Multi-marginal optimal transport and applications

Brendan Pass
University of Alberta
May 23, 2013

Motivation

- A large construction company wants to build many houses.

Motivation

- A large construction company wants to build many houses.
- The company employs many carpenters, electricians, plumbers, etc.

Motivation

- A large construction company wants to build many houses.
- The company employs many carpenters, electricians, plumbers, etc.
- Need to build teams.
- Each team consists of one tradesperson of each type and is responsible for building one house.

Motivation

- A large construction company wants to build many houses.
- The company employs many carpenters, electricians, plumbers, etc.
- Need to build teams.
- Each team consists of one tradesperson of each type and is responsible for building one house.
- Different combinations of people work more of less well together.
- Different potential teams have different efficiencies.

Motivation

- A large construction company wants to build many houses.
- The company employs many carpenters, electricians, plumbers, etc.
- Need to build teams.
- Each team consists of one tradesperson of each type and is responsible for building one house.
- Different combinations of people work more of less well together.
- Different potential teams have different efficiencies.
- Want to construct teams to make overall process as efficient as possible.

Introduction

Introduction

Multi-marginal problem: Monge formulation

- $M_{i} \subseteq \mathbb{R}^{n}$, open and bounded, $i=1,2 \ldots .$. .
- μ_{i} Borel probability measures on M_{i}.
- $b: M_{1} \times M_{2} \times \ldots \times M_{m} \rightarrow \mathbb{R}$ smooth surplus function.

Multi-marginal problem: Monge formulation

- $M_{i} \subseteq \mathbb{R}^{n}$, open and bounded, $i=1,2 \ldots . .$.
- μ_{i} Borel probability measures on M_{i}.
- b : $M_{1} \times M_{2} \times \ldots \times M_{m} \rightarrow \mathbb{R}$ smooth surplus function.

Monge Problem:

maximize:

$$
\int_{M_{1}} b\left(x_{1}, F_{2}\left(x_{1}\right), F_{3}\left(x_{1}\right), \ldots, F_{m}\left(x_{1}\right)\right) d \mu_{1}\left(x_{1}\right)
$$

among ($m-1$)-tuples of maps $\left(F_{2}, F_{3}, \ldots, F_{m}\right)$ such that $F_{i}: M_{1} \rightarrow M_{i}$ pushes μ_{1} to μ_{i}.

Multi-marginal problem: Monge formulation

- $M_{i} \subseteq \mathbb{R}^{n}$, open and bounded, $i=1,2 \ldots . .$.
- μ_{i} Borel probability measures on M_{i}.
- b : $M_{1} \times M_{2} \times \ldots \times M_{m} \rightarrow \mathbb{R}$ smooth surplus function.

Monge Problem:

maximize:

$$
\int_{M_{1}} b\left(x_{1}, F_{2}\left(x_{1}\right), F_{3}\left(x_{1}\right), \ldots, F_{m}\left(x_{1}\right)\right) d \mu_{1}\left(x_{1}\right)
$$

among ($m-1$)-tuples of maps $\left(F_{2}, F_{3}, \ldots, F_{m}\right)$ such that $F_{i}: M_{1} \rightarrow M_{i}$ pushes μ_{1} to μ_{i}.
F pushes μ_{1} to μ_{2}.

Multi-marginal problem: Kantorovich formulation

- $M_{i} \subseteq \mathbb{R}^{n}$, open and bounded, $i=1,2 \ldots .$. .
- μ_{i} Borel probability measures on M_{i}.
- $b: M_{1} \times M_{2} \times \ldots \times M_{m} \rightarrow \mathbb{R}$ smooth surplus function.

Multi-marginal problem: Kantorovich formulation

- $M_{i} \subseteq \mathbb{R}^{n}$, open and bounded, $i=1,2 \ldots . .$.
- μ_{i} Borel probability measures on M_{i}.
- $b: M_{1} \times M_{2} \times \ldots \times M_{m} \rightarrow \mathbb{R}$ smooth surplus function.

Kantorovich Problem:

maximize

$$
\int_{M_{1} \times M_{2} \times \ldots \times M_{m}} b\left(x_{1}, x_{2}, \ldots, x_{m}\right) d \gamma\left(x_{1}, x_{2}, \ldots, x_{m}\right)
$$

among measures γ on $M_{1} \times M_{2} \times \ldots \times M_{m}$ that project to the μ_{i}.

Multi-marginal problem: Kantorovich formulation

- $M_{i} \subseteq \mathbb{R}^{n}$, open and bounded, $i=1,2 \ldots .$. .
- μ_{i} Borel probability measures on M_{i}.
- b: $M_{1} \times M_{2} \times \ldots \times M_{m} \rightarrow \mathbb{R}$ smooth surplus function.

Kantorovich Problem:

maximize

$$
\int_{M_{1} \times M_{2} \times \ldots \times M_{m}} b\left(x_{1}, x_{2}, \ldots, x_{m}\right) d \gamma\left(x_{1}, x_{2}, \ldots, x_{m}\right)
$$

among measures γ on $M_{1} \times M_{2} \times \ldots \times M_{m}$ that project to the μ_{i}. A Kantorovich solution $\gamma\left(\right.$ or $\left(X_{1}, X_{2}, \ldots, X_{m}\right)$) always exists.

Multi-marginal problem: Kantorovich formulation

- $M_{i} \subseteq \mathbb{R}^{n}$, open and bounded, $i=1,2 \ldots .$. .
- μ_{i} Borel probability measures on M_{i}.
- b: $M_{1} \times M_{2} \times \ldots \times M_{m} \rightarrow \mathbb{R}$ smooth surplus function.

Kantorovich Problem:

maximize

$$
\int_{M_{1} \times M_{2} \times \ldots \times M_{m}} b\left(x_{1}, x_{2}, \ldots, x_{m}\right) d \gamma\left(x_{1}, x_{2}, \ldots, x_{m}\right)
$$

among measures γ on $M_{1} \times M_{2} \times \ldots \times M_{m}$ that project to the μ_{i}. A Kantorovich solution $\gamma\left(\right.$ or $\left.\left(X_{1}, X_{2}, \ldots, X_{m}\right)\right)$ always exists.

γ projects to μ_{i}.

γ projects to μ_{i}.

Background on (two marginal) optimal transportation

- Optimal transportation with two marginals $(m=2)$ is an active and well established area of research.
- Many diverse applications, including: fluid mechanics, cosmology, interacting gases, meteorology, image processing, economics, etc.
- Brenier '87, Gangbo '95, Caffarelli '96, Gangbo-McCann '96, Levin '96: Assume $\mu_{1} \ll d x_{1}$ and that b is twisted, ie:

$$
x_{2} \mapsto D_{x_{1}} b\left(x_{1}, x_{2}\right) \text { is injective. }
$$

Then γ is concentrated on the graph of a function over x_{1} and is unique.

- Example: $b\left(x_{1}, x_{2}\right)=-\left|x_{1}-x_{2}\right|^{2}$.

Background on multi-marginal problems: good surpluses

- Multi-marginal problems have many emerging applications, in economics, physics, m-monotonicity, image processing, financial math, statistics, etc., but are not well understood.
- For certain special surplus functions, the optimal γ is unique and is concentrated on a graph over x_{1} : $\left\{\left(x_{1}, F_{2}\left(x_{1}\right), \ldots, F_{m}\left(x_{1}\right)\right\}\right.$.
- Gangbo-Swiech '98: $b\left(x_{1}, x_{2}, \ldots, x_{m}\right)=-\sum_{i \neq j}\left|x_{i}-x_{j}\right|^{2}$
- Heinich '02: $b\left(x_{1}, x_{2}, \ldots, x_{m}\right)=h\left(x_{1}+x_{2}+\ldots+x_{m}\right)$ where $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is strictly convex.
- P '11: Strong second order conditions on b. For example, when $m=3$, we require, for all $x_{1}, \overline{x_{1}} \in M_{1}, x_{2} \in M_{2}$, $x_{3}, \overline{x_{3}} \in M_{3}$, we have:

$$
\begin{array}{r}
D_{x_{2} x_{3}}^{2} b\left[D_{x_{1} x_{3}}^{2} b\right]^{-1} D_{x_{1} x_{2}}^{2} b\left(x_{1}, x_{2}, x_{3}\right)-D_{x_{2} x_{2}}^{2} b\left(x_{1}, x_{2}, x_{3}\right) \\
+D_{x_{2} x_{2}}^{2} b\left(\overline{x_{1}}, x_{2}, \overline{x_{3}}\right)>0 .
\end{array}
$$

- Kim-P '13: $b\left(x_{1}, x_{2}, \ldots, x_{m}\right)=-\inf _{y \in M}\left[\sum_{i=1}^{m} d^{2}\left(x_{i}, y\right)\right]$ on a Riemannian manifold M.

Background on multi-marginal problems: bad surpluses

- For other surplus functions, solutions can be non-unique and have high dimensional support. Examples:
- $b\left(x_{1}, x_{2}, \ldots, x_{m}\right)=-\sum_{i \neq j}^{m} \frac{1}{\left|x_{i}-x_{j}\right|}$, arises in density functional theory for Coulombic electronic interactions in quantum physics (Cotar-Friesecke-Kluppelberg '11 and Buttazzo-De Pascale-Gori-Giorgi '12).
- $b\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\sum_{i \neq j}^{m}\left|x_{i}-x_{j}\right|^{2}$, arises when Coulombic interactions are replaced by repulsive, harmonic oscillator interactions.
- $b\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\operatorname{det}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ (when $\left.n=m\right)$ Carlier-Nazaret '06 .
- $b\left(x_{1}, x_{2}, \ldots, x_{m}\right)=h\left(x_{1}+x_{2}+\ldots+x_{m}\right), h$ strictly concave .

Example application 1: multi-agent matching

- Model due to Carlier-Ekeland '10 and Chiappori-McCann-Nesheim '10.

Example application 1: multi-agent matching

- Model due to Carlier-Ekeland '10 and Chiappori-McCann-Nesheim '10.
- Measure μ_{1} represents a distribution of buyer types, looking to buy, say, custom built houses; $\mu_{i}(i \geq 2)$ represents a distribution of a type of worker needed to build houses (ie, carpenters, plumbers, electricians, etc.)

Example application 1: multi-agent matching

- Model due to Carlier-Ekeland '10 and Chiappori-McCann-Nesheim '10.
- Measure μ_{1} represents a distribution of buyer types, looking to buy, say, custom built houses; $\mu_{i}(i \geq 2)$ represents a distribution of a type of worker needed to build houses (ie, carpenters, plumbers, electricians, etc.)
- Buyer x_{1} has a preference $f_{1}\left(x_{1}, z\right)$ for a house type $z \in Z \subseteq \mathbb{R}^{n}$; worker $x_{i}(i \geq 2)$ has a preference $f_{i}\left(x_{i}, z\right)$ to build house of type z.

Example application 1: multi-agent matching

- Model due to Carlier-Ekeland '10 and Chiappori-McCann-Nesheim '10.
- Measure μ_{1} represents a distribution of buyer types, looking to buy, say, custom built houses; $\mu_{i}(i \geq 2)$ represents a distribution of a type of worker needed to build houses (ie, carpenters, plumbers, electricians, etc.)
- Buyer x_{1} has a preference $f_{1}\left(x_{1}, z\right)$ for a house type $z \in Z \subseteq \mathbb{R}^{n}$; worker $x_{i}(i \geq 2)$ has a preference $f_{i}\left(x_{i}, z\right)$ to build house of type z.
- Finding an equilibrium in this market is equivalent to solving an optimal transport problem with surplus

$$
b\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\sup _{z \in Z} \sum_{i=1}^{m} f_{i}\left(x_{i}, z\right)
$$

Example application 2: density functional theory

- Model due to Cotar-Friesecke-Kluppelberg '11 and Buttazzo-De Pascale-Gori-Giorgi '12).

Example application 2: density functional theory

- Model due to Cotar-Friesecke-Kluppelberg '11 and Buttazzo-De Pascale-Gori-Giorgi '12).
- Measures μ_{i} represent particle densities of m semi-classical electrons.

Example application 2: density functional theory

- Model due to Cotar-Friesecke-Kluppelberg '11 and Buttazzo-De Pascale-Gori-Giorgi '12).
- Measures μ_{i} represent particle densities of m semi-classical electrons.
- Electrons are indistinguishable $\rightarrow \mu_{i}=\mu$.

Example application 2: density functional theory

- Model due to Cotar-Friesecke-Kluppelberg '11 and Buttazzo-De Pascale-Gori-Giorgi '12).
- Measures μ_{i} represent particle densities of m semi-classical electrons.
- Electrons are indistinguishable $\rightarrow \mu_{i}=\mu$.
- Given μ, the single particle density, want to find the m-particle density (a measure on $\mathbb{R}^{n m}$) minimizing the total interaction energy.

Example application 2: density functional theory

- Model due to Cotar-Friesecke-Kluppelberg '11 and Buttazzo-De Pascale-Gori-Giorgi '12).
- Measures μ_{i} represent particle densities of m semi-classical electrons.
- Electrons are indistinguishable $\rightarrow \mu_{i}=\mu$.
- Given μ, the single particle density, want to find the m-particle density (a measure on $\mathbb{R}^{n m}$) minimizing the total interaction energy.
- Leads to an optimal transport problem with $b\left(x_{1}, x_{2}, \ldots, x_{m}\right)=-\sum_{i \neq j} \frac{1}{\left|x_{i}-x_{j}\right|}$.

Simple Example: 1 dimensional case for 2 and 3 marginals

- Take $n=1$.

Simple Example: 1 dimensional case for 2 and 3 marginals

- Take $n=1$.
- For $m=2$, if $\frac{\partial^{2} b}{\partial x_{1} \partial x_{2}}>0$, optimal map $x_{2}=F_{2}\left(x_{1}\right)$ is increasing.
- If $\frac{\partial^{2} b}{\partial x_{1} \partial x_{2}}<0$ the optimal map is decreasing.

Simple Example: 1 dimensional case for 2 and 3 marginals

- Take $n=1$.
- For $m=2$, if $\frac{\partial^{2} b}{\partial x_{1} \partial x_{2}}>0$, optimal map $x_{2}=F_{2}\left(x_{1}\right)$ is increasing.
- If $\frac{\partial^{2} b}{\partial x_{1} \partial x_{2}}<0$ the optimal map is decreasing.
- For $m=3$, if $\frac{\partial^{2} b}{\partial x_{i} \partial x_{j}}>0$, for all $i \neq j \exists$! optimal maps $x_{2}=F_{2}\left(x_{1}\right), x_{3}=F_{3}\left(x_{1}\right)$, both increasing (Carlier '03)

Simple Example: 1 dimensional case for 2 and 3 marginals

- Take $n=1$.
- For $m=2$, if $\frac{\partial^{2} b}{\partial x_{1} \partial x_{2}}>0$, optimal map $x_{2}=F_{2}\left(x_{1}\right)$ is increasing.
- If $\frac{\partial^{2} b}{\partial x_{1} \partial x_{2}}<0$ the optimal map is decreasing.
- For $m=3$, if $\frac{\partial^{2} b}{\partial x_{i} \partial x_{j}}>0$, for all $i \neq j \exists$! optimal maps $x_{2}=F_{2}\left(x_{1}\right), x_{3}=F_{3}\left(x_{1}\right)$, both increasing (Carlier '03)
- Coordinate invariant condition: $\frac{\partial^{2} b}{\partial x_{1} \partial x_{2}}\left[\frac{\partial^{2} b}{\partial x_{3} \partial x_{2}}\right]^{-1} \frac{\partial^{2} b}{\partial x_{3} \partial x_{1}}>0$.

Higher dimensional problems for 2 and 3 marginals

- When $m=2$, if $\operatorname{det}\left(D_{x_{1} x_{2}}^{2} b\right) \neq 0$, solution is concentrated on n-dimensional Lipschitz submanifold of the product space (McCann-P-Warren '12)

Higher dimensional problems for 2 and 3 marginals

- When $m=2$, if $\operatorname{det}\left(D_{x_{1} x_{2}}^{2} b\right) \neq 0$, solution is concentrated on n-dimensional Lipschitz submanifold of the product space (McCann-P-Warren '12)
- For $m=3, D_{x_{i} x_{j}}^{2} b>0$ does not really make sense.

Higher dimensional problems for 2 and 3 marginals

- When $m=2$, if $\operatorname{det}\left(D_{x_{1} x_{2}}^{2} b\right) \neq 0$, solution is concentrated on n-dimensional Lipschitz submanifold of the product space (McCann-P-Warren '12)
- For $m=3, D_{x_{i} x_{j}}^{2} b>0$ does not really make sense.
- $D_{x_{i} x_{j}}^{2} b$ is a bilinear mapping on the product of tangent spaces $T_{x_{i}} M_{i} \times T_{x_{j}} M_{j}$.

Higher dimensional problems for 2 and 3 marginals

- When $m=2$, if $\operatorname{det}\left(D_{x_{1} x_{2}}^{2} b\right) \neq 0$, solution is concentrated on n-dimensional Lipschitz submanifold of the product space (McCann-P-Warren '12)
- For $m=3, D_{x_{i} x_{j}}^{2} b>0$ does not really make sense.
- $D_{x_{i} x_{j}}^{2} b$ is a bilinear mapping on the product of tangent spaces $T_{x_{i}} M_{i} \times T_{x_{j}} M_{j}$.
- $\left(D_{x_{1} x_{2}}^{2} b\right)\left[\left(D_{x_{3} x_{2}}^{2} b\right)\right]^{-1}\left(D_{x_{3} x_{1}}^{2} b\right)$ is a bilinear mapping on $T_{\times_{1}} M_{1} \times T_{x_{1}} M_{1}!$

Higher dimensional problems for 2 and 3 marginals

- When $m=2$, if $\operatorname{det}\left(D_{x_{1} x_{2}}^{2} b\right) \neq 0$, solution is concentrated on n-dimensional Lipschitz submanifold of the product space (McCann-P-Warren '12)
- For $m=3, D_{x_{i} x_{j}}^{2} b>0$ does not really make sense.
- $D_{x_{i} x_{j}}^{2} b$ is a bilinear mapping on the product of tangent spaces $T_{x_{i}} M_{i} \times T_{x_{j}} M_{j}$.
- $\left(D_{x_{1} x_{2}}^{2} b\right)\left[\left(D_{x_{3} x_{2}}^{2} b\right)\right]^{-1}\left(D_{x_{3} x_{1}}^{2} b\right)$ is a bilinear mapping on $T_{x_{1}} M_{1} \times T_{x_{1}} M_{1}$!
- $\left(D_{x_{1} x_{2}}^{2} b\right)\left[\left(D_{x_{3} x_{2}}^{2} b\right)\right]^{-1}\left(D_{\chi_{3} x_{1}}^{2} b\right)>0$ makes sense!

Structure of solutions

$$
G=\left[\begin{array}{ccc}
0 & D_{x_{1} x_{2}}^{2} b & D_{x_{1}}^{2} x_{3} b \\
D_{x_{2}}^{2} b & 0 & D_{x_{2} x_{3}}^{2} b \\
D_{x_{3} x_{1}}^{2} b & D_{x_{3} x_{2}}^{2} b & 0
\end{array}\right]
$$

Structure of solutions

$$
G=\left[\begin{array}{ccc}
0 & D_{x_{1} x_{2}}^{2} b & D_{x_{1}}^{2} x_{3} b \\
D_{x_{3}}^{2} x_{1} b & 0 & D_{x_{2} x_{3}}^{2} b \\
D_{x_{3} x_{1}}^{2} b & D_{x_{3} x_{2}}^{2} b & 0
\end{array}\right]
$$

- Let the signature of G be $\left(\lambda_{+}, \lambda_{-}, m n-\lambda_{+}-\lambda_{-}\right)$.

Structure of solutions

$$
G=\left[\begin{array}{ccc}
0 & D_{x_{1} x_{2}}^{2} b & D_{x_{1}}^{2} x_{3} b \\
D_{x_{3}}^{2} x_{1} b & 0 & D_{x_{2} x_{3}}^{2} b \\
D_{x_{3} x_{1}}^{2} b & D_{x_{3} x_{2}}^{2} b & 0
\end{array}\right]
$$

- Let the signature of G be $\left(\lambda_{+}, \lambda_{-}, m n-\lambda_{+}-\lambda_{-}\right)$.
- $\operatorname{spt}(\gamma)$ is spacelike: $V^{T} \cdot G \cdot V \geq 0$ for all $V \in T(\operatorname{spt}(\gamma))(\mathrm{P}$ '11).

Structure of solutions

$$
G=\left[\begin{array}{ccc}
0 & D_{x_{1} x_{2}}^{2} b & D_{x_{1}}^{2} x_{3} b \\
D_{x_{3}}^{2} x_{1} b & 0 & D_{x_{2} x_{3}}^{2} b \\
D_{x_{3} x_{1}}^{2} b & D_{x_{3} x_{2}}^{2} b & 0
\end{array}\right]
$$

- Let the signature of G be $\left(\lambda_{+}, \lambda_{-}, m n-\lambda_{+}-\lambda_{-}\right)$.
- $\operatorname{spt}(\gamma)$ is spacelike: $V^{T} \cdot G \cdot V \geq 0$ for all $V \in T(\operatorname{spt}(\gamma))(\mathrm{P}$ '11).
- It's dimension is no more than $m n-\lambda_{-}$.

$$
G=\left[\begin{array}{ccc}
0 & D_{x_{1} x_{2}}^{2} b & D_{x_{1}}^{2} x_{3} b \\
D_{x_{2}}^{2} x_{1} b & 0 & D_{x_{2} x_{3}}^{2} b \\
D_{x_{3} x_{1}}^{2} b & D_{x_{3} x_{2}}^{2} b & 0
\end{array}\right]
$$

- Let the signature of G be $\left(\lambda_{+}, \lambda_{-}, m n-\lambda_{+}-\lambda_{-}\right)$.
- $\operatorname{spt}(\gamma)$ is spacelike: $V^{T} \cdot G \cdot V \geq 0$ for all $V \in T(\operatorname{spt}(\gamma))(\mathrm{P}$ '11).
- It's dimension is no more than $m n-\lambda_{-}$.
- $m n-\lambda_{-}=n$ iff $\left(D_{x_{1} x_{2}}^{2} b\right)\left[\left(D_{x_{3} x_{2}}^{2} b\right)\right]^{-1}\left(D_{x_{3} x_{1}}^{2} b\right)>0$.

Rotationally invariant repulsive surplus

- Examples: $\operatorname{det}\left(x_{1} x_{2} \ldots x_{m}\right),-\sum_{i \neq j} \frac{1}{\left|x_{i}-x_{j}\right|}, \sum_{i \neq j}\left|x_{i}-x_{j}\right|^{2}$.

Rotationally invariant repulsive surplus

- Examples: $\operatorname{det}\left(x_{1} x_{2} \ldots x_{m}\right),-\sum_{i \neq j} \frac{1}{\left|x_{i}-x_{j}\right|}, \sum_{i \neq j}\left|x_{i}-x_{j}\right|^{2}$.
- Optimal measure γ is rotationally symmetric. (see, e.g. Carlier-Nazaret '06)

Rotationally invariant repulsive surplus

- Examples: $\operatorname{det}\left(x_{1} x_{2} \ldots x_{m}\right),-\sum_{i \neq j} \frac{1}{\left|x_{i}-x_{j}\right|}, \sum_{i \neq j}\left|x_{i}-x_{j}\right|^{2}$.
- Optimal measure γ is rotationally symmetric. (see, e.g. Carlier-Nazaret '06)
- If $x, y, z \in \operatorname{spt}(\gamma)$, then

Rotationally invariant repulsive surplus

- Examples: $\operatorname{det}\left(x_{1} x_{2} \ldots x_{m}\right),-\sum_{i \neq j} \frac{1}{\left|x_{i}-x_{j}\right|}, \sum_{i \neq j}\left|x_{i}-x_{j}\right|^{2}$.
- Optimal measure γ is rotationally symmetric. (see, e.g. Carlier-Nazaret '06)
- If $x, y, z \in \operatorname{spt}(\gamma)$, then
- $(x, y, z) \in \operatorname{argmax}_{|\bar{x}|=r,|\bar{y}|=s,|\bar{z}|=t} b(\bar{x}, \bar{y}, \bar{z})$
- $(A x, A y, A z) \in \operatorname{spt}(\gamma)$ for any rotation matrix A.

Rotationally invariant repulsive surplus

- Examples: $\operatorname{det}\left(x_{1} x_{2} \ldots x_{m}\right),-\sum_{i \neq j} \frac{1}{\left|x_{i}-x_{j}\right|}, \sum_{i \neq j}\left|x_{i}-x_{j}\right|^{2}$.
- Optimal measure γ is rotationally symmetric. (see, e.g. Carlier-Nazaret '06)
- If $x, y, z \in \operatorname{spt}(\gamma)$, then
- $(x, y, z) \in \operatorname{argmax}_{|\bar{x}|=r,|\bar{y}|=s,|\bar{z}|=t} b(\bar{x}, \bar{y}, \bar{z})$
- $(A x, A y, A z) \in \operatorname{spt}(\gamma)$ for any rotation matrix A.
- Some rotations fix x but not y, assuming x and y are not co-linear (get non Monge solutions).

Rotationally invariant repulsive surplus

- Examples: $\operatorname{det}\left(x_{1} x_{2} \ldots x_{m}\right),-\sum_{i \neq j} \frac{1}{\left|x_{i}-x_{j}\right|}, \sum_{i \neq j}\left|x_{i}-x_{j}\right|^{2}$.
- Optimal measure γ is rotationally symmetric. (see, e.g. Carlier-Nazaret '06)
- If $x, y, z \in \operatorname{spt}(\gamma)$, then
- $(x, y, z) \in \operatorname{argmax}_{|\bar{x}|=r,|\bar{y}|=s,|\bar{z}|=t} b(\bar{x}, \bar{y}, \bar{z})$
- $(A x, A y, A z) \in \operatorname{spt}(\gamma)$ for any rotation matrix A.
- Some rotations fix x but not y, assuming x and y are not co-linear (get non Monge solutions).
- These rotational directions are extra spacelike directions for G.

Monge solution and uniqueness results

- For which surplus functions is the optimizer concentrated on the graph of a function over x_{1} ?

Monge solution and uniqueness results

- For which surplus functions is the optimizer concentrated on the graph of a function over x_{1} ?
- For $m=2$, the twist, injectivity of $x_{2} \mapsto D_{x_{1}} b\left(x_{1}, x_{2}\right)$, suffices.

Monge solution and uniqueness results

- For which surplus functions is the optimizer concentrated on the graph of a function over x_{1} ?
- For $m=2$, the twist, injectivity of $x_{2} \mapsto D_{x_{1}} b\left(x_{1}, x_{2}\right)$, suffices.
- For $m=3$, these type of results hold for

$$
b\left(x_{1}, x_{2}, x_{3}\right)=\sup _{z \in Z} \sum_{i=1}^{3} f_{i}\left(x_{i}, z\right)
$$

Monge solution and uniqueness results

- For which surplus functions is the optimizer concentrated on the graph of a function over x_{1} ?
- For $m=2$, the twist, injectivity of $x_{2} \mapsto D_{x_{1}} b\left(x_{1}, x_{2}\right)$, suffices.
- For $m=3$, these type of results hold for

$$
b\left(x_{1}, x_{2}, x_{3}\right)=\sup _{z \in Z} \sum_{i=1}^{3} f_{i}\left(x_{i}, z\right)
$$

- This class includes $-\sum_{i=1}^{3}\left|x_{i}-x_{j}\right|^{2}$ (Gangbo-Swiech surplus), $h\left(x_{1}+x_{2}+x_{3}\right)$, for strictly convex h, (Heinich surplus).

Monge solution and uniqueness results

- For which surplus functions is the optimizer concentrated on the graph of a function over x_{1} ?
- For $m=2$, the twist, injectivity of $x_{2} \mapsto D_{x_{1}} b\left(x_{1}, x_{2}\right)$, suffices.
- For $m=3$, these type of results hold for

$$
b\left(x_{1}, x_{2}, x_{3}\right)=\sup _{z \in Z} \sum_{i=1}^{3} f_{i}\left(x_{i}, z\right)
$$

- This class includes $-\sum_{i=1}^{3}\left|x_{i}-x_{j}\right|^{2}$ (Gangbo-Swiech surplus), $h\left(x_{1}+x_{2}+x_{3}\right)$, for strictly convex h, (Heinich surplus).
- Optimal maps factor through a measure on Z (the generalized barycenter) Agueh-Carlier '10.

Monge solution and uniqueness results

- For which surplus functions is the optimizer concentrated on the graph of a function over x_{1} ?
- For $m=2$, the twist, injectivity of $x_{2} \mapsto D_{x_{1}} b\left(x_{1}, x_{2}\right)$, suffices.
- For $m=3$, these type of results hold for

$$
b\left(x_{1}, x_{2}, x_{3}\right)=\sup _{z \in Z} \sum_{i=1}^{3} f_{i}\left(x_{i}, z\right)
$$

- This class includes $-\sum_{i=1}^{3}\left|x_{i}-x_{j}\right|^{2}$ (Gangbo-Swiech surplus), $h\left(x_{1}+x_{2}+x_{3}\right)$, for strictly convex h, (Heinich surplus).
- Optimal maps factor through a measure on Z (the generalized barycenter) Agueh-Carlier '10.
- Can easily calculate $\left(D_{x_{1} x_{2}}^{2} b\right)\left[\left(D_{x_{3} x_{2}}^{2} b\right)\right]^{-1}\left(D_{x_{3} x_{1}}^{2} b\right)>0$ (under mild conditions on the f_{i}).

Monge solution and uniqueness results

- For which surplus functions is the optimizer concentrated on the graph of a function over x_{1} ?
- For $m=2$, the twist, injectivity of $x_{2} \mapsto D_{x_{1}} b\left(x_{1}, x_{2}\right)$, suffices.
- For $m=3$, these type of results hold for

$$
b\left(x_{1}, x_{2}, x_{3}\right)=\sup _{z \in Z} \sum_{i=1}^{3} f_{i}\left(x_{i}, z\right)
$$

- This class includes $-\sum_{i=1}^{3}\left|x_{i}-x_{j}\right|^{2}$ (Gangbo-Swiech surplus), $h\left(x_{1}+x_{2}+x_{3}\right)$, for strictly convex h, (Heinich surplus).
- Optimal maps factor through a measure on Z (the generalized barycenter) Agueh-Carlier '10.
- Can easily calculate $\left(D_{x_{1} x_{2}}^{2} b\right)\left[\left(D_{x_{3} \chi_{2}}^{2} b\right)\right]^{-1}\left(D_{x_{3} x_{1}}^{2} b\right)>0$ (under mild conditions on the f_{i}).
- One can also prove Monge solutions and uniqueness under strong differential conditions on b ($\mathrm{P}^{\prime} 11$), or under a twist like condition on special sets (Kim-P (in preparation)).
- In the limit as $m \rightarrow \infty$, the differences become even more pronounced.
- For the surplus $-\int_{0}^{1} \int_{0}^{1}\left|x_{s}-x_{t}\right|^{2} d s t d t$, we get unique Monge type solutions ($\mathrm{P}^{\prime} 13$).
- For $-\lim _{m \rightarrow \infty} \frac{1}{\binom{m}{2}} \sum_{i \neq j}^{m} \frac{1}{\left|x_{i}-x_{j}\right|}$; the (unique) optimal measure is product measure (Cotar-Friesecke-P (in preparation)).

