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Motivation

A large construction company wants to build many houses.

The company employs many carpenters, electricians,
plumbers, etc.

Need to build teams.

Each team consists of one tradesperson of each type and is
responsible for building one house.

Different combinations of people work more of less well
together.

Different potential teams have different efficiencies.

Want to construct teams to make overall process as efficient
as possible.
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Multi-marginal problem: Monge formulation

Mi ⊆ Rn, open and bounded, i = 1, 2.....m.

µi Borel probability measures on Mi .

b : M1 ×M2 × ...×Mm → R smooth surplus function.

Monge Problem:
maximize: ∫

M1

b(x1,F2(x1),F3(x1), ...,Fm(x1))dµ1(x1)

among (m − 1)-tuples of maps (F2,F3, ...,Fm) such that
Fi : M1 → Mi pushes µ1 to µi .
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F pushes µ1 to µ2.

Brendan Pass Multi-marginal optimal transport and applications



Multi-marginal problem: Kantorovich formulation

Mi ⊆ Rn, open and bounded, i = 1, 2.....m.

µi Borel probability measures on Mi .

b : M1 ×M2 × ...×Mm → R smooth surplus function.

Kantorovich Problem:
maximize ∫

M1×M2×...×Mm

b(x1, x2, ..., xm)dγ(x1, x2, ..., xm)

among measures γ on M1 ×M2 × ...×Mm that project to the µi .
A Kantorovich solution γ (or (X1,X2, ...,Xm)) always exists.
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γ projects to µi .
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Background on (two marginal) optimal transportation

Optimal transportation with two marginals (m = 2) is an
active and well established area of research.

Many diverse applications, including: fluid mechanics,
cosmology, interacting gases, meteorology, image processing,
economics, etc.

Brenier ’87, Gangbo ’95, Caffarelli ’96, Gangbo-McCann ’96,
Levin ’96: Assume µ1 << dx1 and that b is twisted, ie:

x2 7→ Dx1b(x1, x2) is injective.

Then γ is concentrated on the graph of a function over x1 and
is unique.

Example: b(x1, x2) = −|x1 − x2|2.
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Background on multi-marginal problems: good surpluses

Multi-marginal problems have many emerging applications, in
economics, physics, m-monotonicity, image processing,
financial math, statistics, etc., but are not well understood.
For certain special surplus functions, the optimal γ is unique
and is concentrated on a graph over x1:
{(x1,F2(x1), ...,Fm(x1)}.
Gangbo-Swiech ’98: b(x1, x2, ..., xm) = −

∑
i 6=j |xi − xj |2

Heinich ’02: b(x1, x2, ..., xm) = h(x1 + x2 + ...+ xm) where
h : Rn → R is strictly convex.
P ’11: Strong second order conditions on b. For example,
when m = 3, we require, for all x1, x1 ∈ M1, x2 ∈ M2,
x3, x3 ∈ M3, we have:

D2
x2x3

b[D2
x1x3

b]−1D2
x1x2

b(x1, x2, x3)− D2
x2x2

b(x1, x2, x3)

+D2
x2x2

b(x1, x2, x3) > 0.

Kim-P ’13: b(x1, x2, ..., xm) = − infy∈M [
∑m

i=1 d
2(xi , y)] on a

Riemannian manifold M.
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Background on multi-marginal problems: bad surpluses

For other surplus functions, solutions can be non-unique and
have high dimensional support. Examples:

b(x1, x2, ..., xm) = −
∑m

i 6=j
1

|xi−xj | , arises in density functional

theory for Coulombic electronic interactions in quantum
physics (Cotar-Friesecke-Kluppelberg ’11 and Buttazzo-De
Pascale-Gori-Giorgi ’12).

b(x1, x2, ..., xm) =
∑m

i 6=j |xi − xj |2, arises when Coulombic
interactions are replaced by repulsive, harmonic oscillator
interactions.

b(x1, x2, ..., xm) = det(x1, x2, ..., xm) (when n = m)
Carlier-Nazaret ’06 .

b(x1, x2, ..., xm) = h(x1 + x2 + ...+ xm), h strictly concave .
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Example application 1: multi-agent matching

Model due to Carlier-Ekeland ’10 and
Chiappori-McCann-Nesheim ’10.

Measure µ1 represents a distribution of buyer types, looking
to buy, say, custom built houses; µi (i ≥ 2) represents a
distribution of a type of worker needed to build houses (ie,
carpenters, plumbers, electricians, etc.)

Buyer x1 has a preference f1(x1, z) for a house type
z ∈ Z ⊆ Rn; worker xi (i ≥ 2) has a preference fi (xi , z) to
build house of type z .

Finding an equilibrium in this market is equivalent to solving
an optimal transport problem with surplus

b(x1, x2, ..., xm) = sup
z∈Z

m∑
i=1

fi (xi , z)
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Example application 2: density functional theory

Model due to Cotar-Friesecke-Kluppelberg ’11 and
Buttazzo-De Pascale-Gori-Giorgi ’12).

Measures µi represent particle densities of m semi-classical
electrons.

Electrons are indistinguishable → µi = µ.

Given µ, the single particle density, want to find the
m-particle density (a measure on Rnm) minimizing the total
interaction energy.

Leads to an optimal transport problem with
b(x1, x2, ..., xm) = −

∑
i 6=j

1
|xi−xj | .
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Simple Example: 1 dimensional case for 2 and 3 marginals

Take n = 1.

For m = 2, if ∂2b
∂x1∂x2

> 0, optimal map x2 = F2(x1) is
increasing.

If ∂2b
∂x1∂x2

< 0 the optimal map is decreasing.

For m = 3, if ∂2b
∂xi∂xj

> 0, for all i 6= j ∃! optimal maps

x2 = F2(x1), x3 = F3(x1), both increasing (Carlier ’03)

Coordinate invariant condition: ∂2b
∂x1∂x2

[ ∂2b
∂x3∂x2

]−1 ∂2b
∂x3∂x1

> 0.
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Higher dimensional problems for 2 and 3 marginals

When m = 2, if det(D2
x1x2

b) 6= 0, solution is concentrated on
n-dimensional Lipschitz submanifold of the product space
(McCann-P-Warren ’12 )

For m = 3, D2
xixj

b > 0 does not really make sense.

D2
xixj

b is a bilinear mapping on the product of tangent spaces
TxiMi × TxjMj .

(D2
x1x2

b)[(D2
x3x2

b)]−1(D2
x3x1

b) is a bilinear mapping on
Tx1M1 × Tx1M1!

(D2
x1x2

b)[(D2
x3x2

b)]−1(D2
x3x1

b) > 0 makes sense!
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Structure of solutions

G =

 0 D2
x1x2

b D2
x1x3

b
D2
x2x1

b 0 D2
x2x3

b
D2
x3x1

b D2
x3x2

b 0



Let the signature of G be (λ+, λ−,mn − λ+ − λ−).

spt(γ) is spacelike: V T · G · V ≥ 0 for all V ∈ T (spt(γ)) (P
’11 ).

It’s dimension is no more than mn − λ−.

mn − λ− = n iff (D2
x1x2

b)[(D2
x3x2

b)]−1(D2
x3x1

b) > 0.
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Rotationally invariant repulsive surplus

Examples: det(x1x2...xm), -
∑

i 6=j
1

|xi−xj | ,
∑

i 6=j |xi − xj |2.

Optimal measure γ is rotationally symmetric. (see, e.g.
Carlier-Nazaret ’06 )

If x , y , z ∈spt(γ), then

(x , y , z) ∈ argmax|x̄ |=r ,|ȳ |=s,|z̄|=tb(x̄ , ȳ , z̄)

(Ax ,Ay ,Az) ∈ spt(γ) for any rotation matrix A.

Some rotations fix x but not y , assuming x and y are not
co-linear (get non Monge solutions).

These rotational directions are extra spacelike directions for G .
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Monge solution and uniqueness results

For which surplus functions is the optimizer concentrated on
the graph of a function over x1?

For m = 2, the twist, injectivity of x2 7→ Dx1b(x1, x2), suffices.
For m = 3, these type of results hold for

b(x1, x2, x3) = sup
z∈Z

3∑
i=1

fi (xi , z)

This class includes −
∑3

i=1 |xi − xj |2 (Gangbo-Swiech surplus),
h(x1 + x2 + x3), for strictly convex h, (Heinich surplus).
Optimal maps factor through a measure on Z (the generalized
barycenter) Agueh-Carlier ’10.
Can easily calculate (D2

x1x2
b)[(D2

x3x2
b)]−1(D2

x3x1
b) > 0 (under

mild conditions on the fi ).
One can also prove Monge solutions and uniqueness under
strong differential conditions on b (P ’11), or under a twist
like condition on special sets (Kim-P (in preparation)).
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The limit m→∞

In the limit as m→∞, the differences become even more
pronounced.

For the surplus −
∫ 1

0

∫ 1
0 |xs − xt |2dstdt, we get unique Monge

type solutions (P ’13 ).

For − limm→∞
1

(m2)

∑m
i 6=j

1
|xi−xj | ; the (unique) optimal measure

is product measure (Cotar-Friesecke-P (in preparation) ).
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