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o Different potential teams have different efficiencies.
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A large construction company wants to build many houses.

The company employs many carpenters, electricians,
plumbers, etc.
Need to build teams.

e Each team consists of one tradesperson of each type and is
responsible for building one house.

@ Different combinations of people work more of less well
together.

o Different potential teams have different efficiencies.

@ Want to construct teams to make overall process as efficient
as possible.
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Introduction

M3

lVI1 = “carpenters” = “plumbers” M, = “electricians”
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Introduction

M1 25}

N
° Xy
4 o/ v/ /
M, = “carpenters! /pumbers M, = “electricians”

b(xy, X, X3) = “surplus” of team (x,, X,, X3)
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Multi-marginal problem: Monge formulation

e M; CR", open and bounded, i =1,2.....m.
@ 1; Borel probability measures on M;.

@ b: My x My x ... x M, — R smooth surplus function.
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Multi-marginal problem: Monge formulation

e M; CR", open and bounded, i =1,2.....m.
@ 1; Borel probability measures on M;.

@ b: My x My x ... x M, — R smooth surplus function.

Monge Problem:
maximize:

y b(x1, Fa(x1), F3(x1), ..., Fm(x1))dp1(x1)

among (m — 1)-tuples of maps (Fz, F3, ..., F,) such that
Fi : My — M; pushes uy to ;.
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Multi-marginal problem: Monge formulation

e M; CR", open and bounded, i =1,2.....m.
@ 1; Borel probability measures on M;.

@ b: My x My x ... x M, — R smooth surplus function.

Monge Problem:
maximize:

y b(x1, Fo(x1), F3(x1), ..., Fm(x1))dp1(x1)

among (m — 1)-tuples of maps (Fz, F3, ..., Fr,) such that
Fi: My — M; pushes uy to ;.
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F pushes p; to uo.

X;=Fy{x4)

N

A /

M,
Mo (A) =p( )
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Multi-marginal problem: Kantorovich formulation

e M; CR", open and bounded, i =1,2.....m.
@ 1; Borel probability measures on M;.

@ b: My x My x ... x M, — R smooth surplus function.
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Multi-marginal problem: Kantorovich formulation

e M; CR", open and bounded, i =1,2.....m.
@ 1; Borel probability measures on M;.
@ b: My x My x ... x M, — R smooth surplus function.

Kantorovich Problem:
maximize

/ b(X1>X27"'>Xm)dA/(X1aX2a"'aXm)
My x My x...x Mp,

among measures v on My x My x ... X M,, that project to the u;.
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Multi-marginal problem: Kantorovich formulation

e M; CR", open and bounded, i =1,2.....m.
@ 1; Borel probability measures on M;.

@ b: My x My x ... x M, — R smooth surplus function.

Kantorovich Problem:
maximize

/ b(X1>X27"'>Xm)d7(X1aX2a"'aXm)
My x My x...x Mp,

among measures v on My x My x ... x M,, that project to the u;.
A Kantorovich solution v (or (X1, X, ..., X)) always exists.
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Multi-marginal problem: Kantorovich formulation

e M; CR", open and bounded, i =1,2.....m.
@ 1; Borel probability measures on M;.

@ b: My x My x ... x M, — R smooth surplus function.

Kantorovich Problem:
maximize
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My x My x...x Mp,
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v projects to ;.

Y\
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v projects to ;.

Ml
H,(A) =y(M; x A)
Hy(B)=v(B x M)
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Background on (two marginal) optimal transportation

@ Optimal transportation with two marginals (m = 2) is an
active and well established area of research.

@ Many diverse applications, including: fluid mechanics,
cosmology, interacting gases, meteorology, image processing,
economics, etc.

@ Brenier '87, Gangbo '95, Caffarelli '96, Gangbo-McCann '96,
Levin '96: Assume p1 << dxy and that b is twisted, ie:

xo — Dy, b(x1, x2) is injective.

Then ~ is concentrated on the graph of a function over x; and
is unique.

o Example: b(x1,x) = —|x1 — x2|?.
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Background on multi-marginal problems: good surpluses

@ Multi-marginal problems have many emerging applications, in
economics, physics, m-monotonicity, image processing,
financial math, statistics, etc., but are not well understood.

@ For certain special surplus functions, the optimal  is unique
and is concentrated on a graph over xi:

{(Xl, F2(X1), ceey Fm(Xl)}.

o Gangbo-Swiech '98: b(x1, X, ..:; Xm) = — >_ i [xi — i

@ Heinich '02: b(x1,x2,...,Xm) = h(x1 + x2 + ... + Xmm) where
h:R" — R is strictly convex.

@ P '11: Strong second order conditions on b. For example,
when m = 3, we require, for all x;,Xx1 € My, xo € My,

X3,73 € M5, we have:

b(x1, %2, x3) — D3, b(x1, X2, x3)

+D2,,b(X1, x2,53) > 0.
o Kim-P '13: b(x1,x2, ..., xm) = —infyem[>.1; d?(x;,y)] on a

Riemannian manifold M.
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Background on multi-marginal problems: bad surpluses

@ For other surplus functions, solutions can be non-unique and
have high dimensional support. Examples:

@ b(x1,X2, ..., Xm) = — Z,';J ﬁ arises in density functional

i Xj
theory for Coulombic electronic interactions in quantum
physics (Cotar-Friesecke-Kluppelberg '11 and Buttazzo-De
Pascale-Gori-Giorgi '12).

° .b(Xl’X2? s Xm) = i X — xj|2,.arises when' Coulpmbic
interactions are replaced by repulsive, harmonic oscillator
interactions.

@ b(x1,x2,...,Xm) = det(x1, x2, ..., Xm) (when n = m)
Carlier-Nazaret '06 .

@ b(x1,x2,...,Xm) = h(x1 + x2 + ... + Xm), h strictly concave .
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Example application 1: multi-agent matching

@ Model due to Carlier-Ekeland '10 and
Chiappori-McCann-Nesheim '10.
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Example application 1: multi-agent matching

@ Model due to Carlier-Ekeland '10 and
Chiappori-McCann-Nesheim '10.

@ Measure puj represents a distribution of buyer types, looking
to buy, say, custom built houses; p; (i > 2) represents a
distribution of a type of worker needed to build houses (e,
carpenters, plumbers, electricians, etc.)
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Example application 1: multi-agent matching

@ Model due to Carlier-Ekeland '10 and
Chiappori-McCann-Nesheim '10.

@ Measure puj represents a distribution of buyer types, looking
to buy, say, custom built houses; p; (i > 2) represents a
distribution of a type of worker needed to build houses (e,
carpenters, plumbers, electricians, etc.)

@ Buyer xq has a preference fi(xy, z) for a house type
z € Z CR"; worker x; (i > 2) has a preference fi(x;, z) to
build house of type z.
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Example application 1: multi-agent matching

@ Model due to Carlier-Ekeland '10 and
Chiappori-McCann-Nesheim '10.

@ Measure puj represents a distribution of buyer types, looking
to buy, say, custom built houses; p; (i > 2) represents a
distribution of a type of worker needed to build houses (e,
carpenters, plumbers, electricians, etc.)

@ Buyer xq has a preference fi(xy, z) for a house type
z € Z CR"; worker x; (i > 2) has a preference fi(x;, z) to
build house of type z.

@ Finding an equilibrium in this market is equivalent to solving
an optimal transport problem with surplus

m
b(x1, X2, ..., Xm) = sup Z fi(xi, z)
2€2 i
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Example application 2: density functional theory

@ Model due to Cotar-Friesecke-Kluppelberg '11 and
Buttazzo-De Pascale-Gori-Giorgi '12).
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Example application 2: density functional theory

@ Model due to Cotar-Friesecke-Kluppelberg '11 and
Buttazzo-De Pascale-Gori-Giorgi '12).

@ Measures u; represent particle densities of m semi-classical
electrons.
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Example application 2: density functional theory

@ Model due to Cotar-Friesecke-Kluppelberg '11 and
Buttazzo-De Pascale-Gori-Giorgi '12).

@ Measures u; represent particle densities of m semi-classical
electrons.

o Electrons are indistinguishable — p; = p.
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Example application 2: density functional theory

@ Model due to Cotar-Friesecke-Kluppelberg '11 and
Buttazzo-De Pascale-Gori-Giorgi '12).

@ Measures u; represent particle densities of m semi-classical
electrons.

o Electrons are indistinguishable — p; = p.

@ Given u, the single particle density, want to find the
m-particle density (a measure on R™™) minimizing the total
interaction energy.
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Example application 2: density functional theory

@ Model due to Cotar-Friesecke-Kluppelberg '11 and
Buttazzo-De Pascale-Gori-Giorgi '12).

@ Measures u; represent particle densities of m semi-classical
electrons.

o Electrons are indistinguishable — p; = p.

@ Given u, the single particle density, want to find the
m-particle density (a measure on R™™) minimizing the total
interaction energy.

@ Leads to an optimal transport problem with
_ 1
b(X17X2, ...,Xm) = — ZI#] m
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Simple Example: 1 dimensional case for 2 and 3 marginals

o Take n=1.
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Simple Example: 1 dimensional case for 2 and 3 marginals

o Take n=1.
. 2 . )
° .FOI" m : 2. |f 8)(?18[;2 > O, Optlma| map Xp = F2(X1) IS
Increasing.
o If affé’XZ < 0 the optimal map is decreasing.
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Simple Example: 1 dimensional case for 2 and 3 marginals

o Take n=1.

e For m=2,if 822§X2 > 0, optimal map xo = Fa(x1) is
increasing.

8b . . .
o If o < 0 the optimal map is decreasing.

@ For m=3, if 832;)(, > 0, for all i # j 3! optimal maps
10X
xp = Fa(x1), x3 = F3(x1), both increasing (Carlier '03)
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Simple Example: 1 dimensional case for 2 and 3 marginals

o Take n=1.
. 2 . )
° .FOI" m : 2. |f 8)(?18[;2 > O, Optlma| map Xp = F2(X1) IS
Increasing.
o If affé’XZ < 0 the optimal map is decreasing.

@ For m=3, if 823’@ > 0, for all i # j 3! optimal maps

xp = Fa(x1), x3 = F3(x1), both increasing (Carlier '03)

92b 92b ]—1 8%b

e Coordinate invariant condition: axlaX2[a><38><2 oo > 0-
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Higher dimensional problems for 2 and 3 marginals

e When m =2, if det(D2,,b) # 0, solution is concentrated on
n-dimensional Lipschitz submanifold of the product space

(McCann-P-Warren '12 )
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Higher dimensional problems for 2 and 3 marginals

o When m=2, if det(D2 b) # 0, solution is concentrated on

X1X
n-dimensional Lipschitz submanifold of the product space

(McCann-P-Warren '12 )

@ For m=3, D)%,ij > 0 does not really make sense.
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Higher dimensional problems for 2 and 3 marginals

o When m=2, if det(D2 b) # 0, solution is concentrated on

X1X
n-dimensional Lipschitz submanifold of the product space

(McCann-P-Warren '12 )

@ For m=3, D)%,ij > 0 does not really make sense.

° Dfl_ij is a bilinear mapping on the product of tangent spaces
TXiM; X TXJ.MJ'.
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Higher dimensional problems for 2 and 3 marginals

e When m =2, if det(D2,,b) # 0, solution is concentrated on

n-dimensional Lipschitz submanifold of the product space
(McCann-P-Warren '12 )

@ For m=3, D)%,ij > 0 does not really make sense.

° Dfl_ij is a bilinear mapping on the product of tangent spaces
Ty M x Ty, M;.

(D)%lx2 )[( o b)]~ 1( me) is a bilinear mapping on
TX1M1 X TX1M1
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Higher dimensional problems for 2 and 3 marginals

e When m =2, if det(D2,,b) # 0, solution is concentrated on
n-dimensional Lipschitz submanifold of the product space
(McCann-P-Warren '12 )

@ For m=3, D)%,ij > 0 does not really make sense.

° Dfl_ij is a bilinear mapping on the product of tangent spaces
Ty M x Ty, M;.

(D)%lx2 )[( o b)]~ 1( me) is a bilinear mapping on
TX1M1 X TX1M1

(D)%lxz )[( X3X2 )] 1( X3X1 )>0makes sense!
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Structure of solutions

0 D2.b D2 b

X1 X2 X1X3

G=|D2,b 0 DZ..b
Dz b D2 b 0

X3X1 X3X2
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Structure of solutions

0 D2.b D2 b

X1X2 X1X3
G=|D2,b 0 DZ..b
DI, b DZ.b 0

@ Let the signature of G be (A4, A_,mn — Ay — A_).
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Structure of solutions

0 D2.b D2 b

X1X2 X1X3
G = D)%2X1 b 0 D)%2X3 b
DZ. b DZ.,b 0

@ Let the signature of G be (A4, A_,mn — Ay — A_).

o spt(y) is spacelike: VT - G-V >0 forall V€ T(spt(y)) (P
11 ).
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Structure of solutions

0 D2.b D2 b

X1X2 X1X3
G=|D2,b 0 DZ..b
DI, b DZ.b 0

@ Let the signature of G be (A4, A_,mn — Ay — A_).

o spt(y) is spacelike: VT - G-V >0 forall V€ T(spt(y)) (P
11 ).

@ It's dimension is no more than mn — A_.
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Structure of solutions

2
0 D2,b D2.b
G= Dfxlb 0 D2.b
2
D, b D2, b 0

@ Let the signature of G be (A4, A_,mn — Ay — A_).

o spt(vy) is spacelike: VT - G-V >0 forall V€ T(spt(y)) (P
11 ).

@ It's dimension is no more than mn — A_.

o mn—A_ = niff (D2,,b)[(D2,,b)]"}(D2,,b) > 0.

X1X2
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Rotationally invariant repulsive surplus

e Examples: det(x1x2...Xm), Z,;ﬁl =] XJ| Ei;ﬁj‘xf—xjp‘
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Rotationally invariant repulsive surplus

e Examples: det(x1x2...Xm), Z,# =] le Zi# Ixi — x;|2.
e Optimal measure ~ is rotationally symmetric. (see, e.g.
Carlier-Nazaret '06 )
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Rotationally invariant repulsive surplus

e Examples: det(x1x2...Xm), Z,# =] le Zi# Ixi — x;|2.
e Optimal measure ~ is rotationally symmetric. (see, e.g.
Carlier-Nazaret '06 )

o If x,y,z €spt(y), then
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Rotationally invariant repulsive surplus

e Examples: det(x1x2...Xm), Z,# =] le Zi# Ixi — x;|2.

e Optimal measure ~ is rotationally symmetric. (see, e.g.
Carlier-Nazaret '06 )

o If x,y,z €spt(y), then

° (x,y,2) € argmaxz|—r|y|=s,|z|=tb(X, ¥ 2)

e (Ax, Ay, Az) € spt(v) for any rotation matrix A.
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Rotationally invariant repulsive surplus

o Examples: det(x1xz...-Xm), -2 Totx] XJ| Dz Ixi = xi.

e Optimal measure ~ is rotationally symmetric. (see, e.g.
Carlier-Nazaret '06 )

o If x,y,z €spt(y), then

° (x,y,2) € argmaxz|—r|y|=s,|z|=tb(X, ¥ 2)

e (Ax, Ay, Az) € spt(v) for any rotation matrix A.

@ Some rotations fix x but not y, assuming x and y are not

co-linear (get non Monge solutions).
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Rotationally invariant repulsive surplus

o Examples: det(x1xz...-Xm), -2 Totx] XJ| Dz Ixi = xi.

e Optimal measure ~ is rotationally symmetric. (see, e.g.
Carlier-Nazaret '06 )

o If x,y,z €spt(y), then

° (x,y,2) € argmaxz|—r|y|=s,|z|=tb(X, ¥ 2)

e (Ax, Ay, Az) € spt(v) for any rotation matrix A.

@ Some rotations fix x but not y, assuming x and y are not
co-linear (get non Monge solutions).

@ These rotational directions are extra spacelike directions for G.
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Monge solution and uniqueness results

@ For which surplus functions is the optimizer concentrated on
the graph of a function over x;7?
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Monge solution and uniqueness results

@ For which surplus functions is the optimizer concentrated on
the graph of a function over x;7?
e For m = 2, the twist, injectivity of xo — Dy, b(x1, x2), suffices.
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Monge solution and uniqueness results

@ For which surplus functions is the optimizer concentrated on
the graph of a function over x;7?

e For m = 2, the twist, injectivity of xo — Dy, b(x1, x2), suffices.

@ For m = 3, these type of results hold for

3
b(X17X27X3) = sup Z f;'(Xia Z)

zeZ i—1
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Monge solution and uniqueness results

@ For which surplus functions is the optimizer concentrated on
the graph of a function over x;7?

e For m = 2, the twist, injectivity of xo — Dy, b(x1, x2), suffices.

@ For m = 3, these type of results hold for

3
b(X17X27X3) = sup Z f;'(Xia Z)

zeZ i—1

@ This class includes — Z?:l [x; — xj|?> (Gangbo-Swiech surplus),
h(x1 + x2 + x3), for strictly convex h, (Heinich surplus).
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Monge solution and uniqueness results

@ For which surplus functions is the optimizer concentrated on
the graph of a function over x;7?

e For m = 2, the twist, injectivity of xo — Dy, b(x1, x2), suffices.

@ For m = 3, these type of results hold for

3
b(X17X27X3) = sup Z f;'(Xia Z)

zeZ i—1

@ This class includes — Z?:l [x; — xj|?> (Gangbo-Swiech surplus),
h(x1 + x2 + x3), for strictly convex h, (Heinich surplus).

@ Optimal maps factor through a measure on Z (the generalized
barycenter) Agueh-Carlier '10.
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Monge solution and uniqueness results

@ For which surplus functions is the optimizer concentrated on
the graph of a function over x;7?

e For m = 2, the twist, injectivity of xo — Dy, b(x1, x2), suffices.

@ For m = 3, these type of results hold for

3
b(X17X27X3) = sup Z f;'(Xia Z)

zeZ i—1

@ This class includes — Z?:l [x; — xj|?> (Gangbo-Swiech surplus),
h(x1 + x2 + x3), for strictly convex h, (Heinich surplus).

@ Optimal maps factor through a measure on Z (the generalized
barycenter) Agueh-Carlier '10.

o Can easily calculate (D32 ,,b)[(DZ,,b)] (D2, b) > 0 (under
mild conditions on the f;).
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Monge solution and uniqueness results

@ For which surplus functions is the optimizer concentrated on
the graph of a function over x;7?

e For m = 2, the twist, injectivity of xo — Dy, b(x1, x2), suffices.

@ For m = 3, these type of results hold for

3
b(X17X27X3) = sup Z f;'(Xia Z)

zeZ i—1

@ This class includes — Z?:l [x; — xj|?> (Gangbo-Swiech surplus),
h(x1 + x2 + x3), for strictly convex h, (Heinich surplus).

@ Optimal maps factor through a measure on Z (the generalized
barycenter) Agueh-Carlier '10.

o Can easily calculate (D32 ,,b)[(DZ,,b)] (D2, b) > 0 (under
mild conditions on the f;).

@ One can also prove Monge solutions and uniqueness under
strong differential conditions on b (P '11), or under a twist
like condition on special sets (Kim-P (in preparation)).
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The limit m — o

@ In the limit as m — oo, the differences become even more
pronounced.

e For the surplus — fol fol |xs — x¢|?dstdt, we get unique Monge
type solutions (P '13 ).

e For —limp 00 é Do Flm the (unique) optimal measure

is product measure (Cotar-Friesecke-P (in preparation) ).
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