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Crowd dynamics
Model to reproduce known pedestrian behavior:

@ evacuation dynamics: seeking the fastest route, avoiding high densities
and borders (discomfort)

o desired speed (~ 1.34m/s), depending on situations

@ lines and more general patterns formation: self-organization dynamics
which minimize interactions with the opposite stream

@ oscillations at bottlenecks in opposite streams passing through a
narrow passage

@ collective auto-organization at intersections: increasing the average
efficiency

@ etc ...

(Helbing-Farkas-Molnar-Vicsek 2002)
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Panic

Crowd behavior changes in panic situations and becomes irrational:

@ getting nervous — “freezing by heating”

@ people try to move faster — clogging — “faster is slower”

@ jams building up at exits — fatal pressures

@ escape slowed down

@ herding behavior (to follow others) — ignorance of available exits

@ “phantom panics” due to counterflow and impatience

(Helbing-Farkas-Molnar-Vicsek 2002)
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Macroscopic models

[number of individuals in @ C R? at time t} = / p(t, x) dx
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Macroscopic models

o Conservation law:

Orp + divkf(tz) =0
o Flux-density relation: f(t,x) = p(t,x)V (t,x)

@ Density must be non-negative and bounded: 0 < p(¢,x) < pmax,
Vx,t > 0 (maximum principle?)

o Different from fluid dynamics:
o preferred direction
e no conservation of momentum / energy
@ no viscosity
o n <K 6-10%
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Continuum hypothesis

n < 6-10% but ...
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Continuum hypothesis
n < 6-10% but ...

Portland, Oregon, May 2008
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Scalar conservation laws

We deal with a PDE equation of the form

Orp + divkf(t,x,p) =0
p(0,%x) = po(x)
+BC

where t € [0, 4o00[, x = (21, x2) € R?

p = p(t,x) € R conserved quantity
f: [0, 4o00] xR? x R — R? flux

Main features:
e p NOT smooth
@ existence < weak solutions

@ uniqueness < entropy conditions

Conclusion
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Kruzkov theory (1970)

smooth flux: f € C} ([0, +00[ xR? x R)

e entropy weak solution: Vk € R and ¢ € C} ([O, +o0| XR2)

+0o0
[ ][ 1o Howe+ sen(o K (E:tx ) — £t 1)0r.
0 R
—sgn(p — k)0, fi ¢ dxdt >0

well posedness: existence, uniqueness, stability
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Eikonal equation

Consider Q C R? walking facility (99 = 0Quwan U 0Qin U 0Qeqit);
we look for ¢ : 2 — R solution of the PDE equation

[Vt = C(x) in ©

o(t,x) =0 for x € 0Newit
where C' = C(x) > 0 is the running cost:
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Eikonal equation

Consider Q C R? walking facility (99 = 0Quwan U 0Qin U 0Qeqit);
we look for ¢ : 2 — R solution of the PDE equation

|[Vxé| =C(x) inQ
o(t,x) =0 for x € 0Newit

where C' = C(x) > 0 is the running cost:

the solution ¢(x) represents the (weighted) distance of the position x from
the target 0Qexit

if C(x) =1 and Q concave then ¢(x) = d(x, 0Qexit)

(existence and uniqueness under some regularity assumption on C)
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Eikonal equation: level set curves for |Vx¢| = 1
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Vx¢

Eikonal equation: vector field N =

T V9l
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Hughes' model (2002)
Mass conservation
Orp + divk (pV(p)) =0 inR"xQ

where

V(p) =v(p)N and v(p) = vmax (1, p )

Pmax

Direction of the motion: N = — |§xi| is given by
Ved| = —— inQ
T u(p)

o(t,x) =0 for x € 0Qezit,Vt >0

@ pedestrians tend to minimize their estimated travel time to the exit
@ pedestrians temper their estimated travel time avoiding high densities

o CRITICS: instantaneous global information on entire domain
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Hughes' model

Evolution of the velocity field:

(Twarogowska-Aissiouene-Duvigneau-Goatin, 2012)
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Dynamic model with memory effect
Mass conservation

Orp + divk (pV(p)) =0 inR"xQ

where

V(p) = v(p)N and  v(p) = vmax (1_ p )

Pmax

Direction of the motion: N = ,M where
V(¢ +wD)|
Vx| = in Q, ¢(x)=0 for x € eyit,
1 9 .
D=D(p)=——+p discomfort
(p) o) T

Conclusion

@ pedestrians seek to minimize their estimated travel time based on their

knowledge of the walking domain

@ pedestrians temper their behavior locally to avoid high densities

(Xia-Wong-Shu, 2009)
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Second order model

Euler equations with relaxation

dip+V-(pV)=0

—

L (pve(p)N — o) + VP(p)

T

(V) +V - (pV @ V) =

(Jiang-Zhang-Wong-Liu, 2010)

Conclusion
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Second order model

Euler equations with relaxation

dip+V-(pV)=0

L (pve(p)N = V) + VP(p)

T

(V) +V - (pV @ V)=

N——— v
. anticipation
relaxation factor
term

(Jiang-Zhang-Wong-Liu, 2010)

Conclusion
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Second order model

Euler equations with relaxation

dp+V-(pV)=0

L (pve(p)N = V) + VP(p)

T

(V) +V - (pV @ V)=

N——— v
. anticipation
relaxation factor
term

where

2
Ve(p) = Vmax €Xp <—a (pp ) > . P(p)=pop”

and boundary conditions: Vxp -7 = 0 and V.i=0

(Jiang-Zhang-Wong-Liu, 2010)
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The fastest route ...

. needs not to be the shortest!
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The fastest route ...

. depends on the model!

Vx| = 1/v(p) second order

(Twarogowska-Duvigneau-Goatin, 2012)
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The fastest route ...

... depends on the model!

‘ (3
e S

Vx| = 1/v(p) second order

)
D

(Twarogowska-Duvigneau-Goatin, 2012)
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The fastest route ...

... depends on the model!

&R i
7

[Vxo| = 1/v(p) second order

(Twarogowska-Duvigneau-Goatin, 2012)
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Braess' paradox?

A column in front of the exit can reduce inter-pedestrians pressure and
evacuation time?

Vx| = 1/v(p)

(Twarogowska-Duvigneau-Goatin, 2012)
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Braess' paradox?

Evacuation time:

50 T
40 —simple model il
-=-memory effect model
Hughes model
& 301 4
(o]
£
K]
© 20+ .
10r 1
0 I
0 4 8 12 16

(Twarogowska-Duvigneau-Goatin, 2012)
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Braess' paradox?

The second order model displays a better behavior:

(Twarogowska-Duvigneau-Goatin, 2013)
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1
Braess' paradox?
Evacuation time:

Mass M(t) for different radius r of column obstacles

32 T T T T T T : :
—=0.25: | M(t)dt = 486
28l —=-r=0.24: | M(t)dt = 462
—r=0.23: | M(t)dt = 438
—=1=0.22: [ M(tydt = 523
241 ~=-r=0.21: | M(H)dt = 528
‘1=0.2: | M(t)dt = 535
20 empty: | M(tdt =513
My 1
12+ e
8k i
4 i
o .
0 36 40

(Twarogowska-Duvigneau-Goatin, 2013)
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Dependence on pg
Total evacuation time optimal for po = 0.5

Total evacuation time T
evac

340 T T

(Twarogowska-Duvigneau-Goatin, 2013)
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Dependence on vpmax
Total evacuation time

Total evacuation time T =2 M(t) dt as a function of v
evac ~ 0 max

1000 T T T

800

600

T
evac

400

(Twarogowska-Duvigneau-Goatin, 2013)
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Stop-and-go waves

t=11

P(p) = 0.0050%, Umax = 2, pmax = 7

(Twarogowska-Duvigneau-Goatin, 2013)
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Outline of the talk

@O Rigorous (preliminary) results
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The 1D case: statement of the problem

We consider the initial-boundary value problem

6\
pti(p(lfp)\%\)x*o reQ=]-11 t>0
|¢=| = c(p)

with initial density p(0, ) = po € BV(]0, 1])
and absorbing boundary conditions

p(t
ot

,—1)=p(t,1) =0 (weak sense)
,—1) =¢(t,1) =0

Conclusion
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The 1D case: statement of the problem

We consider the initial-boundary value problem

6\
pti(p(lfp)\%\)x*o reQ=]-11 t>0
|¢=| = c(p)

with initial density p(0, ) = po € BV(]0, 1])
and absorbing boundary conditions

(t,=1) = p(t,1) =0 (weak sense)
( )y ) =0

p
o(t, —1) = ¢(t,1)

General cost function c: [0, 1] — [1, +oo[ smooth s.t. ¢(0) =1 and ¢/(p) > 0

(e.g. c(p) = 1/v(p))
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The 1D case: statement of the problem

The problem can be rewritten as

pi— (sen(z — £1) f(p) =0

x

where the turning point is given by

&(t) 1
c , dy = c , d
/ (p(t,y)) dy /§ (p(t,y)) dy

-1 (t)

Conclusion
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The 1D case: statement of the problem

The problem can be rewritten as

pi— (sen(z — £1) f(p) =0

x

where the turning point is given by

(t) 1
/’E (plt) dy= [ lolt.n) dy

-1 ()

— the discontinuity point & = £(¢) is not fixed a priori,
but depends non-locally on p
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The 1D case: preliminary results

o existence and uniqueness of Kruzkov’s solutions for an elliptic
regularization of the eikonal equation and ¢ =1/v
(DiFrancesco-Markowich-Pietschmann-Wolfram, 2011)

Conclusion
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The 1D case: preliminary results

o existence and uniqueness of Kruzkov’s solutions for an elliptic
regularization of the eikonal equation and ¢ =1/v
(DiFrancesco-Markowich-Pietschmann-Wolfram, 2011)

e Riemann solver at the turning point for ¢ = 1/v
(Amadori-DiFrancesco, 2012)

o entropy condition and maximum principle
(ElKhatib-Goatin-Rosini, 2012)

o wave-front tracking algorithm and convergence of finite volume
schemes
(Goatin-Mimault, 2013)
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The 1D case: entropy condition

Definition: entropy weak solution (EIKhatib-Goatin-Rosini, 2012)

p € C° (RT;L*(Q)) NBV (RT x ©;[0,1]) s.t. for all k € [0,1] and
¥ € CP(R x O RY):

0< /0+°O/_11 (|p — k| + ®(t, z, p, k)ibs) dz di+ /_11 lpo (@) — K|(0, z) da
wagn(h) [ (Flple1-) ~ 10 w6, )

+oo
+ sgn(k) / (f (plt, —14)) — F(R)) (¢, —1) dt

“+oo
2 / O (1, £(1)) .

where @(t,fL’, Ps k) = Sgn(p - k) (F(t,:l},p) - F(t,,’l}, k))
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The 1D case: maximum principle

Proposition (ElKhatib-Goatin-Rosini, 2012)

Let p € C° (R*;BV(Q2) NL*(2)) be an entropy weak solution. Then

0 < p(t, @) < [lpollee (-

Characteristic speeds satisfy

F(pt () <
- (p~ (1) >

&), if p~(t) < p" (1),
&), if p~(t) > pT(t).

~
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Rigorous results

The 1D case: wave-front tracking

Riemann-type initial data:

Ap:2—10

(Goatin-Mimault, 2013)
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The 1D case: wave-front tracking

Density profile at t = 0.8:

1 1
03] 09
03| 08
07| 07
0] 08

gus gﬂs

a a
o4 04
03] 03
02| 02
01 01

(Goatin-Mimault, 2013)
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The 1D case: comparison WFT vs FV

Wave-front tracking with Ap = 27'° and finite volumes with Az = 1/1500

T T T T i T
— WFT
0.45- — — —Rusanov -1 [
— — — Godunov - 1
xi ut

0.4

0.351

0.3F

0.25

0.2r

0151

_0.05 L L L L L L

(Goatin-Mimault, 2013)
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Macroscopic models of pedestrians flows

PDEs describing the evolution of macroscopic quantities (e.g. density):

Opu(t,x) + divx f(u(t,x)) =0  t>0, x€ R”, uc R"

@ based on the continuum hypothesis
o give global description of spatio-temporal evolution

o suitable for posing control and optimization problems

BUT :

@ no general analytical theory for multi-D hyperbolic systems (n > 1):
existence and uniqueness in 1D?

@ able to recover complexity features of crowd dynamics?

@ good agreement with empirical data?
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Thank you for your attention!
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