Rigorous results

Conclusion

Journée ANR ISOTACE

Macroscopic models for crowd behavior simulation

Paola Goatin INRIA Sophia Antipolis - Méditerranée paola.goatin@inria.fr

Orsay, April 3, 2013

Rigorous results

Conclusion

Outline of the talk

- 2 Conservation laws
- 3 Eikonal equation
- 4 Examples of macroscopic models
- 5 Numerical tests
- 6 Rigorous (preliminary) results
- Conclusion and perspectives

Crowd dynamics

Model to reproduce known pedestrian behavior:

- evacuation dynamics: seeking the *fastest* route, avoiding high densities and borders (discomfort)
- desired speed (~ 1.34m/s), depending on situations
- lines and more general patterns formation: self-organization dynamics which minimize interactions with the opposite stream
- <u>oscillations at bottlenecks</u> in opposite streams passing through a narrow passage
- etc ...

(Helbing-Farkas-Molnar-Vicsek 2002)

Crowd behavior changes in **panic** situations and becomes irrational:

- getting nervous \rightarrow "freezing by heating"
- people try to move faster \rightarrow clogging \rightarrow "faster is slower"
- $\bullet\,$ jams building up at exits $\rightarrow\,$ fatal pressures
- escape slowed down
- $\bullet\,$ herding behavior (to follow others) $\rightarrow\,$ ignorance of available exits
- "phantom panics" due to counterflow and impatience

(Helbing-Farkas-Molnar-Vicsek 2002)

Rigorous results C

Conclusion

Macroscopic models

[number of individuals in
$$\Omega \subset \mathbb{R}^2$$
 at time t] = $\int_{\Omega} \rho(t, \mathbf{x}) d\mathbf{x}$

must be conserved!

Conservation laws

Eikonal equation

Rigorous results

Conclusion

Macroscopic models

• Conservation law:

 $\partial_t \rho + \operatorname{div}_{\mathbf{x}} \mathbf{f}(t\,x) = 0$

- Flux-density relation: $\mathbf{f}(t,\mathbf{x})=\rho(t,\mathbf{x})\vec{V}(t,\mathbf{x})$
- Density must be non-negative and bounded: $0 \le \rho(t, \mathbf{x}) \le \rho_{\max}$, $\forall \mathbf{x}, t > 0$ (maximum principle?)
- Different from fluid dynamics:
 - preferred direction
 - no conservation of momentum / energy
 - no viscosity
 - $n \ll 6 \cdot 10^{23}$

Eikonal equation

Macroscopic models

Tests

Rigorous results

Conclusion

Continuum hypothesis

 $n \ll 6 \cdot 10^{23}$ but ...

Rigorous results

Conclusion

$Continuum \ {\sf hypothesis}$

 $n \ll 6 \cdot 10^{23}$ but ...

Portland, Oregon, May 2008

Rigorous results

Conclusion

Outline of the talk

- 2 Conservation laws
- 3 Eikonal equation
- 4 Examples of macroscopic models
- **5** Numerical tests
- 6 Rigorous (preliminary) results
- Conclusion and perspectives

Rigorous results

Conclusion

Scalar conservation laws

We deal with a PDE equation of the form

 $\partial_t \rho + \operatorname{div}_{\mathbf{x}} \mathbf{f}(t, \mathbf{x}, \rho) = 0$ $\rho(0, \mathbf{x}) = \rho_0(\mathbf{x})$ + BC

where
$$t \in [0, +\infty[, \mathbf{x} = (x_1, x_2) \in \mathbb{R}^2,$$

 $\rho = \rho(t, \mathbf{x}) \in \mathbb{R}$ conserved quantity
 $\mathbf{f} : [0, +\infty[\times \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2 \text{ flux}$

Main features:

- ρ NOT smooth
- existence \leftarrow weak solutions
- uniqueness \leftarrow entropy conditions

Conservation laws

Eikonal equation

Rigorous results

Conclusion

Kružkov theory (1970)

- smooth flux: $\mathbf{f} \in \mathcal{C}_c^1 \left([0, +\infty[\times \mathbb{R}^2 \times \mathbb{R}) \right)$
- entropy weak solution: $\forall k \in \mathbb{R} \text{ and } \varphi \in \mathcal{C}_c^1\left([0, +\infty[\times \mathbb{R}^2) \right)$

$$\int_{0}^{+\infty} \iint_{\mathbb{R}^{2}} |\rho - \mathbf{k}| \partial_{t} \varphi + \operatorname{sgn}(\rho - \mathbf{k}) (\mathbf{f}_{i}(t, \mathbf{x}, \rho) - \mathbf{f}_{i}(t, \mathbf{x}, \mathbf{k})) \partial_{x_{i}} \varphi -\operatorname{sgn}(\rho - \mathbf{k}) \partial_{x_{i}} \mathbf{f}_{i} \ \varphi \ d\mathbf{x} dt \geq 0$$

• well posedness: existence, uniqueness, stability

Rigorous results

Conclusion

Outline of the talk

- 2 Conservation laws
- 3 Eikonal equation
- 4 Examples of macroscopic models
- 5 Numerical tests
- 6 Rigorous (preliminary) results
- Conclusion and perspectives

Rigorous results

Conclusion

Eikonal equation

Consider $\Omega \subset \mathbb{R}^2$ walking facility $(\partial \Omega = \partial \Omega_{wall} \cup \partial \Omega_{in} \cup \partial \Omega_{exit})$; we look for $\phi : \Omega \to \mathbb{R}$ solution of the PDE equation

 $|\nabla_{\mathbf{x}}\phi| = C(\mathbf{x}) \quad \text{in } \Omega$

 $\phi(t, \mathbf{x}) = 0 \qquad \text{for } \mathbf{x} \in \partial \Omega_{exit}$

where $C = C(\mathbf{x}) \ge 0$ is the running cost:

Rigorous results (

Conclusion

Eikonal equation

Consider $\Omega \subset \mathbb{R}^2$ walking facility $(\partial \Omega = \partial \Omega_{wall} \cup \partial \Omega_{in} \cup \partial \Omega_{exit})$; we look for $\phi : \Omega \to \mathbb{R}$ solution of the PDE equation

 $|\nabla_{\mathbf{x}}\phi| = C(\mathbf{x}) \quad \text{in } \Omega$

 $\phi(t, \mathbf{x}) = 0 \qquad \text{for } \mathbf{x} \in \partial \Omega_{exit}$

where $C = C(\mathbf{x}) \ge 0$ is the running cost:

the solution $\phi(\mathbf{x})$ represents the (weighted) distance of the position \mathbf{x} from the target $\partial \Omega_{exit}$

if $C(\mathbf{x}) \equiv 1$ and Ω concave then $\phi(\mathbf{x}) = d(\mathbf{x}, \partial \Omega_{exit})$

(existence and uniqueness under some regularity assumption on C)

nservation laws

Eikonal equation

Macroscopic models

Tests

Rigorous results

Conclusion

Eikonal equation: level set curves for $|\nabla_{\mathbf{x}}\phi| = 1$

Rigorous results

Conclusion

Outline of the talk

- 2 Conservation laws
- 3 Eikonal equation
- 4 Examples of macroscopic models
- 5 Numerical tests
- 6 Rigorous (preliminary) results
- Conclusion and perspectives

Hughes' model (2002)

Mass conservation

$$\partial_t \rho + \operatorname{div}_{\mathbf{x}} \left(\rho \vec{V}(\rho) \right) = 0 \quad \text{in } \mathbb{R}^+ \times \Omega$$

where

$$\vec{V}(\rho) = v(\rho)\vec{N}$$
 and $v(\rho) = v_{\max}\left(1 - \frac{\rho}{\rho_{\max}}\right)$

Direction of the motion:
$$\vec{N} = -\frac{\nabla_{\mathbf{x}}\phi}{|\nabla_{\mathbf{x}}\phi|}$$
 is given by
 $|\nabla_{\mathbf{x}}\phi| = \frac{1}{v(\rho)}$ in Ω
 $\phi(t, \mathbf{x}) = 0$ for $\mathbf{x} \in \partial\Omega_{exit}, \forall t \ge 0$

- pedestrians tend to minimize their estimated travel time to the exit
- pedestrians temper their estimated travel time avoiding high densities
- CRITICS: instantaneous global information on entire domain

Conservation laws

Eikonal equation

Macroscopic models

Tests

Rigorous results

Conclusion

Hughes' model

Evolution of the velocity field:

T = 0.2

Conservation laws

Eikonal equation

Macroscopic models

Tests

Rigorous results

Conclusion

Hughes' model

Evolution of the velocity field:

T=0.5

Conservation laws

Eikonal equation

Macroscopic models

Tests

Rigorous results

Conclusion

Hughes' model

Evolution of the velocity field:

T=0.8

Conservation laws

Eikonal equation

Macroscopic models

Tests

Rigorous results

Conclusion

Hughes' model

Evolution of the velocity field:

T = 1.1

Rigorous results

Conclusion

Dynamic model with memory effect

Mass conservation

$$\partial_t \rho + \operatorname{div}_{\mathbf{x}} \left(\rho \vec{V}(\rho) \right) = 0 \quad \text{in } \mathbb{R}^+ \times \Omega$$

where

$$\vec{V}(\rho) = v(\rho)\vec{N}$$
 and $v(\rho) = v_{\max}\left(1 - \frac{\rho}{\rho_{\max}}\right)$

Direction of the motion:
$$\vec{N} = -\frac{\nabla_{\mathbf{x}}(\phi + \omega D)}{|\nabla_{\mathbf{x}}(\phi + \omega D)|}$$
 where

$$\begin{aligned} |\nabla_{\mathbf{x}}\phi| &= \frac{1}{v_{\max}} \quad \text{in } \Omega, \quad \phi(\mathbf{x}) = 0 \text{ for } \mathbf{x} \in \partial\Omega_{exit}, \\ D &= D(\rho) = \frac{1}{v(\rho)} + \beta\rho^2 \quad \text{discomfort} \end{aligned}$$

- pedestrians seek to minimize their estimated travel time based on their knowledge of the walking domain
- pedestrians temper their behavior locally to avoid high densities

(Xia-Wong-Shu, 2009)

Rigorous results

Conclusion

Second order model

Euler equations with relaxation

$$\begin{split} \partial_t \rho + \nabla \cdot (\rho \vec{V}) &= 0 \\ \partial_t (\rho \vec{V}) + \nabla \cdot (\rho \vec{V} \otimes \vec{V}) &= \frac{1}{\tau} (\rho v_e(\rho) \vec{N} - \rho \vec{V}) + \nabla P(\rho) \end{split}$$

(Jiang-Zhang-Wong-Liu, 2010)

Rigorous results

Conclusion

Second order model

Euler equations with relaxation

 $\begin{aligned} \partial_t \rho + \nabla \cdot (\rho \vec{V}) &= 0 \\ \partial_t (\rho \vec{V}) + \nabla \cdot (\rho \vec{V} \otimes \vec{V}) &= \underbrace{\frac{1}{\tau} (\rho v_e(\rho) \vec{N} - \rho \vec{V})}_{relaxation} + \underbrace{\nabla P(\rho)}_{anticipation}_{factor} \end{aligned}$

(Jiang-Zhang-Wong-Liu, 2010)

Rigorous results

Conclusion

Second order model

Euler equations with relaxation

 $\begin{aligned} \partial_t \rho + \nabla \cdot (\rho \vec{V}) &= 0 \\ \partial_t (\rho \vec{V}) + \nabla \cdot (\rho \vec{V} \otimes \vec{V}) &= \underbrace{\frac{1}{\tau} (\rho v_e(\rho) \vec{N} - \rho \vec{V})}_{relaxation} + \underbrace{\nabla P(\rho)}_{anticipation}_{factor} \end{aligned}$

where

$$v_e(\rho) = v_{\max} \exp\left(-\alpha \left(\frac{\rho}{\rho_{\max}}\right)^2\right), \qquad P(\rho) = p_0 \rho^{\gamma}$$

and boundary conditions: $\nabla_{\mathbf{x}}\rho\cdot\vec{n}=0$ and $\vec{V}\cdot\vec{n}=0$

(Jiang-Zhang-Wong-Liu, 2010)

Rigorous results

Conclusion

Outline of the talk

- 2 Conservation laws
- 3 Eikonal equation
- 4 Examples of macroscopic models
- 5 Numerical tests
- 6 Rigorous (preliminary) results
- Conclusion and perspectives

Rigorous results

Conclusion

The fastest route ...

... needs not to be the shortest!

Tests

Rigorous results

Conclusion

The fastest route ...

 \dots depends on the model!

Tests

Rigorous results

Conclusion

The fastest route ...

... depends on the model!

Tests

Rigorous results

Conclusion

The fastest route ...

 \ldots depends on the model!

Tests

Rigorous results

Conclusion

The fastest route ...

 \ldots depends on the model!

Braess' paradox?

A column in front of the exit can reduce inter-pedestrians pressure and evacuation time?

Rigorous results

Conclusion

Braess' paradox?

A column in front of the exit can reduce inter-pedestrians pressure and evacuation time?

Rigorous results

Conclusion

Braess' paradox?

A column in front of the exit can reduce inter-pedestrians pressure and evacuation time?

Rigorous results

Conclusion

Braess' paradox?

A column in front of the exit can reduce inter-pedestrians pressure and evacuation time?

 $|\nabla_{\mathbf{x}}\phi|=1/v(\rho)$

Rigorous results

Conclusion

Braess' paradox?

Evacuation time:

The second order model displays a better behavior:

Macroscopic models

Tests

Rigorous results

Conclusion

Braess' paradox?

Evacuation time:

Rigorous results

Conclusion

Dependence on p_0

Total evacuation time optimal for $p_0 = 0.5$

Rigorous results

Conclusion

Dependence on $v_{\rm max}$

Total evacuation time

Rigorous results

Conclusion

Stop-and-go waves

 $P(\rho) = 0.005\rho^2, v_{\rm max} = 2, \rho_{\rm max} = 7$

Rigorous results

Conclusion

Outline of the talk

- 2 Conservation laws
- 3 Eikonal equation
- ④ Examples of macroscopic models
- 5 Numerical tests
- 6 Rigorous (preliminary) results
- Conclusion and perspectives

Rigorous results

Conclusion

The 1D case: statement of the problem

We consider the initial-boundary value problem

$$\begin{aligned} \rho_t - \left(\rho(1-\rho)\frac{\phi_x}{|\phi_x|}\right)_x &= 0\\ |\phi_x| &= c(\rho) \end{aligned} \qquad x \in \Omega =]-1, 1[, \ t > 0 \end{aligned}$$

with initial density $\rho(0, \cdot) = \rho_0 \in BV(]0, 1[)$ and *absorbing* boundary conditions

$$\begin{aligned} \rho(t,-1) &= \rho(t,1) = 0 \quad \text{(weak sense)} \\ \phi(t,-1) &= \phi(t,1) = 0 \end{aligned}$$

Rigorous results

Conclusion

The 1D case: statement of the problem

We consider the initial-boundary value problem

$$\begin{aligned} \rho_t - \left(\rho(1-\rho)\frac{\phi_x}{|\phi_x|}\right)_x &= 0\\ |\phi_x| &= c(\rho) \end{aligned} \qquad x \in \Omega =]-1, 1[, \ t > 0 \end{aligned}$$

with initial density $\rho(0, \cdot) = \rho_0 \in BV(]0, 1[)$ and *absorbing* boundary conditions

$$\begin{aligned} \rho(t,-1) &= \rho(t,1) = 0 \quad \text{(weak sense)} \\ \phi(t,-1) &= \phi(t,1) = 0 \end{aligned}$$

General cost function $c\colon [0,1[\to [1,+\infty[\text{ smooth s.t. }c(0)=1\text{ and }c'(\rho)\geq 0$ (e.g. $c(\rho)=1/v(\rho))$

Conservation laws

Eikonal equation

Macroscopic models

dels Tests

Rigorous results

Conclusion

The 1D case: statement of the problem

The problem can be rewritten as

$$ho_t - \left(\mathrm{sgn}(x - \boldsymbol{\xi}(t)) \ f(
ho)
ight)_x = 0$$

where the *turning point* is given by

$$\int_{-1}^{\xi(t)} c\left(\rho(t,y)\right) \ dy = \int_{\xi(t)}^{1} c\left(\rho(t,y)\right) \ dy$$

Eikonal equation

Macroscopic models

lels Tests

Rigorous results

Conclusion

The 1D case: statement of the problem

The problem can be rewritten as

$$\rho_t - \left(\operatorname{sgn}(x - \boldsymbol{\xi}(t)) \ f(\rho)\right)_x = 0$$

where the *turning point* is given by

$$\int_{-1}^{\xi(t)} c(\rho(t,y)) \ dy = \int_{\xi(t)}^{1} c(\rho(t,y)) \ dy$$

 \longrightarrow the discontinuity point $\xi = \xi(t)$ is not fixed a priori, but depends non-locally on ρ

Conclusion

The 1D case: preliminary results

• existence and uniqueness of Kruzkov's solutions for an elliptic regularization of the eikonal equation and c = 1/v (DiFrancesco-Markowich-Pietschmann-Wolfram, 2011)

Conservation laws

Eikonal equation

Conclusion

The 1D case: preliminary results

- existence and uniqueness of Kruzkov's solutions for an elliptic regularization of the eikonal equation and c = 1/v (DiFrancesco-Markowich-Pietschmann-Wolfram, 2011)
- Riemann solver at the turning point for c = 1/v(Amadori-DiFrancesco, 2012)

Conservation laws

Eikonal equation

Conclusion

The 1D case: preliminary results

- existence and uniqueness of Kruzkov's solutions for an elliptic regularization of the eikonal equation and c = 1/v (DiFrancesco-Markowich-Pietschmann-Wolfram, 2011)
- Riemann solver at the turning point for c = 1/v (Amadori-DiFrancesco, 2012)
- entropy condition and maximum principle (ElKhatib-Goatin-Rosini, 2012)

Conservation laws

Eikonal equation

Conclusion

The 1D case: preliminary results

- existence and uniqueness of Kruzkov's solutions for an elliptic regularization of the eikonal equation and c = 1/v (DiFrancesco-Markowich-Pietschmann-Wolfram, 2011)
- Riemann solver at the turning point for c = 1/v (Amadori-DiFrancesco, 2012)
- entropy condition and maximum principle (ElKhatib-Goatin-Rosini, 2012)
- wave-front tracking algorithm and convergence of finite volume schemes (Goatin-Mimault, 2013)

Rigorous results

Conclusion

The 1D case: entropy condition

Definition: entropy weak solution (ElKhatib-Goatin-Rosini, 2012)

 $\begin{array}{l} \rho \in \mathbf{C^0}\left(\mathbb{R}^+; \mathbf{L^1}(\Omega)\right) \cap \mathrm{BV}\left(\mathbb{R}^+ \times \Omega; [0,1]\right) \, \mathrm{s.t.} \, \, \mathrm{for} \, \, \mathrm{all} \, \, k \in [0,1] \, \, \mathrm{and} \\ \psi \in \mathbf{C}^\infty_{\mathbf{c}}(\mathbb{R} \times \Omega; \mathbb{R}^+) \colon \end{array}$

$$\begin{split} 0 &\leq \int_{0}^{+\infty} \int_{-1}^{1} \left(|\rho - k| \psi_{t} + \Phi(t, x, \rho, k) \psi_{x} \right) \, dx \, dt + \int_{-1}^{1} |\rho_{0}(x) - k| \psi(0, x) \, dx \\ &+ \operatorname{sgn}(k) \int_{0}^{+\infty} \left(f \left(\rho(t, 1-) \right) - f(k) \right) \psi(t, 1) \, dt \\ &+ \operatorname{sgn}(k) \int_{0}^{+\infty} \left(f \left(\rho(t, -1+) \right) - f(k) \right) \psi(t, -1) \, dt \\ &+ 2 \int_{0}^{+\infty} f(k) \psi \left(t, \xi(t) \right) \, dt. \end{split}$$

where $\Phi(t, x, \rho, k) = \operatorname{sgn}(\rho - k) \left(F(t, x, \rho) - F(t, x, k)\right)$

Conservation laws

Eikonal equation

Macroscopic models

lels Tests

Rigorous results

Conclusion

The 1D case: maximum principle

Proposition (ElKhatib-Goatin-Rosini, 2012)

Let $\rho \in \mathbf{C}^{\mathbf{0}} \left(\mathbb{R}^+; \mathrm{BV}(\Omega) \cap \mathbf{L}^1(\Omega) \right)$ be an entropy weak solution. Then $0 \le \rho(t, x) \le \|\rho_0\|_{\mathbf{L}^{\infty}(\Omega)}.$

Characteristic speeds satisfy

$$f'(\rho^+(t)) \le \dot{\xi}(t), \text{ if } \rho^-(t) < \rho^+(t), \\ -f'(\rho^-(t)) \ge \dot{\xi}(t), \text{ if } \rho^-(t) > \rho^+(t).$$

Rigorous results

Conclusion

The 1D case: wave-front tracking

Riemann-type initial data:

(Goatin-Mimault, 2013)

Rigorous results

Conclusion

The 1D case: wave-front tracking

Density profile at t = 0.8:

(Goatin-Mimault, 2013)

Conclusion

The 1D case: comparison WFT vs FV

Wave-front tracking with $\Delta \rho = 2^{-10}$ and finite volumes with $\Delta x = 1/1500$

(Goatin-Mimault, 2013)

Rigorous results

Conclusion

Outline of the talk

- 2 Conservation laws
- 3 Eikonal equation
- ④ Examples of macroscopic models
- 5 Numerical tests
- 6 Rigorous (preliminary) results
- Conclusion and perspectives

Macroscopic models of pedestrians flows

PDEs describing the evolution of macroscopic quantities (e.g. density):

 $\partial_t u(t, \mathbf{x}) + \operatorname{div}_{\mathbf{x}} f(u(t, \mathbf{x})) = 0 \qquad t > 0, \ \mathbf{x} \in \mathbb{R}^D, \ u \in \mathbb{R}^n$

- based on the *continuum hypothesis*
- give global description of spatio-temporal evolution
- suitable for posing control and optimization problems

BUT:

- no general analytical theory for multi-D hyperbolic systems (n > 1): existence and uniqueness in 1D?
- able to recover complexity features of crowd dynamics?
- good agreement with empirical data?

onservation laws

Eikonal equation

Macroscopic models

ls Tests

Rigorous results

Conclusion

Thank you for your attention!