Multi-marginal optimal transport and applications

Brendan Pass

University of Alberta

May 23, 2013
A large construction company wants to build many houses.
A large construction company wants to build many houses.
The company employs many carpenters, electricians, plumbers, etc.
A large construction company wants to build many houses. The company employs many carpenters, electricians, plumbers, etc. Need to build teams. Each team consists of one tradesperson of each type and is responsible for building one house.
A large construction company wants to build many houses.
The company employs many carpenters, electricians, plumbers, etc.
Need to build teams.
 Each team consists of one tradesperson of each type and is responsible for building one house.
Different combinations of people work more of less well together.
 Different potential teams have different efficiencies.
A large construction company wants to build many houses.
The company employs many carpenters, electricians, plumbers, etc.

Need to build teams.

- Each team consists of one tradesperson of each type and is responsible for building one house.

Different combinations of people work more or less well together.

- Different potential teams have different efficiencies.

Want to construct teams to make overall process as efficient as possible.
Introduction

$\mu_1 \rightarrow \mu_2 \rightarrow \mu_3$

$M_1 = \text{"carpenters"}$

$M_2 = \text{"plumbers"}$

$M_3 = \text{"electricians"}$
Introduction

Brendan Pass

Multi-marginal optimal transport and applications

\(\mu_1 \)

\(M_1 = \text{“carpenters”} \)

\(x_1 \)

\(\mu_2 \)

\(M_2 = \text{“plumbers”} \)

\(x_2 \)

\(\mu_3 \)

\(M_3 = \text{“electricians”} \)

\(x_3 \)

\(b(x_1, x_2, x_3) = \text{“surplus” of team } (x_1, x_2, x_3) \)
Multi-marginal problem: Monge formulation

- $M_i \subseteq \mathbb{R}^n$, open and bounded, $i = 1, 2, ..., m$.
- μ_i Borel probability measures on M_i.
- $b : M_1 \times M_2 \times ... \times M_m \rightarrow \mathbb{R}$ smooth surplus function.
Multi-marginal problem: Monge formulation

- \(M_i \subseteq \mathbb{R}^n \), open and bounded, \(i = 1, 2, \ldots, m \).
- \(\mu_i \) Borel probability measures on \(M_i \).
- \(b : M_1 \times M_2 \times \ldots \times M_m \to \mathbb{R} \) smooth surplus function.

Monge Problem:

maximize:

\[
\int_{M_1} b(x_1, F_2(x_1), F_3(x_1), \ldots, F_m(x_1)) d\mu_1(x_1)
\]

among \((m - 1)\)-tuples of maps \((F_2, F_3, \ldots, F_m)\) such that \(F_i : M_1 \to M_i \) pushes \(\mu_1 \) to \(\mu_i \).
Multi-marginal problem: Monge formulation

- \(M_i \subseteq \mathbb{R}^n \), open and bounded, \(i = 1, 2, \ldots, m \).
- \(\mu_i \) Borel probability measures on \(M_i \).
- \(b : M_1 \times M_2 \times \ldots \times M_m \rightarrow \mathbb{R} \) smooth surplus function.

Monge Problem:
maximize:

\[
\int_{M_1} b(x_1, F_2(x_1), F_3(x_1), \ldots, F_m(x_1)) \, d\mu_1(x_1)
\]

among \((m - 1)\)-tuples of maps \((F_2, F_3, \ldots, F_m)\) such that \(F_i : M_1 \rightarrow M_i\) pushes \(\mu_1\) to \(\mu_i\).
F pushes μ_1 to μ_2.

$\mu_2(A) = \mu_1(F_2^{-1}(A))$
Multi-marginal problem: Kantorovich formulation

- $M_i \subseteq \mathbb{R}^n$, open and bounded, $i = 1, 2, \ldots, m$.
- μ_i Borel probability measures on M_i.
- $b : M_1 \times M_2 \times \ldots \times M_m \rightarrow \mathbb{R}$ smooth surplus function.
Multi-marginal problem: Kantorovich formulation

- $M_i \subseteq \mathbb{R}^n$, open and bounded, $i = 1, 2\ldots m$.
- μ_i Borel probability measures on M_i.
- $b: M_1 \times M_2 \times \ldots \times M_m \to \mathbb{R}$ smooth surplus function.

Kantorovich Problem:

maximize

$$\int_{M_1 \times M_2 \times \ldots \times M_m} b(x_1, x_2, \ldots, x_m) d\gamma(x_1, x_2, \ldots, x_m)$$

among measures γ on $M_1 \times M_2 \times \ldots \times M_m$ that project to the μ_i.
Multi-marginal problem: Kantorovich formulation

- $M_i \subseteq \mathbb{R}^n$, open and bounded, $i = 1, 2, \ldots, m$.
- μ_i Borel probability measures on M_i.
- $b : M_1 \times M_2 \times \ldots \times M_m \to \mathbb{R}$ smooth surplus function.

Kantorovich Problem:
maximize

$$\int_{M_1 \times M_2 \times \ldots \times M_m} b(x_1, x_2, \ldots, x_m) d\gamma(x_1, x_2, \ldots, x_m)$$

among measures γ on $M_1 \times M_2 \times \ldots \times M_m$ that project to the μ_i.
A Kantorovich solution γ (or (X_1, X_2, \ldots, X_m)) always exists.
Multi-marginal problem: Kantorovich formulation

- $M_i \subseteq \mathbb{R}^n$, open and bounded, $i = 1, 2, \ldots, m$.
- μ_i Borel probability measures on M_i.
- $b : M_1 \times M_2 \times \ldots \times M_m \to \mathbb{R}$ smooth surplus function.

Kantorovich Problem:
maximize
\[
\int_{M_1 \times M_2 \times \ldots \times M_m} b(x_1, x_2, \ldots, x_m) d\gamma(x_1, x_2, \ldots, x_m)
\]
among measures γ on $M_1 \times M_2 \times \ldots \times M_m$ that project to the μ_i.
A Kantorovich solution γ (or (X_1, X_2, \ldots, X_m)) always exists.
\(\gamma \) projects to \(\mu_i \).
\(\gamma \) projects to \(\mu_i \).

\[
\begin{align*}
\mu_2(A) &= \gamma(M_1 \times A) \\
\mu_1(B) &= \gamma(B \times M_2)
\end{align*}
\]
Optimal transportation with **two marginals** \((m = 2)\) is an active and well established area of research.

Many diverse applications, including: fluid mechanics, cosmology, interacting gases, meteorology, image processing, economics, etc.

Brenier '87, Gangbo '95, Caffarelli '96, Gangbo-McCann '96, Levin '96: Assume \(\mu_1 \ll dx_1\) and that \(b\) is twisted, ie:

\[
x_2 \mapsto D_{x_1} b(x_1, x_2)
\]

is injective.

Then \(\gamma\) is concentrated on the graph of a function over \(x_1\) and is unique.

Example: \(b(x_1, x_2) = -|x_1 - x_2|^2\).
Multi-marginal problems have many emerging applications, in economics, physics, m-monotonicity, image processing, financial math, statistics, etc., but are not well understood.

For certain special surplus functions, the optimal γ is unique and is concentrated on a graph over x_1:

$$\{(x_1, F_2(x_1), \ldots, F_m(x_1))\}.$$

Gangbo-Swiech '98: $b(x_1, x_2, \ldots, x_m) = -\sum_{i \neq j} |x_i - x_j|^2$

Heinich '02: $b(x_1, x_2, \ldots, x_m) = h(x_1 + x_2 + \ldots + x_m)$ where $h : \mathbb{R}^n \rightarrow \mathbb{R}$ is strictly convex.

P '11: Strong second order conditions on b. For example, when $m = 3$, we require, for all $x_1, x_2 \in M_1$, $x_2 \in M_2$, $x_3, x_3 \in M_3$, we have:

$$D^2_{x_2x_3} b[D^2_{x_1x_3} b]^{-1} D^2_{x_1x_2} b(x_1, x_2, x_3) - D^2_{x_2x_2} b(x_1, x_2, x_3) + D^2_{x_2x_2} b(x_1, x_2, x_3) > 0.$$

Kim-P '13: $b(x_1, x_2, \ldots, x_m) = -\inf_{y \in M} \left[\sum_{i=1}^m d^2(x_i, y) \right]$ on a Riemannian manifold M.
For other surplus functions, solutions can be non-unique and have high dimensional support. Examples:

- \(b(x_1, x_2, \ldots, x_m) = -\sum_{i \neq j}^{m} \frac{1}{|x_i - x_j|} \), arises in density functional theory for Coulombic electronic interactions in quantum physics (Cotar-Friesecke-Kluppelberg '11 and Buttazzo-De Pascale-Gori-Giorgi '12).

- \(b(x_1, x_2, \ldots, x_m) = \sum_{i \neq j}^{m} |x_i - x_j|^2 \), arises when Coulombic interactions are replaced by repulsive, harmonic oscillator interactions.

- \(b(x_1, x_2, \ldots, x_m) = \det(x_1, x_2, \ldots, x_m) \) (when \(n = m \)) Carlier-Nazaret '06.

- \(b(x_1, x_2, \ldots, x_m) = h(x_1 + x_2 + \ldots + x_m) \), \(h \) strictly concave.
Example application 1: multi-agent matching

- Model due to Carlier-Ekeland ’10 and Chiappori-McCann-Nesheim ’10.
Example application 1: multi-agent matching

- Model due to Carlier-Ekeland ’10 and Chiappori-McCann-Nesheim ’10.
- Measure μ_1 represents a distribution of buyer types, looking to buy, say, custom built houses; μ_i ($i \geq 2$) represents a distribution of a type of worker needed to build houses (ie, carpenters, plumbers, electricians, etc.)
Example application 1: multi-agent matching

- Model due to Carlier-Ekeland ’10 and Chiappori-McCann-Nesheim ’10.

- Measure μ_1 represents a distribution of buyer types, looking to buy, say, custom built houses; μ_i ($i \geq 2$) represents a distribution of a type of worker needed to build houses (i.e., carpenters, plumbers, electricians, etc.)

- Buyer x_1 has a preference $f_1(x_1, z)$ for a house type $z \in Z \subseteq \mathbb{R}^n$; worker x_i ($i \geq 2$) has a preference $f_i(x_i, z)$ to build house of type z.

Brendan Pass
Multi-marginal optimal transport and applications
Example application 1: multi-agent matching

- Model due to Carlier-Ekeland ’10 and Chiappori-McCann-Nesheim ’10.
- Measure μ_1 represents a distribution of buyer types, looking to buy, say, custom built houses; μ_i ($i \geq 2$) represents a distribution of a type of worker needed to build houses (ie, carpenters, plumbers, electricians, etc.)
- Buyer x_1 has a preference $f_1(x_1, z)$ for a house type $z \in Z \subseteq \mathbb{R}^n$; worker x_i ($i \geq 2$) has a preference $f_i(x_i, z)$ to build house of type z.
- Finding an equilibrium in this market is equivalent to solving an optimal transport problem with surplus

$$b(x_1, x_2, \ldots, x_m) = \sup_{z \in Z} \sum_{i=1}^{m} f_i(x_i, z)$$
Example application 2: density functional theory

- Model due to Cotar-Friesecke-Kluppelberg '11 and Buttazzo-De Pascale-Gori-Giorgi '12.

\[\mu_i \text{ represent particle densities of semi-classical electrons.} \]

Electrons are indistinguishable \(\Rightarrow \mu_i = \mu \).

Given \(\mu \), the single particle density, want to find the \(m \)-particle density (a measure on \(\mathbb{R}^{nm} \)) minimizing the total interaction energy.

Leads to an optimal transport problem with

\[b(x_1, x_2, \ldots, x_m) = -\sum_{i \neq j} 1 |x_i - x_j|. \]
Example application 2: density functional theory

- Model due to Cotar-Friesecke-Kluppelberg ’11 and Buttazzo-De Pascale-Gori-Giorigi ’12).
- Measures μ_i represent particle densities of m semi-classical electrons.
Example application 2: density functional theory

- Model due to Cotar-Friesecke-Kluppelberg '11 and Buttazzo-De Pascale-Gori-Giorgi '12.
- Measures μ_i represent particle densities of m semi-classical electrons.
- Electrons are indistinguishable $\rightarrow \mu_i = \mu$.

Brendan Pass
Multi-marginal optimal transport and applications
• Model due to Cotar-Friesecke-Kluppelberg ’11 and Buttazzo-De Pascale-Gori-Giorgi ’12).
• Measures μ_i represent particle densities of m semi-classical electrons.
• Electrons are indistinguishable $\rightarrow \mu_i = \mu$.
• Given μ, the single particle density, want to find the m-particle density (a measure on \mathbb{R}^{nm}) minimizing the total interaction energy.
Model due to Cotar-Friesecke-Kluzzerberg '11 and Buttazzo-De Pascale-Gori-Giorgi '12.

Measures μ_i represent particle densities of m semi-classical electrons.

Electrons are indistinguishable $\Rightarrow \mu_i = \mu$.

Given μ, the single particle density, want to find the m-particle density (a measure on \mathbb{R}^{nm}) minimizing the total interaction energy.

Leads to an optimal transport problem with $b(x_1, x_2, \ldots, x_m) = -\sum_{i \neq j} \frac{1}{|x_i - x_j|}$.
Take $n = 1$.

For $m = 2$, if $\frac{\partial^2 b}{\partial x_1 \partial x_2} > 0$, the optimal map $x_2 = F_2(x_1)$ is increasing. If $\frac{\partial^2 b}{\partial x_1 \partial x_2} < 0$, the optimal map is decreasing.

For $m = 3$, if $\frac{\partial^2 b}{\partial x_i \partial x_j} > 0$ for all $i \neq j$, there exist odd optimal maps $x_2 = F_2(x_1)$, $x_3 = F_3(x_1)$, both increasing (Carlier '03).

Coordinate invariant condition:

$$\frac{\partial^2 b}{\partial x_1 \partial x_2} \left[\frac{\partial^2 b}{\partial x_3 \partial x_2} \right] - \frac{\partial^2 b}{\partial x_3 \partial x_1} > 0.$$
Simple Example: 1 dimensional case for 2 and 3 marginals

- Take \(n = 1 \).
- For \(m = 2 \), if \(\frac{\partial^2 b}{\partial x_1 \partial x_2} > 0 \), optimal map \(x_2 = F_2(x_1) \) is increasing.
 - If \(\frac{\partial^2 b}{\partial x_1 \partial x_2} < 0 \) the optimal map is decreasing.

Coordinate invariant condition:

\[
\frac{\partial^2 b}{\partial x_1 \partial x_2}[\frac{\partial^2 b}{\partial x_3 \partial x_2}] - 1 \frac{\partial^2 b}{\partial x_3 \partial x_1} > 0.
\]
Simple Example: 1 dimensional case for 2 and 3 marginals

- Take \(n = 1 \).
- For \(m = 2 \), if \(\frac{\partial^2 b}{\partial x_1 \partial x_2} > 0 \), optimal map \(x_2 = F_2(x_1) \) is increasing.
 - If \(\frac{\partial^2 b}{\partial x_1 \partial x_2} < 0 \) the optimal map is decreasing.
- For \(m = 3 \), if \(\frac{\partial^2 b}{\partial x_i \partial x_j} > 0 \), for all \(i \neq j \) \(\exists! \) optimal maps \(x_2 = F_2(x_1), x_3 = F_3(x_1) \), both increasing (Carlier '03)
Simple Example: 1 dimensional case for 2 and 3 marginals

- Take $n = 1$.
- For $m = 2$, if $\frac{\partial^2 b}{\partial x_1 \partial x_2} > 0$, optimal map $x_2 = F_2(x_1)$ is increasing.
 - If $\frac{\partial^2 b}{\partial x_1 \partial x_2} < 0$ the optimal map is decreasing.
- For $m = 3$, if $\frac{\partial^2 b}{\partial x_i \partial x_j} > 0$, for all $i \neq j$ there exist optimal maps $x_2 = F_2(x_1), x_3 = F_3(x_1)$, both increasing (Carlier '03)
- Coordinate invariant condition: $\frac{\partial^2 b}{\partial x_1 \partial x_2} \left[\frac{\partial^2 b}{\partial x_3 \partial x_2} \right]^{-1} \frac{\partial^2 b}{\partial x_3 \partial x_1} > 0$.
When $m = 2$, if $\det(D^2_{x_1 x_2} b) \neq 0$, solution is concentrated on n-dimensional Lipschitz submanifold of the product space (McCann-P-Warren ’12).
Higher dimensional problems for 2 and 3 marginals

- When $m = 2$, if $\det(D_{x_1x_2}^2 b) \neq 0$, solution is concentrated on n-dimensional Lipschitz submanifold of the product space (McCann-P-Warren '12).
- For $m = 3$, $D_{x_ix_j}^2 b > 0$ does not really make sense.
Higher dimensional problems for 2 and 3 marginals

- When $m = 2$, if $\det(D_{x_1 x_2}^2 b) \neq 0$, solution is concentrated on n-dimensional Lipschitz submanifold of the product space (McCann-P-Warren '12).
- For $m = 3$, $D_{x_i x_j}^2 b > 0$ does not really make sense.
- $D_{x_i x_j}^2 b$ is a bilinear mapping on the product of tangent spaces $T_{x_i} M_i \times T_{x_j} M_j$.
Higher dimensional problems for 2 and 3 marginals

- When $m = 2$, if $\det(D_{x_1x_2}^2 b) \neq 0$, solution is concentrated on n-dimensional Lipschitz submanifold of the product space (McCann-P-Warren ’12).
- For $m = 3$, $D^2_{x_ix_j} b > 0$ does not really make sense.
- $D^2_{x_ix_j} b$ is a bilinear mapping on the product of tangent spaces $T_{x_i} M_i \times T_{x_j} M_j$.
- $(D^2_{x_1x_2} b)[(D^2_{x_3x_2} b)]^{-1}(D^2_{x_3x_1} b)$ is a bilinear mapping on $T_{x_1} M_1 \times T_{x_1} M_1$.
Higher dimensional problems for 2 and 3 marginals

- When $m = 2$, if $\det(D_{x_1 x_2}^2 b) \neq 0$, solution is concentrated on n-dimensional Lipschitz submanifold of the product space (McCann-P-Warren ’12)
- For $m = 3$, $D_{x_i x_j}^2 b > 0$ does not really make sense.
- $D_{x_i x_j}^2 b$ is a bilinear mapping on the product of tangent spaces $T_{x_i} M_i \times T_{x_j} M_j$.
- $(D_{x_1 x_2}^2 b) [(D_{x_3 x_2}^2 b)]^{-1} (D_{x_3 x_1}^2 b)$ is a bilinear mapping on $T_{x_1} M_1 \times T_{x_1} M_1$!
- $(D_{x_1 x_2}^2 b) [(D_{x_3 x_2}^2 b)]^{-1} (D_{x_3 x_1}^2 b) > 0$ makes sense!
Let the signature of G be $(\lambda +, \lambda - , \lambda, \lambda -)$.

$spt(\gamma)$ is spacelike: $V^T \cdot G \cdot V \geq 0$ for all $V \in T(spt(\gamma))$ (P1).

Its dimension is no more than λ:

$\lambda = n$ iff

$D_{x_1x_2} b \left[D_{x_2x_3} b \right]^{\lambda - 1} \left[D_{x_3x_2} b \right] > 0$.
Let the signature of G be $(\lambda_+, \lambda_-, mn - \lambda_+ - \lambda_-)$.

$$G = \begin{bmatrix}
0 & D^2_{x_1 x_2} b & D^2_{x_1 x_3} b \\
D^2_{x_2 x_1} b & 0 & D^2_{x_2 x_3} b \\
D^2_{x_3 x_1} b & D^2_{x_3 x_2} b & 0 \\
\end{bmatrix}$$
Structure of solutions

Let the signature of G be $(\lambda_+, \lambda_-, mn - \lambda_+ - \lambda_-)$.

$spt(\gamma)$ is spacelike: $V^T \cdot G \cdot V \geq 0$ for all $V \in T(spt(\gamma))$ (P '11).
Structure of solutions

\[G = \begin{bmatrix}
0 & D^2_{x_1 x_2} b & D^2_{x_1 x_3} b \\
D^2_{x_2 x_1} b & 0 & D^2_{x_2 x_3} b \\
D^2_{x_3 x_1} b & D^2_{x_3 x_2} b & 0
\end{bmatrix} \]

- Let the signature of \(G \) be \((\lambda_+, \lambda_-, mn - \lambda_+ - \lambda_-)\).
- \(spt(\gamma) \) is spacelike: \(V^T \cdot G \cdot V \geq 0 \) for all \(V \in T(spt(\gamma)) \) (P '11).
- It's dimension is no more than \(mn - \lambda_- \).
Structure of solutions

\[G = \begin{bmatrix}
0 & D^2_{x_1 x_2} b & D^2_{x_1 x_3} b \\
D^2_{x_2 x_1} b & 0 & D^2_{x_2 x_3} b \\
D^2_{x_3 x_1} b & D^2_{x_3 x_2} b & 0
\end{bmatrix} \]

- Let the signature of \(G \) be \((\lambda_+, \lambda_-, mn - \lambda_+ - \lambda_-) \).
- \(spt(\gamma) \) is spacelike: \(V^T \cdot G \cdot V \geq 0 \) for all \(V \in T(spt(\gamma)) \) (P'11).
- It's dimension is no more than \(mn - \lambda_- \).
- \(mn - \lambda_- = n \) iff \((D^2_{x_1 x_2} b)[(D^2_{x_3 x_2} b)]^{-1}(D^2_{x_3 x_1} b) > 0 \).
Examples: \(\det(x_1 x_2 \ldots x_m), -\sum_{i \neq j} \frac{1}{|x_i - x_j|}, \sum_{i \neq j} |x_i - x_j|^2 \).
Rotationally invariant repulsive surplus

- Examples: $\det(x_1x_2...x_m), -\sum_{i\neq j} \frac{1}{|x_i-x_j|}, \sum_{i\neq j} |x_i - x_j|^2$.
- Optimal measure γ is rotationally symmetric. (see, e.g. Carlier-Nazaret '06)
Examples: \(\det(x_1x_2\ldots x_m) \), \(-\sum_{i \neq j} \frac{1}{|x_i - x_j|} \), \(\sum_{i \neq j} |x_i - x_j|^2 \).

Optimal measure \(\gamma \) is rotationally symmetric. (see, e.g. Carlier-Nazaret '06)

If \(x, y, z \in \text{spt}(\gamma) \), then
Rotationally invariant repulsive surplus

- Examples: \(\det(x_1 x_2 \ldots x_m) \), \(-\sum_{i \neq j} \frac{1}{|x_i - x_j|}, \sum_{i \neq j} |x_i - x_j|^2 \).

- Optimal measure \(\gamma \) is rotationally symmetric. (see, e.g. Carlier-Nazaret '06)

- If \(x, y, z \in \text{spt}(\gamma) \), then

 \[(x, y, z) \in \arg\max_{|\bar{x}|=r, |\bar{y}|=s, |\bar{z}|=t} b(\bar{x}, \bar{y}, \bar{z}) \]

 \((Ax, Ay, Az) \in \text{spt}(\gamma)\) for any rotation matrix \(A \).
Examples: \(\det(x_1x_2...x_m), -\sum_{i \neq j} \frac{1}{|x_i-x_j|}, \sum_{i \neq j} |x_i - x_j|^2 \).

Optimal measure \(\gamma \) is rotationally symmetric. (see, e.g. Carlier-Nazaret '06)

If \(x, y, z \in \text{spt}(\gamma) \), then

\[
(x, y, z) \in \arg\max_{|\bar{x}|=r, |\bar{y}|=s, |\bar{z}|=t} b(\bar{x}, \bar{y}, \bar{z})
\]

\((Ax, Ay, Az) \in \text{spt}(\gamma)\) for any rotation matrix \(A \).

Some rotations fix \(x \) but not \(y \), assuming \(x \) and \(y \) are not co-linear (get non Monge solutions).
Examples: $\det(x_1 x_2 \ldots x_m)$, $-\sum_{i \neq j} \frac{1}{|x_i - x_j|}$, $\sum_{i \neq j} |x_i - x_j|^2$.

Optimal measure γ is rotationally symmetric. (see, e.g. Carlier-Nazaret '06)

If $x, y, z \in \text{spt}(\gamma)$, then

$$(x, y, z) \in \text{argmax}_{|\bar{x}|=r, |\bar{y}|=s, |\bar{z}|=t} b(\bar{x}, \bar{y}, \bar{z})$$

$(Ax, Ay, Az) \in \text{spt}(\gamma)$ for any rotation matrix A.

Some rotations fix x but not y, assuming x and y are not co-linear (get non Monge solutions).

These rotational directions are extra spacelike directions for G.

Monge solution and uniqueness results

For which surplus functions is the optimizer concentrated on the graph of a function over x_1?

For $m = 2$, the twist, injectivity of $x_2 \mapsto D x_1 b(x_1, x_2)$, suffices. For $m = 3$, these type of results hold for $b(x_1, x_2, x_3) = \sup_{z \in Z^3} \sum_{i=1}^3 f_i(x_i, z)$. This class includes $-\sum_{i=1}^3 |x_i - x_j|^2$ (Gangbo-Swiech surplus), $h(x_1 + x_2 + x_3)$, for strictly convex h, (Heinich surplus). Optimal maps factor through a measure on Z (the generalized barycenter) Agueh-Carlier '10. Can easily calculate $(D^2 x_1 x_2 b)[(D^2 x_3 x_2 b)]^{-1} (D^2 x_3 x_1 b) > 0$ (under mild conditions on the f_i).

One can also prove Monge solutions and uniqueness under strong differential conditions on b (P '11), or under a twist like condition on special sets (Kim-P (in preparation)).

Brendan Pass
Multi-marginal optimal transport and applications
Monge solution and uniqueness results

- For which surplus functions is the optimizer concentrated on the graph of a function over x_1?
- For $m = 2$, the twist, injectivity of $x_2 \mapsto D_{x_1} b(x_1, x_2)$, suffices.

This class includes $-\sum_{i=1}^3 |x_i - x_j|^2$ (Gangbo-Swiech surplus), $h(x_1 + x_2 + x_3)$ for strictly convex h (Heinich surplus).

Optimal maps factor through a measure on Z (the generalized barycenter) Agueh-Carlier '10.

Can easily calculate $[D^2_{x_2} b(x_3, x_2)] - 1 [D^2_{x_3} b(x_1, x_3)] > 0$ (under mild conditions on the f_i).

One can also prove Monge solutions and uniqueness under strong differential conditions on b (P '11), or under a twist like condition on special sets (Kim-P (in preparation)).
Monge solution and uniqueness results

- For which surplus functions is the optimizer concentrated on the graph of a function over x_1?
- For $m = 2$, the twist, injectivity of $x_2 \mapsto D_{x_1} b(x_1, x_2)$, suffices.
- For $m = 3$, these type of results hold for

$$b(x_1, x_2, x_3) = \sup_{z \in Z} \sum_{i=1}^{3} f_i(x_i, z)$$
For which surplus functions is the optimizer concentrated on the graph of a function over x_1?

For $m = 2$, the twist, injectivity of $x_2 \mapsto D_{x_1} b(x_1, x_2)$, suffices.

For $m = 3$, these type of results hold for

$$b(x_1, x_2, x_3) = \sup_{z \in Z} \sum_{i=1}^{3} f_i(x_i, z)$$

This class includes $-\sum_{i=1}^{3} |x_i - x_j|^2$ (Gangbo-Swiech surplus), $h(x_1 + x_2 + x_3)$, for strictly convex h, (Heinich surplus).
Monge solution and uniqueness results

- For which surplus functions is the optimizer concentrated on the graph of a function over x_1?
- For $m = 2$, the twist, injectivity of $x_2 \mapsto D_{x_1} b(x_1, x_2)$, suffices.
- For $m = 3$, these type of results hold for

$$b(x_1, x_2, x_3) = \sup_{z \in Z} \sum_{i=1}^{3} f_i(x_i, z)$$

- This class includes $-\sum_{i=1}^{3} |x_i - x_j|^2$ (Gangbo-Swiech surplus), $h(x_1 + x_2 + x_3)$, for strictly convex h, (Heinich surplus).
- Optimal maps factor through a measure on Z (the generalized barycenter) Agueh-Carlier ’10.
Monge solution and uniqueness results

- For which surplus functions is the optimizer concentrated on the graph of a function over x_1?
- For $m = 2$, the twist, injectivity of $x_2 \mapsto D_{x_1} b(x_1, x_2)$, suffices.
- For $m = 3$, these type of results hold for

$$b(x_1, x_2, x_3) = \sup_{z \in Z} \sum_{i=1}^{3} f_i(x_i, z)$$

- This class includes $- \sum_{i=1}^{3} |x_i - x_j|^2$ (Gangbo-Swiech surplus), $h(x_1 + x_2 + x_3)$, for strictly convex h, (Heinich surplus).
- Optimal maps factor through a measure on Z (the generalized barycenter) Agueh-Carlier ’10.
- Can easily calculate $(D^2_{x_1 x_2} b)[(D^2_{x_3 x_2} b)]^{-1}(D^2_{x_3 x_1} b) > 0$ (under mild conditions on the f_i).
For which surplus functions is the optimizer concentrated on the graph of a function over x_1?

For $m = 2$, the twist, injectivity of $x_2 \mapsto D_{x_1} b(x_1, x_2)$, suffices.

For $m = 3$, these type of results hold for

$$b(x_1, x_2, x_3) = \sup_{z \in Z} \sum_{i=1}^{3} f_i(x_i, z)$$

This class includes $- \sum_{i=1}^{3} |x_i - x_j|^2$ (Gangbo-Swiech surplus), $h(x_1 + x_2 + x_3)$, for strictly convex h, (Heinich surplus).

Optimal maps factor through a measure on Z (the generalized barycenter) Agueh-Carlier '10.

Can easily calculate $(D_{x_1 x_2}^2 b)[(D_{x_3 x_2}^2 b)]^{-1}(D_{x_3 x_1}^2 b) > 0$ (under mild conditions on the f_i).

One can also prove Monge solutions and uniqueness under strong differential conditions on b (P '11), or under a twist like condition on special sets (Kim-P (in preparation)).
In the limit as $m \to \infty$, the differences become even more pronounced.

For the surplus $- \int_0^1 \int_0^1 |x_s - x_t|^2 dstdt$, we get unique Monge type solutions (P '13).

For $- \lim_{m \to \infty} \left(\frac{1}{m} \right) \sum_{i \neq j}^m \frac{1}{|x_i - x_j|}$; the (unique) optimal measure is product measure (Cotar-Friesecke-P (in preparation)).