler and Blue (2000), . . ..

Optimal control - Hoogendorn and Bovy (2003)

Microscopic, granular-flow - Granular flowMaury et. al.

• Mesoscopic approaches:
Mainly kinetic models, ideas from gas kinetic theory are used.

Henderson (1971), Hoogendorn and Bovy (2000)
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Mathematical modeling of human crowds II

• Macroscopic approaches:
Here the crowd is treated like a density.

Fluid dynamics - Henderson (1974), Hughes (2002), Colombo and Rossini (2005),
Chalons (2007), Venuti et al. (2007), Bellomo and Dogbé (2008), . . ..

Optimal transportation - Maury et al. (2010)

Nonlinear convection diffusion equations - Burger et al. (submitted, 2010) , . . .

Mean field games - Lachapelle (2010), Dogbé (2010), . . .

• Multiscale approaches:
Coupling of micro- and macroscopic modeling approaches.

Time evolving measures - Piccoli and Tosin (2009), Cristiani et al. (2010), . . .

This list is by no means complete !!!!!
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Crowd modeling and game theory I

• Individuals in a crowd have preferences and goals → they optimize

• They are rational and strategical → they choose actions

• They interact locally or globally with the others → decentralized equilibrium

...

• The crowd dynamic results from this process

→ It is very natural to use some well-known economic concepts

Game theory (non-cooperative) provides a convenient framework:

• individuals are players

• they optimize a criterion (utility function, pay-off) that can take into account
several effects (aversion, positioning, shortest path to an exit, etc.)

• they play “actions”: e.g. choose velocity and direction, in regards to other
players’ actions

• decentralized equilibrium may exit as a result of the aggregation of optimal
choices of all the players:

Pros & cons: pedestrian are “smart” individuals rather than sophisticated robots,
beyond offering a description of how pedestrian behave in a crowd, it also answers the
questions why and how the crowd moves ...but ...doesn’t allow to model small
cooperative groups
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Crowd modeling and game theory II

Surprisingly, game theory approaches have been poorly investigated as compared to
other classes of models (e.g. cellular automata).

The seminal paper is Hoogendorn and Bovy (2003): a game theory formalism at the
microscopic scale.
Until 2010, this paper was the only one involving game theoretic modeling of crowds.

Main characteristics of their model:

• Deterministic

• Finite number of players. Perfect knowledge of the positions of all other players

• ẋi (t) = αi (t), where xi (t) is player’s i location at time t, and αi (t) is the control
parameter (action) chosen by the player.

• Anticipation is exogenous (a predefined function of states)

...as we will see in a few instants, it is a limited approach (nowadays, new
mathematics allow for instance to consider a continuum of players)
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Game theory in a single slide

• Modern theory “old as the hills”: Von Neumann & Morgenstern (40s), Nash
(50s), with many applications: economics, engineering, social sciences ...

• A usual non-cooperative game is made of: N-players, that choose actions
α = (αi ) and optimize their pay-offs: maxαi Ji (αi , α−i ) (that depend on player’s i
action αi and other players’ actions α−i )

• A Nash equilibrium α∗ is such that every player chooses the best strategy given
what others do:

α∗i = argmaxαi
Ji (αi , α

∗
−i ),∀i

• Many situations impose to consider dynamic games: repeated games (discrete
time) and differential games (continuous time)

(Stochastic) Differential Games

• Optimal control framework

• State of each player : dxi (t) = αi (t)dt (+σi (t)dW i
t ), xi ∈ X

e.g. x = position, α = velocity, various structure of noise correlation can be
considered (most classical: Wi are independent Brownian Motions)

• Pay-off maximization: EJi (T , x , α)

e.g. Ji (T , xi , αi ) = −
∫ T

0 fi (αi (t), xi (t), x−i (t))dt + gi (xi (T ), x−i (T ))
→ f models the moving cost and the interactions between pedestrians, g is the
goal function
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What class of games to model crowd motions?

What happens in crowds?

• Players are anonymous (eq. symmetrical): Ji = J, fi = f , gi = g

• They are numerous (cf definition of a crowd): N →∞
• They dynamically control there trajectory

• They have no strategic power

→ suitable class of games:

Mean Field Games (MFG)
=

Stochastic differential games with a continuum of anonymous
players
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MFG: a continuum of players

The key idea of modeling a crowd of agents (players) as a continuum ...

... i.e. a non atomic measure m on agents’ state space X ...

...has been introduced by Robert Aumann (in the early 70s) as a breakthrough in
macroeconomic theory (general equilibrium theory).

“ continuum ” of agents has many important consequences, e.g.:

• each individual agent has no strategic power

• the “number ” of agents is a real number, and not an integer

Aumann’s non atomic game + dynamic and stochastic setting = MFG
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MFG: a limit of N-player stochastic differential games

• For N-player games: each player has a value function Ui (t, xi , x−i ) that satisfies a
PDE (extension of HJB for a single player optimization)

• Key hypothesis : the game is invariant under any player permutation
N-player game:

max Ji (T , xi , αi ) =
∫ T

0 fi (αi (t), xi (t), x−i (t))dt + gi (xi (T ), x−i (T ))

dxi (t) = αi (t)dt + σi (t)dW i
t

fi = f , gi = g and have the dependency form (αi , xi ,
∑

j 6=i xj )

• Thus the N value functions can be replaced by one function UN (x , m̂) where m̂ is
the discrete distribution of other players: m̂ =

∑
δy/(N − 1)

• The N-PDE system is replaced by a single equation on UN

• when N →∞, UN tends to a function U(x ,m) (up to subsequences and under
some general continuity assumptions), where m is a measure on agents state
space X . U satisfies the “master equation” which is a very specific PDE
integrating the concept of MFG equilibrium
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MFG: tractable cases

The general case is extremely tricky and mathematically challenging

But many (sub) classes of the general case deserve focus and their own specific
mathematical tools, results and numerical approximation methods:

• Class A : only shared risk, players’ state space X is finite, X = {1, . . . , n}
→ monotone systems. Existence + Uniqueness results. Iterative methods exist.

• Class B : individual independent risks
• The dynamic of the population is deterministic
•The value function depends explicitly only on time and agent’s state: U(t, x ,m)
is replaced by v(t, x)
• The Master Equation becomes mostly unnecessary :
the equilibrium can be computed through the HJB/FP forward/backward coupled
PDE system

...mix models could be considered (in progress)

→ our crowd motion models belong to Class B : individual independent risks
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Mean field games: finite & infinite horizon

Microscopic model

• N-player stochastic differential game

inf Ji (α) = E
[∫ T

0
f (t,X i,α

t , X̂−i,α
t , αi

t )dt + g(X i,α
T , X̂−i,α

t )

]
,

dXt = αt dt + σdWt , x̂−i =
1

N − 1

∑
j 6=i

δx j

Macroscopic model

• Limiting equations as N →∞ gives time dependent mean field game:

∂t v +
σ2

2
∆v + H(t, x ,∇v ,m) = 0, v |t=T = g(mT )

∂t m −
σ2

2
∆m + div(m ∂pH(t, x ,∇v ,m)) = 0, m|t=0 = m0,

where H is the Legendre transform of the running cost f , v is the value function
and m the density of the crowd.

Important remark: notice the red term in FP. Backward driven strategy in the
continuation equation: α = ∂pH(t, x ,∇v ,m)
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Mean field games: finite & infinite horizon

Microscopic model

• N-player stochastic differential game

Js
i (α) = E

[∫ ∞
0

fi (t,Xα
t , α

i
t )e−rt dt

]
,

dXt = αt dt + σdWt , x̂−i =
1

N − 1

∑
j 6=i

δx j

Macroscopic model

• Stationary problem: Find (u,m, λ) such that

σ2

2
∆v + H(x ,∇v ,m)− rv = 0

−
σ2

2
∆m + div(m ∂pH(x ,∇v ,m)) = 0∫
mdx = 1, m > 0,

∫
vdx = 0.

where H is the Legendre transform of the running cost f .
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Link to deterministic optimal control problems

If the running cost f has the form

f (x , t, α,m) = L(t, x , α) + V [x ,m]

and V and g are the Gateaux derivative of the potentials Φ and Ψ, then the MFG
system can be written as the following optimal control problem:

inf
α

[∫ T

0

∫
Ω

L(t, x , α)m(t, x)dxdt + Φ(m) + Ψ(m(T ))

]
under the constraint that

∂m

∂t
− ν∆m + div(αm) = 0.

m(x , 0) = m0(x).

Optimality conditions:

α =
∂H

∂p
(x ,∇v), and ∂t v +

σ2

2
∆v + H(t, x ,∇v ,m) = 0, v |t=T = g(mT ).
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MFG: main characteristics and differences with H&B
modeling

Equilibrium with rational expectations:

• Each player considers the probability law of the crowd stochastic dynamic as
given (this information is common knowledge)

• The law will not be impacted by her own decision

• Nevertheless, this law is the result of the individual choices (by integration over
the density m)

Hoogendorn and Bovy

• Perfect knowledge (over knowledge)

• Rational players, predefined
anticipation method

• Two at a time interactions

• Individual strategical power

MFG

• Common knowledge of an
approximation of the states of all the
pedestrians

• Rational expectations (endogenous
anticipation)

• Mean field type interactions

• No individual strategical power
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Part II : applications
Joint work with M.-T. Wolfram
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Features of applications

Situations modeled:

• Two group interactions

• Aversion and xenophobic behavior

• Congestion

Numerical solvers:

• Both finite difference and finite elements

• Gradient descent method

• Hybrid Discontinuous Galerkin method

Outputs:

• Symmetry breaking

• Endogenous self-organizing

• Lane formation

• Anticipation behaviors
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Output overview

————————————————————————————————————

Symmetry breaking

————————————————————————————————————

————————————————————————————————————

Anticipation behavior

————————————————————————————————————
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Case 1: Aversion and xenophobic pedestrians

• 2-group dynamical interactions, convexity = crowd aversion

• Ω = T2, Q = [0,T ]× Ω, 2 groups (i = 1, 2) made of a continuum of players

• Population i criterion, given (αi−
t ,mi−

t ) is

J i
λ(α) :=

∫
Q

|αi (t, x)|2

2
mi (t, x)dx + Φi

λ(m1
t ,m

2
t )dt +

∫
Ω

Ψi mi |T

mi weak solution to FP: ∂t mi − σ2

2
∆mi = −div(αi mi ),mi (0, .) = mi

0(.)

• Φi
λ(mt ) :=

∫
Ω(mi

t )2 + λm1
t m2

t , λ ≥ 0 (λ↔ xenophobia)

Aimé Lachapelle Des foules comme des jeux 21 /39



Nash problem and optimality
————————————————————————————————————
Nash problem, i = 1, 2

(N ) Find ᾱ = (ᾱ1, ᾱ2) s.t.: J i
λ(ᾱ) = inf

αi∈Mb(Q,Rd )
J i
λ(αi , ᾱi−)

MFG, i = 1, 2

(MFG)

{
∂t mi − σ2

2
∆mi + div(mi∇v i ) = 0 , mi (0, .) = mi

0,

∂t v i + σ2

2
∆v i + |∇v i |2

2
= Φi

λ(m)′ , v i (T , .) = Ψi .

Joint Problem
(Q) inf

α=(α1,α2)
Jλ(α) := J1

λ/2(α) + J2
λ/2(α)

————————————————————————————————————
Proposition 1
If λ ≤ 2, then the following are equivalent:

1 α ∈Mb(Q,Rd ) solves (N ) and m̄ verifies FP for α = α,

2 α ∈Mb(Q,Rd ) solves (Q) and m̄ verifies FP for α = α,

3 (m̄, v̄) solve (MFG) eand α = ∇v̄ .

If λ > 2 then we only have 2. ⇒ 1.,3.
Proposition 2
(Q) has a unique solution if λ ≤ 2 and m0 ∈ L2.
————————————————————————————————————
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Algorithm & simulations (1) : gradient descend
method

• λ ≤ 2 → joint gradient descend to solve (Q)

• λ > 2 → alternate gradient descends (partial convexity)

• Classical change of variable: qi = αi mi

• Initialization: (qi(0),mi(0))

• Step k + 1:

1 −∂tθi − σ2

2
∆θi = −|qi(k)|2

(mi(k))2 + (2mi(k) + λmi−(k)) , θi |t=T = Ψi

Rq: finite difference discretization

2 ∇J(qi(k), qi−(k)) = 2qi(k)

mi(k) +∇θi

3 qi(k+1) = qi(k) − ρk∇J(qi(k), qi−(k))
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Algorithm & simulations (2) : input data

• λ = 20 (high level of xenophobia)

• T = 1 et σ2

2
= 0.1

• Difference between groups: initial positions and objectives

Figure: Input data
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Algorithm & simulations (3) : movie
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Case 2: congestion model

We consider the following stochastic control problem

inf
αt

E
(∫ ∞

0
(
|αt |q

q
(m(Xt , s))a + k(Xt , s))e−rs ds

)
dXt = σdWt + αt dt

The corresponding mean field game is given by

ν∆u −
1

p

|∇u|p

mb
− ru = k

−ν∆m − div(m
(∇u)p−1

mb
) = 0, m(x , 0) = m0(x),∫

udx = 0,

∫
m dx = 1.

where b = a
q−1

and p = q
q−1

.
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Congestion model for two species I

Two species model - each density would like to avoid congestion within its own group
as well as with the other.

inf
αi

t

E
(∫ ∞

0
(
|αi

t |q

q
(mi (Xt , s))a(mj (Xt , s))ã + k(Xt , s))e−rs ds

)
dXt = σdWt + αi

t dt

for i=1,2. The corresponding mean field game for both species reads as

−ν∆ui +
1

p

|∇ui |p

mb
i mb̃

j

− rui = k

−ν∆mi − div(mi
(∇ui )

p−1

mb
i mb̃

j

) = 0

∫
ui dx = 0,

∫
mi dx = 1.

where b = a
q−1

, b̃ = ã
q−1

and p = q
q−1

.
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Congestion model for two species II

Two species model - each density would like to avoid congestion within its own group
as well as with the other.

inf
αi

t

E
(∫ ∞

0
(
|αi

t |q

q
(c + mi (Xt , s))a(c + mj (Xt , s))ã + k(Xt , s))e−rs ds

)
dXt = σdWt + αi

t dt

for i=1,2. The corresponding mean field game for both species reads as

−ν∆ui +
1

p

|∇ui |p

(c + mi )b(c + mj )b̃
− rui = k

−ν∆mi − div(mi
(∇ui )

p−1

(c + mi )b(c + mj )b̃
) = 0∫

ui dx = 0,

∫
mi dx = 1.

for a small positive constant c.
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Boundary conditions I

• Neumann boundary conditions:

In- and outflow or people mi , i.e.

∂mi

∂n
= j in

i for all x ∈ Γin
i and

∂mi

∂n
= jout

i for all x ∈ Γout
i

with

∫
Γout

i

jout
i · n ds =

∫
Γin

i

j in
i · n ds.

⇒ homogeneous Neumann boundary conditions for ui , i.e. ∂ui
∂n

= 0, for all x ∈ Γ.
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Boundary conditions II

• Dirichlet boundary conditions:

Homogeneous Dirichlet conditions for mi at the exit (people leave the room,
hence the density has to be zero) and a homogenous Neumann boundary
conditions on the rest of the boundary, i.e.

mi = 0 for all x ∈ Γout
i and

∂mi

∂n
= 0 on the rest of the boundary.

⇒ same boundary conditions for ui , the integral condition for ui necessary.

Integral condition for mi is replaced by a source term in the Kolmogorov
equation, i.e.

−ν∆mi − div(mi
(∇ui )

p−1

(c + mi )b(c + mj )b̃
) = f(x).

This source term can be interpreted as an exit of an underground or supermarket.
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Hybrid discontinuous Galerkin method for elliptic

problems1

We consider the Laplace problem on the domain Ω

−∆u = 0.

Notation: Th denote the triangulation of Ω into triangles T , Fh the set of facets F .

Basic idea: Choose discontinuous basis functions on the triangle and enforce
continuity via Lagrange functions that live on the element interface (representing the
trace of the continuous function u). We choose the following spaces

Vh := {(u, uF ) : u ∈ Pk (T ) ∀T ∈ Th, uh ∈ L2(F ) ∀F ∈ Fh}

where Pk denotes the space of polynomials of degree less or equal to k.

1Cockburn, B., Gopalakrishnan, J. and Lazarov, R. Unified Hybridization of Discontinuous, Mixed and
Continuous Galerkin Methods for Second Order Elliptic Problems, SIAM J. Numer. Anal. (47), 1319-1365
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Hybrid discontinuous Galerkin method for elliptic
problems

We consider the Laplace problem on the domain Ω

−∆u = 0.

Then the hybrid discontinuous Galerkin (HDG) method reads as:

∑
T∈Th

[

∫
T
∇u∇vdx −

∫
∂T

∂u

∂n
(v − vF )ds −

symmetry︷ ︸︸ ︷∫
∂T

(u − uF )
∂v

∂n
ds

+
α

h

∫
∂T

(u − uF )(v − vF )ds︸ ︷︷ ︸
stability

] = 0

where α denotes the stability parameter and h the maximum mesh size.
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HDG methods for hyperbolic problems

We consider

div(bu) = 0

where the normal component of the vector field b is continuous across element
interfaces.
The HDG formulation of the problem reads as∑

T∈Th

∫
T

div(bu)vdx =
∑

T∈Th

[−
∫

T
ub · ∇vdx +

∫
∂T

uupbnvds]

where bn denotes the normal component of the vector field b and uup is the upwind
value defined by

uup =

{
u if bn > 0

uF if bn < 0.

Problem: element only couple on the downwind element, to obtain a coupling with the
upwind element we add the term∫

T out
bn(uF − u)vF ds where T out = {x ∈ ∂T : bn > 0}.
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HDG for the stationary congestion model

• Stationary problem is a coupled system of four nonlinear partial differential
equations ⇒ Newton’s method.

• Two nonlinear convection-diffusion equations for mi

−ν∆mi − div(
mi

(c + mi )b(c + mj )b̃
∇ui ) = fi (x)

⇒ HDG for diffusion and convection part (with upwind).

• Two nonlinear Hamilton Jacobi equations for ui :

−ν∆ui +
1

2

|∇ui |2

(c + mi )b(c + mj )b̃
− rui = 0

⇒ HDG for diffusion and Hamiltonian (no stabilization).
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Avoidance behavior

• Computational domain Ω = [−1, 1]× [−0.2, 0.2]

• Single source of people for every species, i.e. f (x) = 50× exp(− (x±0.8)2+y2

10−3 )

• The parameters are

a = 0.5, ã = 0.5, q = 2, , ν = 0.05, k = 1, r = 1.

• The maximum mesh size is h = 0.03 and we choose c = 0.01.

(a) Population m1 (b) Population m2
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Lane formation

• Computational domain Ω = [−1.5, 1.5]× [−0.2, 0.2]

• Single source of people for every species, i.e. f (x) = 50× exp(− (x±0.75)2+y2

10−3 )

• The parameters are

a = 0.25, ã = 0.75, q = 2, , ν = 0.05, k = 1, r = 1.

(c) Population m1 (d) Population m2

Aimé Lachapelle Des foules comme des jeux 36 /39



Corridors

• Rectangular domain with two corridors and a small door (bottleneck).

• Two sources placed in the lower left and lower right corner

• The parameters are

a = 0.25, ã = 2, q = 2, , ν = 0.1, k = 1, r = 1.

(e) Population m1 (f) Population m2
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Pros & Cons of the approach, further developments

• MFG is a natural macroscopic approach for crowd motion modeling, bringin
together three core aspects: dynamical game theory, a continuum of anonymous
players with nil individual influence on the crowd density, anticipation behavior

• The computational cost is clearly lower for MFG than for agent-based models

• It allows entries and exits of players (contrary to finite games)

• Limitations: no small groups in the crowd, does not consider nearest neighbor
type interactions

• Possible developments: introduce partial blindness (convolution term), global
shared risk (emergency evacuation), congestion density constraint (cf. Filippo’s
talk)
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• MFG is a natural macroscopic approach for crowd motion modeling, bringin
together three core aspects: dynamical game theory, a continuum of anonymous
players with nil individual influence on the crowd density, anticipation behavior

• The computational cost is clearly lower for MFG than for agent-based models

• It allows entries and exits of players (contrary to finite games)

• Limitations: no small groups in the crowd, does not consider nearest neighbor
type interactions

• Possible developments: introduce partial blindness (convolution term), global
shared risk (emergency evacuation), congestion density constraint (cf. Filippo’s
talk)

Thank you very much for your attention !
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