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Crowd dynamics

Model to reproduce known pedestrian behavior:

evacuation dynamics: seeking the fastest route, avoiding high densities
and borders (discomfort)

desired speed (∼ 1.34m/s), depending on situations

lines and more general patterns formation: self-organization dynamics
which minimize interactions with the opposite stream

oscillations at bottlenecks in opposite streams passing through a
narrow passage

collective auto-organization at intersections: increasing the average
efficiency

etc ...

(Helbing-Farkas-Molnar-Vicsek 2002)
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Panic

Crowd behavior changes in panic situations and becomes irrational:

getting nervous → “freezing by heating”

people try to move faster → clogging → “faster is slower”

jams building up at exits → fatal pressures

escape slowed down

herding behavior (to follow others) → ignorance of available exits

“phantom panics” due to counterflow and impatience

(Helbing-Farkas-Molnar-Vicsek 2002)
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Macroscopic models

[
number of individuals in Ω ⊂ R2 at time t

]
=

∫
Ω

ρ(t,x) dx

must be conserved!
∫
Ω
ρ(t2, x)dx =

∫
Ω
ρ(t1, x)dx −

∫ t2
t1

∫
∂Ω

f(t, σ) · ~n dσdt

⇓

divergence theorem for (ρ, f)

⇓∫ t2

t1

∫ b

a

∂tρ+ divxf dx dt = 0
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Macroscopic models

Conservation law:
∂tρ+ divxf(t x) = 0

Flux-density relation: f(t,x) = ρ(t,x)~V (t,x)

Density must be non-negative and bounded: 0 ≤ ρ(t,x) ≤ ρmax,
∀x, t > 0 (maximum principle?)

Different from fluid dynamics:
preferred direction
no conservation of momentum / energy
no viscosity
n� 6 · 1023
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Continuum hypothesis
n� 6 · 1023 but ...

Portland, Oregon, May 2008
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Scalar conservation laws

We deal with a PDE equation of the form

∂tρ+ divxf(t,x, ρ) = 0

ρ(0,x) = ρ0(x)

+BC

where t ∈ [0,+∞[, x = (x1, x2) ∈ R2,
ρ = ρ(t,x) ∈ R conserved quantity
f : [0,+∞[ ×R2 × R→ R2 flux

Main features:
ρ NOT smooth
existence ← weak solutions
uniqueness ← entropy conditions
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Kružkov theory (1970)

smooth flux: f ∈ C1
c

(
[0,+∞[ ×R2 × R

)
entropy weak solution: ∀k ∈ R and ϕ ∈ C1

c

(
[0,+∞[ ×R2

)
∫ +∞

0

∫∫
R2

|ρ− k|∂tϕ+ sgn(ρ− k)(fi(t,x, ρ)− fi(t,x, k))∂xiϕ

−sgn(ρ− k)∂xi fi ϕ dxdt ≥ 0

well posedness: existence, uniqueness, stability
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Eikonal equation

Consider Ω ⊂ R2 walking facility (∂Ω = ∂Ωwall ∪ ∂Ωin ∪ ∂Ωexit);
we look for φ : Ω→ R solution of the PDE equation

|∇xφ| = C(x) in Ω

φ(t,x) = 0 for x ∈ ∂Ωexit

where C = C(x) ≥ 0 is the running cost:

the solution φ(x) represents the (weighted) distance of the position x from
the target ∂Ωexit

if C(x) ≡ 1 and Ω concave then φ(x) = d(x, ∂Ωexit)

(existence and uniqueness under some regularity assumption on C)
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Eikonal equation: level set curves for |∇xφ| = 1
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Eikonal equation: vector field ~N = − ∇xφ
|∇xφ|
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Hughes’ model (2002)

Mass conservation

∂tρ+ divx

(
ρ~V (ρ)

)
= 0 in R+ × Ω

where
~V (ρ) = v(ρ) ~N and v(ρ) = vmax

(
1− ρ

ρmax

)

Direction of the motion: ~N = − ∇xφ

|∇xφ|
is given by

|∇xφ| =
1

v(ρ)
in Ω

φ(t,x) = 0 for x ∈ ∂Ωexit, ∀t ≥ 0

pedestrians tend to minimize their estimated travel time to the exit
pedestrians temper their estimated travel time avoiding high densities
CRITICS: instantaneous global information on entire domain
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Hughes’ model

Evolution of the velocity field:

T = 0.2

(Twarogowska-Aissiouene-Duvigneau-Goatin, 2012)
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Hughes’ model

Evolution of the velocity field:

T = 0.5

(Twarogowska-Aissiouene-Duvigneau-Goatin, 2012)
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Hughes’ model

Evolution of the velocity field:

T = 0.8

(Twarogowska-Aissiouene-Duvigneau-Goatin, 2012)
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Hughes’ model

Evolution of the velocity field:

T = 1.1

(Twarogowska-Aissiouene-Duvigneau-Goatin, 2012)
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Dynamic model with memory effect
Mass conservation

∂tρ+ divx

(
ρ~V (ρ)

)
= 0 in R+ × Ω

where
~V (ρ) = v(ρ) ~N and v(ρ) = vmax

(
1− ρ

ρmax

)

Direction of the motion: ~N = − ∇x(φ+ ωD)

|∇x(φ+ ωD)| where

|∇xφ| =
1

vmax
in Ω, φ(x) = 0 for x ∈ ∂Ωexit,

D = D(ρ) =
1

v(ρ)
+ βρ2 discomfort

pedestrians seek to minimize their estimated travel time based on their
knowledge of the walking domain
pedestrians temper their behavior locally to avoid high densities

(Xia-Wong-Shu, 2009)
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Second order model

Euler equations with relaxation

∂tρ+∇ · (ρ~V ) = 0

∂t(ρ~V ) +∇ · (ρ~V ⊗ ~V ) =
1

τ
(ρve(ρ) ~N − ρ~V ) +∇P (ρ)

where

ve(ρ) = vmax exp

(
−α

(
ρ

ρmax

)2
)
, P (ρ) = p0ρ

γ

and boundary conditions: ∇xρ · ~n = 0 and ~V · ~n = 0

(Jiang-Zhang-Wong-Liu, 2010)
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The fastest route ...

... needs not to be the shortest!
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The fastest route ...

... depends on the model!

|∇xφ| = 1 ∇x(φ+ ωD)

|∇xφ| = 1/v(ρ) second order

(Twarogowska-Duvigneau-Goatin, 2012)
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Braess’ paradox?

A column in front of the exit can reduce inter-pedestrians pressure and
evacuation time?

|∇xφ| = 1 ∇x(φ+ ωD)

|∇xφ| = 1/v(ρ)

(Twarogowska-Duvigneau-Goatin, 2012)
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Braess’ paradox?

Evacuation time:

(Twarogowska-Duvigneau-Goatin, 2012)
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Braess’ paradox?

The second order model displays a better behavior:

(Twarogowska-Duvigneau-Goatin, 2013)
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Braess’ paradox?

Evacuation time:

(Twarogowska-Duvigneau-Goatin, 2013)

26 / 41



Introduction Conservation laws Eikonal equation Macroscopic models Tests Rigorous results Conclusion

Dependence on p0

Total evacuation time optimal for p0 = 0.5

(Twarogowska-Duvigneau-Goatin, 2013)
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Dependence on vmax

Total evacuation time

(Twarogowska-Duvigneau-Goatin, 2013)
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Stop-and-go waves

t=90 t=100 t=110 t=120

P (ρ) = 0.005ρ2, vmax = 2, ρmax = 7

(Twarogowska-Duvigneau-Goatin, 2013)
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The 1D case: statement of the problem

We consider the initial-boundary value problem

ρt −
(
ρ(1− ρ)

φx
|φx|

)
x

= 0

|φx| = c(ρ)

x ∈ Ω = ]− 1, 1[, t > 0

with initial density ρ(0, ·) = ρ0 ∈ BV(]0, 1[)
and absorbing boundary conditions

ρ(t,−1) = ρ(t, 1) = 0 (weak sense)
φ(t,−1) = φ(t, 1) = 0

General cost function c : [0, 1[ → [1,+∞[ smooth s.t. c(0) = 1 and c′(ρ) ≥ 0
(e.g. c(ρ) = 1/v(ρ))
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The 1D case: statement of the problem

The problem can be rewritten as

ρt −
(
sgn(x− ξ(t)) f(ρ)

)
x

= 0

where the turning point is given by∫ ξ(t)

−1

c (ρ(t, y)) dy =

∫ 1

ξ(t)

c (ρ(t, y)) dy

−→ the discontinuity point ξ = ξ(t) is not fixed a priori,
but depends non-locally on ρ
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The 1D case: preliminary results

existence and uniqueness of Kruzkov’s solutions for an elliptic
regularization of the eikonal equation and c = 1/v
(DiFrancesco-Markowich-Pietschmann-Wolfram, 2011)

Riemann solver at the turning point for c = 1/v
(Amadori-DiFrancesco, 2012)

entropy condition and maximum principle
(ElKhatib-Goatin-Rosini, 2012)

wave-front tracking algorithm and convergence of finite volume
schemes
(Goatin-Mimault, 2013)
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The 1D case: entropy condition

Definition: entropy weak solution (ElKhatib-Goatin-Rosini, 2012)

ρ ∈ C0
(
R+;L1(Ω)

)
∩ BV (R+ × Ω; [0, 1]) s.t. for all k ∈ [0, 1] and

ψ ∈ C∞c (R× Ω;R+):

0 ≤
∫ +∞

0

∫ 1

−1

(|ρ− k|ψt + Φ(t, x, ρ, k)ψx) dx dt+

∫ 1

−1

|ρ0(x)− k|ψ(0, x) dx

+ sgn(k)

∫ +∞

0

(f (ρ(t, 1−))− f(k))ψ(t, 1) dt

+ sgn(k)

∫ +∞

0

(f (ρ(t,−1+))− f(k))ψ(t,−1) dt

+ 2

∫ +∞

0

f(k)ψ (t, ξ(t)) dt.

where Φ(t, x, ρ, k) = sgn(ρ− k) (F (t, x, ρ)− F (t, x, k))
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The 1D case: maximum principle

Proposition (ElKhatib-Goatin-Rosini, 2012)

Let ρ ∈ C0
(
R+;BV(Ω) ∩ L1(Ω)

)
be an entropy weak solution. Then

0 ≤ ρ(t, x) ≤ ‖ρ0‖L∞(Ω).

Characteristic speeds satisfy

f ′
(
ρ+(t)

)
≤ ξ̇(t), if ρ−(t) < ρ+(t),

−f ′
(
ρ−(t)

)
≥ ξ̇(t), if ρ−(t) > ρ+(t).
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The 1D case: wave-front tracking

Riemann-type initial data:

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

x

t

∆ρ = 2−4 ∆ρ = 2−10

(Goatin-Mimault, 2013)
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The 1D case: wave-front tracking

Density profile at t = 0.8:
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(Goatin-Mimault, 2013)

37 / 41



Introduction Conservation laws Eikonal equation Macroscopic models Tests Rigorous results Conclusion

The 1D case: comparison WFT vs FV

Wave-front tracking with ∆ρ = 2−10 and finite volumes with ∆x = 1/1500
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(Goatin-Mimault, 2013)
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Macroscopic models of pedestrians flows

PDEs describing the evolution of macroscopic quantities (e.g. density):

∂tu(t,x) + divxf(u(t,x)) = 0 t > 0, x ∈ IRD, u ∈ IRn

based on the continuum hypothesis
give global description of spatio-temporal evolution
suitable for posing control and optimization problems

BUT :
no general analytical theory for multi-D hyperbolic systems (n > 1):
existence and uniqueness in 1D?
able to recover complexity features of crowd dynamics?
good agreement with empirical data?
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Thank you for your attention!
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