Jean-Marie Mirebeau

Diffusion equations

- Stencil characterization and construction
- Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

PDE discretizations based on local adaptive stencils. Applications to image processing.

Jean-Marie Mirebeau

CNRS, University Paris Sud

November 17, 2015

Journées de Géométrie Algorithmique

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Diffusion equations

Stencil characterization and construction Monotone discretizations of PDEs

Eikonal equations

Distance maps and Shortest Paths Pontryagin's principle Riemannian metrics and Lattice Basis Reduction Finsler metrics and the Stern-Brocot tree

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Diffusion equations

Stencil characterization and construction Monotone discretizations of PDEs

konal equations

Distance maps and Shortest Paths Pontryagin's principle Riemannian metrics and Lattice Basis Reduction Finsler metrics and the Stern-Brocot tree

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Diffusion equations

Stencil characterization and construction Monotone discretizations of PDEs

Eikonal equations

Distance maps and Shortest Paths Pontryagin's principle Riemannian metrics and Lattice Basis Reduction Finsler metrics and the Stern-Brocot tree

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

S_d^+ : positive definite matrices. $\|v\|_D := \sqrt{v^T D v}$.

Problem: tensor decomposition based on close neighbors Let $X \subset \mathbb{R}^d$ be a discrete point set. Given $x \in X$ and $D \in S_d^+$. Find $Y \subset X$ finite, and non-negative weights $(\nu_y)_{y \in Y}$ such that

$$x = \sum_{y \in Y} \nu_y y,$$
 $D = \sum_{y \in Y} \nu_y (y - x) \otimes (y - x).$

Select weighted neighbors $(\nu_y, y)_{y \in Y}$ which average to x and have prescribed covariance D.

- ▶ False lead: resembles decomposition $D = \sum_{v \in V} \lambda_v v \otimes v$ given by eigenvalues $\lambda_v \ge 0$ and eigenvectors $v \in \mathbb{S}^{d-1}$.
- ▶ The set Y should be small in cardinality and diameter.
- Procedure must be scalable: D = D(x), for each $x \in X$.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

S_d^+ : positive definite matrices. $\|v\|_D := \sqrt{v^T D v}$.

Problem: tensor decomposition based on close neighbors Let $X \subset \mathbb{R}^d$ be a discrete point set. Given $x \in X$ and $D \in S_d^+$. Find $Y \subset X$ finite, and non-negative weights $(\nu_y)_{y \in Y}$ such that

$$x = \sum_{y \in Y} \nu_y y,$$
 $D = \sum_{y \in Y} \nu_y (y - x) \otimes (y - x).$

Select weighted neighbors (v_y, y)_{y∈Y} which average to x and have prescribed covariance D.

▶ False lead: resembles decomposition $D = \sum_{v \in V} \lambda_v v \otimes v$ given by eigenvalues $\lambda_v \ge 0$ and eigenvectors $v \in \mathbb{S}^{d-1}$.

- ► The set *Y* should be small in cardinality and diameter.
- Procedure must be scalable: D = D(x), for each $x \in X$.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

S_d^+ : positive definite matrices. $\|v\|_D := \sqrt{v^T D v}$.

Problem: tensor decomposition based on close neighbors Let $X \subset \mathbb{R}^d$ be a discrete point set. Given $x \in X$ and $D \in S_d^+$. Find $Y \subset X$ finite, and non-negative weights $(\nu_y)_{y \in Y}$ such that

$$x = \sum_{y \in Y} \nu_y y,$$
 $D = \sum_{y \in Y} \nu_y (y - x) \otimes (y - x).$

- Select weighted neighbors (v_y, y)_{y∈Y} which average to x and have prescribed covariance D.
- False lead: resembles decomposition D = ∑_{v∈V} λ_vv ⊗ v given by eigenvalues λ_v ≥ 0 and eigenvectors v ∈ S^{d−1}.
 - The set *Y* should be small in cardinality and diameter.
- Procedure must be scalable: D = D(x), for each $x \in X$.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

 S_d^+ : positive definite matrices. $\|v\|_D := \sqrt{v^{\mathrm{T}} D v}$.

Problem: tensor decomposition based on close neighbors Let $X \subset \mathbb{R}^d$ be a discrete point set. Given $x \in X$ and $D \in S_d^+$. Find $Y \subset X$ finite, and non-negative weights $(\nu_y)_{y \in Y}$ such that

$$x = \sum_{y \in Y} \nu_y y,$$
 $D = \sum_{y \in Y} \nu_y (y - x) \otimes (y - x).$

- Select weighted neighbors (v_y, y)_{y∈Y} which average to x and have prescribed covariance D.
- False lead: resembles decomposition D = ∑_{v∈V} λ_vv ⊗ v given by eigenvalues λ_v ≥ 0 and eigenvectors v ∈ S^{d−1}.
- The set Y should be small in cardinality and diameter.
- Procedure must be scalable: D = D(x), for each $x \in X$.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

 S_d^+ : positive definite matrices. $\|v\|_D := \sqrt{v^{\mathrm{T}} D v}$.

Problem: tensor decomposition based on close neighbors Let $X \subset \mathbb{R}^d$ be a discrete point set. Given $x \in X$ and $D \in S_d^+$. Find $Y \subset X$ finite, and non-negative weights $(\nu_y)_{y \in Y}$ such that

$$x = \sum_{y \in Y} \nu_y y,$$
 $D = \sum_{y \in Y} \nu_y (y - x) \otimes (y - x).$

- Select weighted neighbors (v_y, y)_{y∈Y} which average to x and have prescribed covariance D.
- ► False lead: resembles decomposition $D = \sum_{v \in V} \lambda_v v \otimes v$ given by eigenvalues $\lambda_v \ge 0$ and eigenvectors $v \in \mathbb{S}^{d-1}$.
- The set Y should be small in cardinality and diameter.
- ▶ Procedure must be scalable: D = D(x), for each $x \in X$.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Stencil construction when $X = \mathbb{Z}^d$, $d \in \{2, 3\}$ Definition (Basis of \mathbb{Z}^d) A *d*-plet $(e_i)_{i=1}^d \in (\mathbb{Z}^d)^d$ such that $|\det(e_1, \dots, e_d)| = 1$.

Definition (Superbase of \mathbb{Z}^a)

(d+1)-plet $(e_0,\cdots,e_d)\in (\mathbb{Z}^d)^{d+1}$ such that $(e_1,\cdots,e_d)_{i=1}^d$ is a basis and $e_0+\cdots+e_d=0.$

- Superbases allow for tensor decompositions: if $D\in S_d^+$

$$D = -\sum_{0 \leq i < j \leq d} \langle e_i, D e_j
angle v_{ij} \otimes v_{ij},$$

integer neighbors $v_{ij} = e_k^{\perp}$ when $\{i, j, k\} = \{0, 1, 2\}$ (d=2).

Definition (*D*-obtuse superbase, where $D \in S_d^+$) A superbase such that $\langle e_i, De_j \rangle \leq 0$ for all $0 \leq i < j \leq d$.

▶ Used to classify 3D lattices. Conway, Sloane (1992)

▶ $\exists D \in S_4^+$ with no *D*-obtuse superbase.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Stencil construction when $X = \mathbb{Z}^d$, $d \in \{2,3\}$ Definition (Basis of \mathbb{Z}^d) A *d*-plet $(e_i)_{i=1}^d \in (\mathbb{Z}^d)^d$ such that $|\det(e_1, \dots, e_d)| = 1$. Definition (Superbase of \mathbb{Z}^d) A (d+1)-plet $(e_0, \dots, e_d) \in (\mathbb{Z}^d)^{d+1}$ such that $(e_1, \dots, e_d)_{i=1}^d$ is a basis and $e_0 + \dots + e_d = 0$.

 \cdot Superbases allow for tensor decompositions: if $D\in S^+_d$

$$D = -\sum_{0 \leq i < j \leq d} \langle e_i, De_j
angle v_{ij} \otimes v_{ij},$$

integer neighbors $v_{ij} = e_k^{\perp}$ when $\{i, j, k\} = \{0, 1, 2\}$ (d=2).

Definition (*D*-obtuse superbase, where $D \in S_d^+$) A superbase such that $\langle e_i, De_j \rangle \leq 0$ for all $0 \leq i < j \leq d$.

Used to classify 3D lattices. Conway, Sloane (1992)

▶ $\exists D \in S_4^+$ with no *D*-obtuse superbase.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equation

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Stencil construction when $X = \mathbb{Z}^d$, $d \in \{2,3\}$ Definition (Basis of \mathbb{Z}^d) A *d*-plet $(e_i)_{i=1}^d \in (\mathbb{Z}^d)^d$ such that $|\det(e_1, \dots, e_d)| = 1$. Definition (Superbase of \mathbb{Z}^d) A (d+1)-plet $(e_0, \dots, e_d) \in (\mathbb{Z}^d)^{d+1}$ such that $(e_1, \dots, e_d)_{i=1}^d$ is a basis and $e_0 + \dots + e_d = 0$.

• Superbases allow for tensor decompositions: if $D \in S_d^+$

$$D = -\sum_{0 \leq i < j \leq d} \langle e_i, D e_j
angle v_{ij} \otimes v_{ij},$$

integer neighbors $v_{ij} = e_k^{\perp}$ when $\{i, j, k\} = \{0, 1, 2\}$ (d=2).

Definition (*D*-obtuse superbase, where $D \in S_d^+$) A superbase such that $\langle e_i, De_j \rangle \leq 0$ for all $0 \leq i < j \leq d$.

Used to classify 3D lattices. Conway, Sloane (1992)

▶ $\exists D \in S_4^+$ with no *D*-obtuse superbase.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Stencil construction when $X = \mathbb{Z}^d$, $d \in \{2,3\}$ Definition (Basis of \mathbb{Z}^d) A *d*-plet $(e_i)_{i=1}^d \in (\mathbb{Z}^d)^d$ such that $|\det(e_1, \dots, e_d)| = 1$. Definition (Superbase of \mathbb{Z}^d) A (d+1)-plet $(e_0, \dots, e_d) \in (\mathbb{Z}^d)^{d+1}$ such that $(e_1, \dots, e_d)_{i=1}^d$ is a basis and $e_0 + \dots + e_d = 0$.

• Superbases allow for tensor decompositions: if $D \in S_d^+$

$$D = -\sum_{0 \leq i < j \leq d} \langle e_i, D e_j
angle v_{ij} \otimes v_{ij},$$

integer neighbors $v_{ij} := e_k \wedge e_l$ when $\{i, j, k, l\} = \{0, \cdots, 3\}$.

Definition (*D*-obtuse superbase, where $D \in S_d^+$) A superbase such that $\langle e_i, De_j \rangle \leq 0$ for all $0 \leq i < j \leq d$.

▶ Used to classify 3D lattices. Conway, Sloane (1992)
 ▶ ∃D ∈ S₄⁺ with no D-obtuse superbase.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Stencil construction when $X = \mathbb{Z}^d$, $d \in \{2,3\}$ Definition (Basis of \mathbb{Z}^d) A *d*-plet $(e_i)_{i=1}^d \in (\mathbb{Z}^d)^d$ such that $|\det(e_1, \dots, e_d)| = 1$. Definition (Superbase of \mathbb{Z}^d) A (d+1)-plet $(e_0, \dots, e_d) \in (\mathbb{Z}^d)^{d+1}$ such that $(e_1, \dots, e_d)_{i=1}^d$ is a basis and $e_0 + \dots + e_d = 0$.

• Superbases allow for tensor decompositions: if $D \in S_d^+$

$$D = -\sum_{0 \leq i < j \leq d} \langle e_i, D e_j
angle v_{ij} \otimes v_{ij},$$

integer neighbors $v_{ij} := e_k \wedge e_l$ when $\{i, j, k, l\} = \{0, \cdots, 3\}$.

Definition (*D*-obtuse superbase, where $D \in S_d^+$) A superbase such that $\langle e_i, De_j \rangle \leq 0$ for all $0 \leq i < j \leq d$.

▶ Used to classify 3D lattices. Conway, Sloane (1992)
 > ∃D ∈ S⁺_A with no D-obtuse superbase.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Stencil construction when $X = \mathbb{Z}^d$, $d \in \{2,3\}$ Definition (Basis of \mathbb{Z}^d) A *d*-plet $(e_i)_{i=1}^d \in (\mathbb{Z}^d)^d$ such that $|\det(e_1, \dots, e_d)| = 1$. Definition (Superbase of \mathbb{Z}^d) A (d+1)-plet $(e_0, \dots, e_d) \in (\mathbb{Z}^d)^{d+1}$ such that $(e_1, \dots, e_d)_{i=1}^d$ is a basis and $e_0 + \dots + e_d = 0$.

• Superbases allow for tensor decompositions: if $D \in S_d^+$

$$D = -\sum_{0 \leq i < j \leq d} \langle e_i, D e_j
angle v_{ij} \otimes v_{ij},$$

integer neighbors $v_{ij} := e_k \wedge e_l$ when $\{i, j, k, l\} = \{0, \cdots, 3\}$.

Definition (*D*-obtuse superbase, where $D \in S_d^+$) A superbase such that $\langle e_i, De_j \rangle \leq 0$ for all $0 \leq i < j \leq d$.

- Used to classify 3D lattices. Conway, Sloane (1992)
- ▶ $\exists D \in S_4^+$ with no *D*-obtuse superbase.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Selling's algorithm (1874)

Produces a *D*-obtuse superbase, for $D \in S_d^+$, $d \leq 3$

nitialize (e_1, \dots, e_d) as canonical basis, $e_0 = -(e_1 + \dots + e_d)$. Vhile (e_0, \dots, e_d) is not *D*-obtuse d = 2: $(e_0, e_1, e_2) \leftarrow (-e_i, e_j, e_i - e_j)$

 $\sum_{I \subset \{0, \dots, d\}} \|\sum_{i \in I} e_i\|_D^2$ strictly decreases at each iteration.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Selling's algorithm (1874)

Produces a *D*-obtuse superbase, for $D \in S_d^+$, $d \leq 3$ Initialize (e_1, \dots, e_d) as canonical basis, $e_0 = -(e_1 + \dots + e_d)$. While (e_0, \dots, e_d) is not *D*-obtuse

 $d = 2: (e_0, e_1, e_2) \leftarrow (-e_i, e_j, e_i - e_j)$

 $\sum_{I \subset \{0, \dots, d\}} \|\sum_{i \in I} e_i\|_D^2 \text{ strictly decreases at each iteration.}$

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Selling's algorithm (1874)

Produces a *D*-obtuse superbase, for $D \in S_d^+$, $d \leq 3$ Initialize (e_1, \dots, e_d) as canonical basis, $e_0 = -(e_1 + \dots + e_d)$. While $\exists i \neq j$ such that $\langle e_i, De_j \rangle > 0$

 $d = 2: (e_0, e_1, e_2) \leftarrow (-e_i, e_j, e_i - e_j)$

 $\sum_{I \subset \{0, \dots, d\}} \|\sum_{i \in I} e_i\|_D^2$ strictly decreases at each iteration.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Selling's algorithm (1874)

Produces a *D*-obtuse superbase, for $D \in S_d^+$, $d \le 3$ **Initialize** (e_1, \dots, e_d) as canonical basis, $e_0 = -(e_1 + \dots + e_d)$. While $\exists i \neq j$ such that $\langle e_i, De_j \rangle > 0$ d = 2: $(e_0, e_1, e_2) \leftarrow (-e_i, e_i, e_i - e_i)$

 $\sum_{I \subset \{0, \dots, d\}} \|\sum_{i \in I} e_i\|_D^2$ strictly decreases at each iteration.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Selling's algorithm (1874)

Produces a *D*-obtuse superbase, for $D \in S_d^+$, $d \leq 3$ Initialize (e_1, \dots, e_d) as canonical basis, $e_0 = -(e_1 + \dots + e_d)$. While $\exists i \neq j$ such that $\langle e_i, De_j \rangle > 0$

d = 3: $(e_0, e_1, e_2, e_3) \leftarrow (-e_i, e_j, e_k + e_i, e_l + e_i)$

 $\sum_{I \subset \{0, \dots, d\}} \|\sum_{i \in I} e_i\|_D^2$ strictly decreases at each iteration.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Selling's algorithm (1874)

Produces a *D*-obtuse superbase, for $D \in S_d^+$, $d \leq 3$ **Initialize** (e_1, \dots, e_d) as canonical basis, $e_0 = -(e_1 + \dots + e_d)$. While $\exists i \neq j$ such that $\langle e_i, De_j \rangle > 0$ d = 3: $(e_0, e_1, e_2, e_3) \leftarrow (-e_i, e_i, e_k + e_i, e_l + e_i)$

• $\sum_{I \subset \{0, \dots, d\}} \|\sum_{i \in I} e_i\|_D^2$ strictly decreases at each iteration.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Selling's algorithm (1874)

Produces a *D*-obtuse superbase, for $D \in S_d^+$, $d \leq 3$ **Initialize** (e_1, \dots, e_d) as canonical basis, $e_0 = -(e_1 + \dots + e_d)$. While $\exists i \neq j$ such that $\langle e_i, De_j \rangle > 0$ d = 3: $(e_0, e_1, e_2, e_3) \leftarrow (-e_i, e_i, e_k + e_i, e_l + e_i)$

• $\sum_{I \subset \{0, \cdots, d\}} \|\sum_{i \in I} e_i\|_D^2$ strictly decreases at each iteration.

Theorem (Optimality of tensor decomposition with obt sb) Let $D \in S_2^+$, and let $(e_i)_{i=0}^2$ be a D-obtuse superbase. Assume also $D = \sum_{v \in V} \nu_v v \otimes v$ with $V \subset \mathbb{Z}^2$, $\nu_v \ge 0$. Then for a.e. D

$$\operatorname{Hull}(\pm e_i^{\perp}; 0 \leq i \leq 3) \subset \operatorname{Hull}(\pm v; v \in V).$$

J.-M. M., Minimal Stencil for Monotony or Causality Preserving Discretizations of Anisotropic PDEs, Preprint.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Diffusion equations

Stencil characterization and construction Monotone discretizations of PDEs

Eikonal equations

Distance maps and Shortest Paths Pontryagin's principle Riemannian metrics and Lattice Basis Reduction Finsler metrics and the Stern-Brocot tree

Assume that

Jean-Marie Mirebeau

$x = \sum_{y \in Y} \nu_y y,$ $D = \sum_{y \in Y} \nu_y (y - x) \otimes (y - x).$

equations Stencil characterization

acterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Monotone finite difference schemes If $u \in C^2(\mathbb{R}^d)$, and Y is sufficiently close to x, then at first order

$$\sum_{\mathbf{y}\in\mathbf{Y}}\nu_{\mathbf{y}}(u(\mathbf{y})-u(\mathbf{x}))^{2}\approx\sum_{\mathbf{y}\in\mathbf{Y}}\nu_{\mathbf{y}}\langle\nabla u(\mathbf{x}),\mathbf{y}-\mathbf{x}\rangle^{2}=\|\nabla u(\mathbf{x})\|_{D}^{2},$$
$$\sum_{\mathbf{y}\in\mathbf{Y}}\nu_{\mathbf{y}}(u(\mathbf{y})-u(\mathbf{x}))\approx\operatorname{Tr}(D\nabla^{2}u(\mathbf{x})).$$

Positivity of weights (*ν_y*)_{*y*∈*Y*} is crucial to scheme stability. Provides maximum principles / convergence to weak viscosity solutions.

Assume that

Jean-Marie Mirebeau

$x = \sum_{y \in Y} \nu_y y,$ $D = \sum_{y \in Y} \nu_y (y - x) \otimes (y - x).$

Stencil characterization and

construction Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Monotone finite difference schemes If $u \in C^2(\mathbb{R}^d)$, and Y is sufficiently close to x, then at first order

$$\sum_{y \in Y} \nu_y (u(y) - u(x))^2 \approx \sum_{y \in Y} \nu_y \langle \nabla u(x), y - x \rangle^2 = \|\nabla u(x)\|_D^2,$$
$$\sum_{y \in Y} \nu_y (u(y) - u(x)) \approx \operatorname{Tr}(D\nabla^2 u(x)).$$

Positivity of weights (v_y)_{y∈Y} is crucial to scheme stability. Provides maximum principles / convergence to weak viscosity solutions.

Assume that

Jean-Marie Mirebeau

$x = \sum_{y \in Y} \nu_y y,$ $D = \sum_{y \in Y} \nu_y (y - x) \otimes (y - x).$

equations Stencil char-

acterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Monotone finite difference schemes If $u \in C^2(\mathbb{R}^d)$, and Y is sufficiently close to x, then at first order

$$\sum_{y \in Y} \nu_y (u(y) - u(x))^2 \approx \sum_{y \in Y} \nu_y \langle \nabla u(x), y - x \rangle^2 = \|\nabla u(x)\|_D^2,$$
$$\sum_{y \in Y} \nu_y (u(y) - u(x)) \approx \operatorname{Tr}(D\nabla^2 u(x)).$$

Positivity of weights (v_y)_{y∈Y} is crucial to scheme stability. Provides maximum principles / convergence to weak viscosity solutions.

Assume that

Jean-Marie Mirebeau

$x = \sum_{y \in Y} \nu_y y,$ $D = \sum_{y \in Y} \nu_y (y - x) \otimes (y - x).$

equations Stencil char-

acterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Monotone finite difference schemes If $u \in C^2(\mathbb{R}^d)$, and Y is sufficiently close to x, then at first order

$$\sum_{y \in Y} \nu_y (u(y) - u(x))^2 \approx \sum_{y \in Y} \nu_y \langle \nabla u(x), y - x \rangle^2 = \|\nabla u(x)\|_D^2,$$
$$\sum_{y \in Y} \nu_y (u(y) - u(x)) \approx \operatorname{Tr}(D\nabla^2 u(x)).$$

Positivity of weights (v_y)_{y∈Y} is crucial to scheme stability. Provides maximum principles / convergence to weak viscosity solutions.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Application: Anisotropic diffusion in divergence form

$\partial_t u = \operatorname{div}(\mathbf{D}(x)\nabla u(x)).$

▶ Gradient flow of ∫_X ||∇u(x)||²_{D(x)} dx w.r.t. L² metric.
 ▶ Non-linear smooth dependence D = D_u is not a problem.
 ▶ Weickert's diffusion tensors D_u(x) are strongly anisotropic, so as to smooth tangentially to image discontinuities.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Application: Anisotropic diffusion in divergence form

$$\partial_t u = \operatorname{div}(\mathbf{D}(x)\nabla u(x)).$$

• Gradient flow of $\int_X \|\nabla u(x)\|_{D(x)}^2 dx$ w.r.t. L^2 metric.

Non-linear smooth dependence $D = D_u$ is not a problem. Weickert's diffusion tensors $D_u(x)$ are strongly anisotropic, so as to smooth tangentially to image discontinuities.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Application: Anisotropic diffusion in divergence form

$$\partial_t u = \operatorname{div}(\mathbf{D}_u(x)\nabla u(x)).$$

- Gradient flow of $\int_X \|\nabla u(x)\|_{D(x)}^2 dx$ w.r.t. L^2 metric.
- Non-linear smooth dependence $D = D_u$ is not a problem.
 - Weickert's diffusion tensors $D_u(x)$ are strongly anisotropic, so as to smooth tangentially to image discontinuities.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Application: Anisotropic diffusion in divergence form

$$\partial_t u = \operatorname{div}(\mathbf{D}_u(x)\nabla u(x)).$$

- Gradient flow of $\int_X \|\nabla u(x)\|_{D(x)}^2 dx$ w.r.t. L^2 metric.
- Non-linear smooth dependence $D = D_u$ is not a problem.
- Weickert's diffusion tensors D_u(x) are strongly anisotropic, so as to smooth tangentially to image discontinuities.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Application: Anisotropic diffusion in divergence form

$$\partial_t u = \operatorname{div}(\mathbf{D}_u(x)\nabla u(x)).$$

- Gradient flow of $\int_X \|\nabla u(x)\|_{D(x)}^2 dx$ w.r.t. L^2 metric.
 - Non-linear smooth dependence $D = D_u$ is not a problem.
- Weickert's diffusion tensors D_u(x) are strongly anisotropic, so as to smooth tangentially to image discontinuities.

Figure : Left: original. Right: smoothed. 🗐 Fehrenback, Risser, Tobji, M, Anisotropic Diffusion in ITK, The Insight Journal 2015

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Application: Anisotropic diffusion in divergence form

$$\partial_t u = \operatorname{div}(\mathbf{D}_u(x)\nabla u(x)).$$

- Gradient flow of $\int_X \|\nabla u(x)\|_{D(x)}^2 dx$ w.r.t. L^2 metric.
- Non-linear smooth dependence $D = D_u$ is not a problem.
- Weickert's diffusion tensors D_u(x) are strongly anisotropic, so as to smooth tangentially to image discontinuities.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Application: Anisotropic diffusion in divergence form

$$\partial_t u = \operatorname{div}(\mathbf{D}_u(x)\nabla u(x)).$$

- Gradient flow of $\int_X \|\nabla u(x)\|_{D(x)}^2 dx$ w.r.t. L^2 metric.
- Non-linear smooth dependence $\mathbf{D} = \mathbf{D}_u$ is not a problem.
- Weickert's diffusion tensors D_u(x) are strongly anisotropic, so as to smooth tangentially to image discontinuities.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Application: Hamilton Jacobi Bellman equations Given $D_{\alpha,\beta}: \Omega \to S_d^+, \ldots$, find $u: \Omega \to \mathbb{R}$ solving $\forall x \in \Omega$

$$0 = \sup_{\alpha \in \mathcal{A}} \inf_{\beta \in \mathcal{B}} \operatorname{Tr}(D_{\alpha,\beta} \nabla^2 u) + \langle b_{\alpha,\beta}, \nabla u \rangle + c_{\alpha,\beta} u + d_{\alpha,\beta},$$

 plus some boundary conditions on ∂Ω. (In viscosity sense.)
 Extremely general, encompasses PDEs involving det(∇²u).

 $\det(\nabla^2 u), \qquad \lambda_{\max}(\nabla^2 u),$

scretization of $Tr(D\nabla^2 u)$ is a key

 Monotone discretizations of anisotropic PDEs. Trudinger, Kuo (92), Bonnans (04), Oberman (10), Nochetto (15)...

J.-D. Benamou, F. Colinno, J.-M. M, Monotone and Consistent Discretization of the Monge-Ampere Operator, Math of Comp, 2015.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Application: Hamilton Jacobi Bellman equations Given $D_{\alpha,\beta}: \Omega \to S_d^+, \ldots$, find $u: \Omega \to \mathbb{R}$ solving $\forall x \in \Omega$

$$0 = \sup_{\alpha \in \mathcal{A}} \inf_{\beta \in \mathcal{B}} \operatorname{Tr}(D_{\alpha,\beta} \nabla^2 u) + \langle b_{\alpha,\beta}, \nabla u \rangle + c_{\alpha,\beta} u + d_{\alpha,\beta},$$

plus some boundary conditions on ∂Ω. (In viscosity sense.)
Extremely general, encompasses PDEs involving

$$\det(\nabla^2 u) = \inf_{\det D=1} \operatorname{Tr}(D\nabla^2 u), \quad \lambda_{\max}(\nabla^2 u), \quad \frac{(\nabla u)^1 \nabla^2 u}{|\nabla u|^2}$$

Discretization of $Tr(D\nabla^2 u)$ is a key.

 Monotone discretizations of anisotropic PDEs. Trudinger, Kuo (92), Bonnans (04), Oberman (10), Nochetto (15)...

J.-D. Benamou, F. Colinno, J.-M. M, Monotone and Consistent Discretization of the Monge-Ampere Operator, Math of Comp, 2015.
Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

1

Conclusion

Application: Hamilton Jacobi Bellman equations Given $D_{\alpha,\beta}: \Omega \to S_d^+, \ldots$, find $u: \Omega \to \mathbb{R}$ solving $\forall x \in \Omega$

$$0 = \sup_{\alpha \in \mathcal{A}} \inf_{\beta \in \mathcal{B}} \operatorname{Tr}(D_{\alpha,\beta} \nabla^2 u) + \langle b_{\alpha,\beta}, \nabla u \rangle + c_{\alpha,\beta} u + d_{\alpha,\beta},$$

plus some boundary conditions on ∂Ω. (In viscosity sense.)
Extremely general, encompasses PDEs involving

$$\det(\nabla^2 u), \quad \lambda_{\max}(\nabla^2 u) = \sup_{\operatorname{Tr} D = 1} \operatorname{Tr} (D\nabla^2 u),$$

Discretization of $Tr(D\nabla^2 u)$ is a key.

 Monotone discretizations of anisotropic PDEs. Trudinger, Kuo (92), Bonnans (04), Oberman (10), Nochetto (15)...

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Application: Hamilton Jacobi Bellman equations Given $D_{\alpha,\beta}: \Omega \to S_d^+, \ldots$, find $u: \Omega \to \mathbb{R}$ solving $\forall x \in \Omega$

$$0 = \sup_{\alpha \in \mathcal{A}} \inf_{\beta \in \mathcal{B}} \operatorname{Tr}(D_{\alpha,\beta} \nabla^2 u) + \langle b_{\alpha,\beta}, \nabla u \rangle + c_{\alpha,\beta} u + d_{\alpha,\beta},$$

plus some boundary conditions on ∂Ω. (In viscosity sense.)
Extremely general, encompasses PDEs involving

$$\det(\nabla^2 u), \qquad \lambda_{\max}(\nabla^2 u), \qquad \frac{(\nabla u)^{\mathrm{T}} \nabla^2 u \, (\nabla u)}{|\nabla u|^2}.$$

 Discretization of Tr(D∇²u) is a key.
 Monotone discretizations of anisotropic PDEs. Trudi Kuo (92), Bonnans (04), Oberman (10), Nochetto (3)

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Application: Hamilton Jacobi Bellman equations Given $D_{\alpha,\beta}: \Omega \to S_d^+, \ldots$, find $u: \Omega \to \mathbb{R}$ solving $\forall x \in \Omega$

$$0 = \sup_{\alpha \in \mathcal{A}} \inf_{\beta \in \mathcal{B}} \operatorname{Tr}(D_{\alpha,\beta} \nabla^2 u) + \langle b_{\alpha,\beta}, \nabla u \rangle + c_{\alpha,\beta} u + d_{\alpha,\beta},$$

plus some boundary conditions on ∂Ω. (In viscosity sense.)
Extremely general, encompasses PDEs involving

$$\det(\nabla^2 u), \qquad \lambda_{\max}(\nabla^2 u), \qquad \frac{(\nabla u)^{\mathrm{T}} \nabla^2 u \, (\nabla u)}{|\nabla u|^2}.$$

Discretization of
$$Tr(D\nabla^2 u)$$
 is a key.

 Monotone discretizations of anisotropic PDEs. Trudinger, Kuo (92), Bonnans (04), Oberman (10), Nochetto (15)...

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Application: Hamilton Jacobi Bellman equations Given $D_{\alpha,\beta}: \Omega \to S_d^+, \ldots$, find $u: \Omega \to \mathbb{R}$ solving $\forall x \in \Omega$

$$0 = \sup_{\alpha \in \mathcal{A}} \inf_{\beta \in \mathcal{B}} \operatorname{Tr}(D_{\alpha,\beta} \nabla^2 u) + \langle b_{\alpha,\beta}, \nabla u \rangle + c_{\alpha,\beta} u + d_{\alpha,\beta},$$

plus some boundary conditions on ∂Ω. (In viscosity sense.)
Extremely general, encompasses PDEs involving

$$\det(\nabla^2 u), \qquad \lambda_{\max}(\nabla^2 u), \qquad \frac{(\nabla u)^{\mathrm{T}} \nabla^2 u (\nabla u)}{|\nabla u|^2}.$$

• Discretization of
$$Tr(D\nabla^2 u)$$
 is a key.

 Monotone discretizations of anisotropic PDEs. Trudinger, Kuo (92), Bonnans (04), Oberman (10), Nochetto (15)...

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

iffusion equations

Stencil characterization and construction Monotone discretizations of PDEs

Eikonal equations

Distance maps and Shortest Paths Pontryagin's principle Riemannian metrics and Lattice Basis Reduction Finsler metrics and the Stern-Brocot tree

Conclusion

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps

Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Diffusion equations

Stencil characterization and construction Monotone discretizations of PDEs

Eikonal equations

Distance maps and Shortest Paths

ntryagin's principle

Riemannian metrics and Lattice Basis Reduction Finsler metrics and the Stern-Brocot tree

Conclusion

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps

Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Distance maps and Shortest Paths

Figure : Distance from the exit of centre Pompidou, and associated shortest paths.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

- Distance maps Pontryagin's principle
- Riemannian metrics Finsler metrics

Conclusion

Distance maps and Shortest Paths

Figure : Distance with respect to a metric constructed from a vessel image. Credit L.Cohen.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps

Pontryagin's principle Riemannian metrics Finsler metrics Asymmetric norms and Finsler metrics

Definition (Asymmetric norm)

- A map $F : \mathbb{R}^d \to \mathbb{R}_+$ such that
 - (Definiteness) F(u) = 0 implies u = 0.
 - (Homogeneity) $F(\lambda u) = \lambda F(u)$ for $\lambda \ge 0$.
 - (Triangle inequality) $F(u+v) \leq F(u) + F(v)$.

Definition (Finsler metric on a domain $\Omega \subset \mathbb{R}^d$) A continuous map $\mathcal{F} : \overline{\Omega} \times \mathbb{R}^d \to \mathbb{R}_+, \ (z, u) \to \mathcal{F}_z(u)$, such that \mathcal{F}_z is an asymmetric norm for all $z \in \overline{\Omega}$.

Conclusion

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps

Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Asymmetric norms and Finsler metrics

Definition (Asymmetric norm)

- A map $F : \mathbb{R}^d \to \mathbb{R}_+$ such that
 - (Definiteness) F(u) = 0 implies u = 0.
 - (Homogeneity) $F(\lambda u) = \lambda F(u)$ for $\lambda \ge 0$.
 - (Triangle inequality) $F(u + v) \leq F(u) + F(v)$.

Definition (Finsler metric on a domain $\Omega \subset \mathbb{R}^d$) A continuous map $\mathcal{F} : \overline{\Omega} \times \mathbb{R}^d \to \mathbb{R}_+, \ (z, u) \to \mathcal{F}_z(u)$, such that \mathcal{F}_z is an asymmetric norm for all $z \in \overline{\Omega}$.

Isotropic

Riemannian

Finsler

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps

Pontryagin's principle Riemannian metrics Finsler metrics Path Length and asymmetric Distance

Connected domain $\Omega \subset \mathbb{R}^d$ equipped with a Finsler Metric \mathcal{F} .

Definition (Length of a path $\gamma \in C^1([0,1],\overline{\Omega}))$

$$\mathsf{length}(\gamma) := \int_0^1 \mathcal{F}_{\gamma(t)}(\gamma'(t)) \, dt$$

efinition (Asymmetric Distance on $\overline{\Omega})$ $D(x,y):= \inf\{ ext{length}(\gamma); \ \gamma(0)=x, \ \gamma(1)=y \}$

Conclusion

Addressed Problem.

nput: \mathcal{F} , z_0 .

Output: $D(z_0, \cdot)$, paths of minimal length form z_0 .

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps

Pontryagin's principle Riemannian metrics Finsler metrics Path Length and asymmetric Distance

Connected domain $\Omega \subset \mathbb{R}^d$ equipped with a Finsler Metric \mathcal{F} .

Definition (Length of a path $\gamma \in C^1([0,1],\overline{\Omega}))$

$$\mathsf{length}(\gamma) := \int_0^1 \mathcal{F}_{\gamma(t)}(\gamma'(t)) \, dt$$

Definition (Asymmetric Distance on Ω) $D(x, y) := \inf \{ \operatorname{length}(\gamma); \gamma(0) = x, \gamma(1) = y \}.$

Addressed Problem.

Output: $D(z_0, \cdot)$, paths of minimal length form z_0 .

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps

Pontryagin's principle Riemannian metrics Finsler metrics

Addressed Problem. Input: \mathcal{F} , z_0 .

Output: $D(z_0, \cdot)$, paths of minimal length form z_0 .

Path Length and asymmetric Distance Connected domain $\Omega \subset \mathbb{R}^d$ equipped with a Finsler Metric \mathcal{F} . Definition (Length of a path $\gamma \in C^1([0,1],\overline{\Omega}))$ $\operatorname{length}(\gamma) := \int_0^1 \mathcal{F}_{\gamma(t)}(\gamma'(t)) dt$

Definition (Asymmetric Distance on Ω) $D(x, y) := \inf\{ \operatorname{length}(\gamma); \gamma(0) = x, \gamma(1) = y \}.$

The Eikonal Equation

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps

Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Let $\Omega \subset \mathbb{R}^d$ be open and bounded. Let $z_0 \in \Omega$, let \mathcal{F} be a Finsler metric. Then $u(x) := D(z_0, x)$ is the unique viscosity solution of:

$$\begin{cases} \mathcal{F}_{x}^{*}(\nabla u(x)) = 1 & \forall x \in \Omega \setminus \{z_{0}\}, \\ u(z_{0}) = 0, & (1) \\ \langle \nabla u(x), n(x) \rangle \geq 0 & \forall x \in \partial \Omega. \end{cases}$$

The Eikonal Equation

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps

Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

Let $\Omega \subset \mathbb{R}^d$ be open and bounded. Let $z_0 \in \Omega$, let \mathcal{F} be a Finsler metric. Then $u(x) := D(z_0, x)$ is the unique viscosity solution of:

$$\begin{cases} \mathcal{F}_{x}^{*}(\nabla u(x)) = 1 & \forall x \in \Omega \setminus \{z_{0}\}, \\ u(z_{0}) = 0, \\ \langle \nabla u(x), n(x) \rangle \geq 0 & \forall x \in \partial \Omega. \end{cases}$$
(1)

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps

Pontryagin's principle

Riemannian metrics Finsler metrics

Conclusion

Diffusion equations

Stencil characterization and construction Monotone discretizations of PDEs

Eikonal equations

Distance maps and Shortest Paths

Pontryagin's principle

Riemannian metrics and Lattice Basis Reduction Finsler metrics and the Stern-Brocot tree

Conclusion

Escape time from $x \in \Omega$

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps

Pontryagin's principle

Riemannian metrics Finsler metrics

Conclusion

$$u(x) := \inf_{\substack{y \in \partial \Omega}} D(x, y) = \inf_{\substack{\gamma(0) = x \\ \gamma(1) \in \partial \Omega}} \int_0^1 \mathcal{F}_{\gamma(t)}(\gamma'(t)) dt$$

Bellman's optimality principle

f $x\in V\subset \Omega$, then to escape Ω one must cross ∂V

 $u(x) = \min_{y \in \partial V} D(x, y) + u(y).$

Escape time from $x \in \Omega$

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps

Pontryagin's principle

Riemannian metrics Finsler metrics

Conclusion

$u(x) := \inf_{y \in \partial \Omega} D(x, y) = \inf_{\substack{\gamma(0) = x \\ \gamma(1) \in \partial \Omega}} \int_0^1 \mathcal{F}_{\gamma(t)}(\gamma'(t)) dt$

Bellman's optimality principle

f $x\in V\subset \Omega$, then to escape Ω one must cross ∂V

 $u(x) = \min_{y \in \partial V} D(x, y) + u(y).$

Escape time from $x \in \Omega$

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps

Pontryagin's principle

Riemannian metrics Finsler metrics

Conclusion

$u(x) := \inf_{y \in \partial \Omega} D(x, y) = \inf_{\substack{\gamma(0) = x \\ \gamma(1) \in \partial \Omega}} \int_0^1 \mathcal{F}_{\gamma(t)}(\gamma'(t)) dt$

Bellman's optimality principle

If $x \in V \subset \Omega$, then to escape Ω one must cross ∂V

$$u(x) = \min_{y \in \partial V} D(x, y) + u(y).$$

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps

Pontryagin's principle

Riemannian metrics Finsler metrics

Conclusion

Let X and ∂X be finite point sets discretizing Ω , $\partial \Omega$. Definition (Hopf-Lax update operator) For $u: X \cup \partial X \to \mathbb{R}$, $x \in X$ with polygonal stencil V(x).

$$\Lambda u(x) := \min_{y \in \partial V(x)} \mathcal{F}_x(y-x) + u(y),$$

where *u* is piecewise-linearly interpolated on the faces of $\partial V(x)$.

Discrete fixed point problem

 $\begin{cases} u(x) = \Lambda u(x) & \text{for all } x \in X, \\ u(x) = 0 & \text{for all } x \in \partial X. \end{cases}$

Jean-Marie Mirebeau

Diffusion equations

- Stencil characterization and construction
- Monotone Discretizations

Eikonal equations

Distance maps

Pontryagin's principle

Riemannian metrics Finsler metrics

Conclusion

Let X and ∂X be finite point sets discretizing Ω , $\partial \Omega$. Definition (Hopf-Lax update operator) For $u: X \cup \partial X \to \mathbb{R}$, $x \in X$ with polygonal stencil V(x).

$$\Lambda u(x) := \min_{y \in \partial V(x)} \mathcal{F}_x(y-x) + u(y),$$

where *u* is piecewise-linearly interpolated on the faces of $\partial V(x)$.

Discrete fixed point problem

$$\begin{cases} u(x) = \Lambda u(x) & \text{for all } x \in X, \\ u(x) = 0 & \text{for all } x \in \partial X. \end{cases}$$

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps

Pontryagin's principle

Riemannian metrics Finsler metrics

Conclusion

Definition (Causality property)

Operator Λ is causal if for any $u: X \to \mathbb{R}$, $x \in X$, denoting by $[y_0, \dots, y_k]$ of the minimal facet of V(x) where the minimum defining $\Lambda u(x)$ is attained, one has

$$\forall i \in \llbracket 0, k \rrbracket, \ \Lambda u(x) > u(y_i).$$

The fast marching algorithm. Tsitsilikis, 95.

If causality holds, then the discrete system can be solved in a single pass using a variant of Dijkstra's algorithm.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equation

Distance maps

Pontryagin's principle

Riemannian metrics Finsler metrics

Conclusion

Definition (Causality property)

Operator Λ is causal if for any $u: X \to \mathbb{R}$, $x \in X$, denoting by $[y_0, \dots, y_k]$ of the minimal facet of V(x) where the minimum defining $\Lambda u(x)$ is attained, one has

$$\forall i \in \llbracket 0, k \rrbracket, \ \Lambda u(x) > u(y_i).$$

The fast marching algorithm. Tsitsilikis, 95.

If causality holds, then the discrete system can be solved in a single pass using a variant of Dijkstra's algorithm.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps

Pontryagin's principle

Riemannian metrics Finsler metrics

Conclusion

Proposition (Acuteness \Rightarrow Causality)

Causality holds if for any $x \in X$, and any u, v in a common facet of stencil V(x), one has

(Tsitsilikis, 95) ⟨u, v⟩ ≥ 0, assuming F_x(u) = c(x)|u|.
 (Sethian, 03) ⟨u, M(x)v⟩ ≥ 0, F_x(u) = √⟨u, M(x)u⟩.
 (Vladimirkski, 08) ⟨∇F_x(u), v⟩ ≥ 0.

• (Mirebeau, 13) $F(u + \delta v) \ge F(u)$ for all $\delta \ge 0$.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps

Pontryagin's principle

Riemannian metrics Finsler metrics

Conclusion

Proposition (Acuteness \Rightarrow Causality)

Causality holds if for any $x \in X$, and any u, v in a common facet of stencil V(x), one has

• (Tsitsilikis, 95) $\langle u, v \rangle \ge 0$, assuming $\mathcal{F}_x(u) = c(x)|u|$.

► (Sethian, 03) $\langle u, M(x)v \rangle \ge 0$, $\mathcal{F}_x(u) = \sqrt{\langle u, M(x)u \rangle}$. ► (Vladimirkski, 08) $\langle \nabla \mathcal{F}_x(u), v \rangle \ge 0$.

• (Mirebeau, 13) $F(u + \delta v) \ge F(u)$ for all $\delta \ge 0$.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps

Pontryagin's principle

Riemannian metrics Finsler metrics

Conclusion

Proposition (Acuteness \Rightarrow Causality)

Causality holds if for any $x \in X$, and any u, v in a common facet of stencil V(x), one has

• (Tsitsilikis, 95) $\langle u, v \rangle \ge 0$, assuming $\mathcal{F}_x(u) = c(x)|u|$.

- (Sethian, 03) $\langle u, M(x)v \rangle \ge 0$, $\mathcal{F}_x(u) = \sqrt{\langle u, M(x)u \rangle}$.
- (Vladimirkski, 08) $\langle \nabla \mathcal{F}_x(u), v \rangle \geq 0.$

(Mirebeau, 13) $F(u + \delta v) \ge F(u)$ for all $\delta \ge 0$.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps

Pontryagin's principle

Riemannian metrics Finsler metrics

Conclusion

Proposition (Acuteness \Rightarrow Causality)

Causality holds if for any $x \in X$, and any u, v in a common facet of stencil V(x), one has

• (Tsitsilikis, 95) $\langle u, v \rangle \ge 0$, assuming $\mathcal{F}_x(u) = c(x)|u|$.

- (Sethian, 03) $\langle u, M(x)v \rangle \ge 0$, $\mathcal{F}_x(u) = \sqrt{\langle u, M(x)u \rangle}$.
- (Vladimirkski, 08) $\langle \nabla \mathcal{F}_x(u), v \rangle \geq 0.$
- (Mirebeau, 13) $F(u + \delta v) \ge F(u)$ for all $\delta \ge 0$.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle

Riemannian metrics Finsler

metrics Conclusion

Diffusion equations

Stencil characterization and construction Monotone discretizations of PDEs

Eikonal equations

Distance maps and Shortest Paths Pontryagin's principle

Riemannian metrics and Lattice Basis Reduction

Finsler metrics and the Stern-Brocot tree

Conclusion

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equation

Distance maps Pontryagin's principle

Riemannian metrics

Finsler metrics

Conclusion

Let
$$\|e\|_M := \sqrt{\langle e, Me
angle}$$
, for $e \in \mathbb{R}^d$, $M \in S_d^+$.

Definition (Voronoi cell and facets)

For each matrix $M \in S_d^+$, introduce the Voronoi cell and facet

$$Vor(M) := \{g \in \mathbb{R}^d; \forall e \in \mathbb{Z}^d, \|g\|_M \le \|g - e\|_M\},$$

 $Vor(M; e) := \{g \in Vor(M); \|g\|_M = \|g - e\|_M\}.$

e is a Voronoi Vector \Leftrightarrow Vor $(M, e) \neq \emptyset$.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle

Riemannian metrics

Finsler metrics

Conclusion

Let $\|e\|_M := \sqrt{\langle e, Me \rangle}$, for $e \in \mathbb{R}^d$, $M \in S_d^+$.

Definition (Voronoi cell and facets)

For each matrix $M \in S_d^+$, introduce the Voronoi cell and facet

$$Vor(M) := \{g \in \mathbb{R}^d; \forall e \in \mathbb{Z}^d, \|g\|_M \le \|g - e\|_M\},$$

 $Vor(M; e) := \{g \in Vor(M); \|g\|_M = \|g - e\|_M\}.$

e is a Voronoi Vector \Leftrightarrow Vor $(M, e) \neq \emptyset$.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle

Riemannian metrics

Finsler metrics

Conclusion

Let $||e||_M := \sqrt{\langle e, Me \rangle}$, for $e \in \mathbb{R}^d$, $M \in S_d^+$. Definition (Voronoi cell and facets)

For each matrix $M \in S_d^+$, introduce the Voronoi cell and facet

$$Vor(M) := \{ g \in \mathbb{R}^d; \forall e \in \mathbb{Z}^d, \|g\|_M \le \|g - e\|_M \}, Vor(M; e) := \{ g \in Vor(M); \|g\|_M = \|g - e\|_M \}.$$

e is a Voronoi Vector \Leftrightarrow Vor $(M, e) \neq \emptyset$.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equation:

Distance maps Pontryagin's principle

Riemannian metrics

Finsler metrics

Conclusion

Let $||e||_M := \sqrt{\langle e, Me \rangle}$, for $e \in \mathbb{R}^d$, $M \in S_d^+$. Definition (Voronoi cell and facets)

For each matrix $M \in S_d^+$, introduce the Voronoi cell and facet

$$Vor(M) := \{ g \in \mathbb{R}^d; \forall e \in \mathbb{Z}^d, \|g\|_M \le \|g - e\|_M \}, \\ Vor(M; e) := \{ g \in Vor(M); \|g\|_M = \|g - e\|_M \}.$$

Coordinates transformed by $M^{\frac{1}{2}}$.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle

Riemannian metrics Finsler

metrics

Proposition (Connected Voronoi vertices form acute angles) If $Vor(M; e) \cap Vor(M; f) \neq \emptyset$, then $\langle e, Mf \rangle \ge 0$.

ndeed, let $p \in Vor(M; e) \cap Vor(M; f)$. Then

 $\|p\|_M = \|p-e\|_M = \|p-f\|_M \le \|p-(e+f)\|_M.$

 $0 \leq \|p - (e+f)\|_{M}^{2} - \|p - e\|_{M}^{2} - \|p - f\|_{M}^{2} + \|p\|_{M}^{2} = 2\langle e, Mf \rangle.$

Causal stencils for Riemannian metrics, on a cartesian grid $F_x = \| \cdot \|_{M(x)}$, and $X = \Omega \cap \mathbb{Z}^d$. Define V(x) as the collection of M(x)-Voronoi vectors, with the topology dual to Vor(M(x)).

Theorem (Optimality of Voronoi based stencils, 2D) Voronoi based stencils are the smallest, in the sense of convex hull inclusion, satisfying the acuteness condition.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction Monotone

Discretizations

Eikonal equations

Distance maps Pontryagin's principle

Riemannian metrics Finsler

metrics

Conclusion

Proposition (Connected Voronoi vertices form acute angles) If $Vor(M; e) \cap Vor(M; f) \neq \emptyset$, then $\langle e, Mf \rangle \ge 0$. Indeed, let $p \in Vor(M; e) \cap Vor(M; f)$. Then

$$\|p\|_M = \|p - e\|_M = \|p - f\|_M \le \|p - (e + f)\|_M.$$

$$0 \leq \|p - (e + f)\|_{M}^{2} - \|p - e\|_{M}^{2} - \|p - f\|_{M}^{2} + \|p\|_{M}^{2} = 2\langle e, Mf \rangle.$$

Causal stencils for Riemannian metrics, on a cartesian grid $F_x = \|\cdot\|_{\mathsf{M}(x)}$, and $X = \Omega \cap \mathbb{Z}^d$. Define V(x) as the collection of $\mathsf{M}(x)$ -Voronoi vectors, with the topology dual to $\mathsf{Vor}(\mathsf{M}(x))$.

Theorem (Optimality of Voronoi based stencils, 2D)

Voronoi based stencils are the smallest, in the sense of convex hull inclusion, satisfying the acuteness condition.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction Monotone

Discretizations

Eikonal equations

Distance maps Pontryagin's principle

Riemannian metrics Finsler

metrics

Proposition (Connected Voronoi vertices form acute angles) If $Vor(M; e) \cap Vor(M; f) \neq \emptyset$, then $\langle e, Mf \rangle \ge 0$. Indeed, let $p \in Vor(M; e) \cap Vor(M; f)$. Then

$$\|p\|_M = \|p - e\|_M = \|p - f\|_M \le \|p - (e + f)\|_M.$$

$$0 \leq \|p - (e + f)\|_{M}^{2} - \|p - e\|_{M}^{2} - \|p - f\|_{M}^{2} + \|p\|_{M}^{2} = 2\langle e, Mf \rangle.$$

Causal stencils for Riemannian metrics, on a cartesian grid $\mathcal{F}_x = \| \cdot \|_{\mathbf{M}(x)}$, and $X = \Omega \cap \mathbb{Z}^d$. Define V(x) as the collection of $\mathbf{M}(x)$ -Voronoi vectors, with the topology dual to $Vor(\mathbf{M}(x))$.

Theorem (Optimality of Voronoi based stencils, 2D)

Voronoi based stencils are the smallest, in the sense of convex hull inclusion, satisfying the acuteness condition.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction Monotone

Discretizations

Eikonal equations

Distance maps Pontryagin's principle

Riemannian metrics Finsler

metrics Conclusion

Proposition (Connected Voronoi vertices form acute angles) If $Vor(M; e) \cap Vor(M; f) \neq \emptyset$, then $\langle e, Mf \rangle \ge 0$. Indeed, let $p \in Vor(M; e) \cap Vor(M; f)$. Then

$$\|p\|_M = \|p - e\|_M = \|p - f\|_M \le \|p - (e + f)\|_M.$$

$$0 \leq \|p - (e + f)\|_{M}^{2} - \|p - e\|_{M}^{2} - \|p - f\|_{M}^{2} + \|p\|_{M}^{2} = 2\langle e, Mf \rangle.$$

Causal stencils for Riemannian metrics, on a cartesian grid $\mathcal{F}_x = \| \cdot \|_{\mathbf{M}(x)}$, and $X = \Omega \cap \mathbb{Z}^d$. Define V(x) as the collection of $\mathbf{M}(x)$ -Voronoi vectors, with the topology dual to $Vor(\mathbf{M}(x))$.

Theorem (Optimality of Voronoi based stencils, 2D)

Voronoi based stencils are the smallest, in the sense of convex hull inclusion, satisfying the acuteness condition.
Size of the stencils

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle

Riemannian metrics

Finsler metrics

Conclusion

For each $\kappa \geq 1$, $\theta \in [0, \pi]$, introduce the symmetric matrix

$$M_\kappa(heta) := e_ heta \otimes e_ heta + \kappa^2 e_ heta^\perp \otimes e_ heta^\perp$$

Let $V_{\kappa}(\theta)$ be the $M_{\kappa}(\theta)$ -Voronoi vectors, and

$$R_{\kappa}(\theta) := \max_{e \in V_{\kappa}(\theta)} \|e\|, \qquad S_{\kappa}(\theta) := \max_{e \in V_{\kappa}(\theta)} \|e\|_{M_{\kappa}(\theta)}$$

Figure : Stencil size strongly depends on orientation. $\times M^{\frac{1}{2}}$

Size of the stencils

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equation

Distance maps Pontryagin's principle

Riemannian metrics

Finsler metrics

Conclusion

For each $\kappa \geq 1$, $\theta \in [0, \pi]$, introduce the symmetric matrix

$$M_\kappa(heta) := e_ heta \otimes e_ heta + \kappa^2 e_ heta^\perp \otimes e_ heta^\perp$$

Let $V_{\kappa}(\theta)$ be the $M_{\kappa}(\theta)$ -Voronoi vectors, and $R_{\kappa}(\theta) := \max_{e \in V_{\kappa}(\theta)} \|e\|, \qquad S_{\kappa}(\theta) := \max_{e \in V_{\kappa}(\theta)} \|e\|_{M_{\kappa}(\theta)}$

Figure : Stencil size strongly depends on orientation. $\times M^{\frac{1}{2}}$

Size of the stencils

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equation

Distance maps Pontryagin's principle

Riemannian metrics

Finsler metrics

Conclusion

For each $\kappa \geq 1$, $\theta \in [0, \pi]$, introduce the symmetric matrix

$$\mathit{M}_\kappa(heta):= e_ heta\otimes e_ heta+\kappa^2 e_ heta^\perp\otimes e_ heta^\perp$$

Let $V_{\kappa}(\theta)$ be the $M_{\kappa}(\theta)$ -Voronoi vectors, and

$$R_{\kappa}(heta) := \max_{e \in V_{\kappa}(heta)} \|e\|, \qquad S_{\kappa}(heta) := \max_{e \in V_{\kappa}(heta)} \|e\|_{M_{\kappa}(heta)}$$

Theorem (Euclidean and intrinsic stencil radius, as $\kappa \to \infty$)

$$\|R_{\kappa}\|_{L^{p}} \approx \kappa^{\frac{1}{2}} \|S_{\kappa}\|_{L^{p}}. \quad \|S_{\kappa}\|_{L^{p}} \approx \begin{cases} \kappa^{\frac{1}{2} - \frac{1}{p}} & \text{if } p > 2, \\ (\ln \kappa)^{\frac{1}{2}} & \text{if } p = 2, \\ 1 & \text{if } p < 2. \end{cases}$$

Jean-Marie Mirebeau

Diffusion equations

- Stencil characterization and construction
- Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle

Riemannian metrics Finsler

Finsler metrics

Conclusion

Taking advantage of Anisotropy

Anisotropic fast marching (left) allows to take smaller steps in the iterative extraction of retinal vessel trees.

Da Chen, Laurent Cohen, J.-M. M, <u>Vessel Extraction Using</u> Anisotropic Minimal Paths and Path Score, ICIP 2014

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle

Riemannian metrics

Finsler metrics

Conclusion

Petitot's model: curvature penalized length

 $\gamma: [0,1] \to \mathbb{R}^2$, s: curvilinear abcissa, κ : curvature.

$$\mathcal{E}(\gamma) := \int_{\gamma} \sqrt{1+\kappa^2} ds$$

Drientation lifting and Sub-Riemannian reformulation For $(\gamma, \theta) : [0, 1] \to \mathbb{R}^2 \times \mathbb{S}^1$ consider, with $e_{\theta} := (\cos \theta, \sin \theta)$

$$\mathcal{E}(\gamma, \theta) := \int_0^1 \sqrt{\|\gamma'\|^2 + |\theta'|^2} dt$$

if det $(\gamma', e_{\theta}) = 0$ identically. Otherwise $\mathcal{E}(\gamma, \theta) = +\infty$.

Riemannian approximation by constraint penalization. Choose $\lambda \gg 1$ and consider

$$\mathcal{E}_{\lambda}(\gamma, heta) := \int_{0}^{1} \sqrt{\|\gamma'\|^2 + | heta'|^2 + \lambda \det(\gamma', e_{ heta})^2} dt,$$

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle

Riemannian metrics

Finsler metrics

Conclusion

Petitot's model: curvature penalized length

 $\gamma: [0,1] \rightarrow \mathbb{R}^2$, s: curvilinear abcissa, κ : curvature.

$$\mathcal{E}(\gamma) := \int_{\gamma} \sqrt{1+\kappa^2} ds$$

Orientation lifting and Sub-Riemannian reformulation For $(\gamma, \theta) : [0, 1] \rightarrow \mathbb{R}^2 \times \mathbb{S}^1$ consider, with $e_{\theta} := (\cos \theta, \sin \theta)$

$$\mathcal{E}(\gamma, heta) := \int_0^1 \sqrt{\|\gamma'\|^2 + | heta'|^2} dt$$

if det $(\gamma', e_{\theta}) = 0$ identically. Otherwise $\mathcal{E}(\gamma, \theta) = +\infty$.

Riemannian approximation by constraint penalization. Choose $\lambda \gg 1$ and consider

$$\mathcal{E}_{\lambda}(\gamma, heta) := \int_{0}^{1} \sqrt{\|\gamma'\|^2 + | heta'|^2 + \lambda \det(\gamma', e_{ heta})^2} dt,$$

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle

Riemannian metrics

Finsler metrics

Conclusion

Petitot's model: curvature penalized length

 $\gamma: [0,1] \rightarrow \mathbb{R}^2$, s: curvilinear abcissa, κ : curvature.

$$\mathcal{E}(\gamma) := \int_{\gamma} \sqrt{1+\kappa^2} ds$$

Orientation lifting and Sub-Riemannian reformulation For $(\gamma, \theta) : [0, 1] \rightarrow \mathbb{R}^2 \times \mathbb{S}^1$ consider, with $e_{\theta} := (\cos \theta, \sin \theta)$

$$\mathcal{E}(\gamma, heta) := \int_0^1 \sqrt{\|\gamma'\|^2 + | heta'|^2} dt$$

if det $(\gamma', e_{\theta}) = 0$ identically. Otherwise $\mathcal{E}(\gamma, \theta) = +\infty$.

Riemannian approximation by constraint penalization. Choose $\lambda \gg 1$ and consider

$$\mathcal{E}_{\lambda}(\gamma, \theta) := \int_0^1 \sqrt{\|\gamma'\|^2 + |\theta'|^2 + \lambda \det(\gamma', e_{\theta})^2} dt,$$

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle

Riemannian metrics

Finsler metrics

Conclusion

Figure : Extraction of the retina vessels, with R. Duits, G.Sanguinetti

Jean-Marie Mirebeau Voronoi-based stencils for three dimensional Riemannian Shortest paths

Diffusion equations

- Stencil characterization and construction
- Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle

Riemannian metrics

Finsler metrics

Conclusion

Applications in progress

Jean-Marie Mirebeau

Diffusion equations

- Stencil characterization and construction
- Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle

Riemannian metrics

Finsler metrics

Conclusion

Figure : Front propagations with respect to anisotropic metrics

Applications in progress

Jean-Marie Mirebeau

Diffusion equations

- Stencil characterization and construction
- Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle

Riemannian metrics

Finsler metrics

Conclusion

Figure : Curvature penalized geodesics via 5D sub-riemannian fast marching on $\mathbb{R}^3 \times \mathbb{S}^2$. Work in progress with R.Duits, G.Sanguinetti

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics

Finsler metrics

Conclusion

Diffusion equations

Stencil characterization and construction Monotone discretizations of PDEs

Eikonal equations

Distance maps and Shortest Paths Pontryagin's principle Riemannian metrics and Lattice Basis Reduction Finsler metrics and the Stern-Brocot tree

Conclusion

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian

Riemanniar metrics

Finsler metrics

Conclusion

Definition (The Stern-Brocot tree of triangles) Root: $T_0 = [(0,0), (1,0), (0,1)]$ Children of T = [0, u, v]: T' = [0, u, u + v], T'' = [0, u + v, v].

The map $T = [0, (a, b), (a', b')] \mapsto q = \frac{a+a'}{b+b'}$ induces a bijection between the triangles and the positive rationals.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian

metrics Finsler metrics

Conclusion

Definition (The Stern-Brocot tree of triangles) Root: $T_0 = [(0,0), (1,0), (0,1)]$ Children of T = [0, u, v]: T' = [0, u, u + v], T'' = [0, u + v, v].

The map $T = [0, (a, b), (a', b')] \mapsto q = \frac{a+a'}{b+b'}$ induces a bijection between the triangles and the positive rationals.

Jean-Marie Mirebeau

Stencil char acterization and construction Monotone Discretizations

17 20 21 14 2 7 3 10 15 16 Distance maps 12 5 Pontryagin principle Riemannian metrics Finsler metrics 16\15 10/16\15 17 17 17 18 19 18 21 18 21 18 21

> 🗍 J.-M. M, Efficient Fast Marching with Finsler Metrics, Numerische Mathematic, 2013

Stencil and tree structure

V(F): mesh obtained by recursively refining the 4 element mesh \mathcal{T}_0 (bottom left), until all triangles are *F*-acute.

18

19

13

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics

Finsler metrics

Conclusion

Figure : Stencils are adaptive and depend on both the orientation and the anisotropy of the asymmetric norm

Theorem

Let F be an asymmetric norm on \mathbb{R}^2 , and let $n_F(\theta)$ be the cardinality of the stencil associated to $F \circ R_{\theta}$. Then

$$\int_{0}^{2\pi} n_{\mathsf{F}}(\theta) d\theta \leq C(1+\ln^2\kappa), \quad \textit{where } \kappa := \max_{|u|=|v|=1} \frac{\mathsf{F}(u)}{\mathsf{F}(v)}.$$

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics

Finsler metrics

Conclusion

Figure : Stencils are adaptive and depend on both the orientation and the anisotropy of the asymmetric norm

Theorem

Let F be an asymmetric norm on \mathbb{R}^2 , and let $n_F(\theta)$ be the cardinality of the stencil associated to $F \circ R_{\theta}$. Then

$$\int_{0}^{2\pi} n_{\mathsf{F}}(\theta) d\theta \leq C(1+\ln^2\kappa), \quad \textit{where } \kappa := \max_{|u|=|v|=1} \frac{\mathsf{F}(u)}{\mathsf{F}(v)}.$$

Jean-Marie Mirebeau

Diffusion equations

- Stencil characterization and construction
- Monotone Discretizations

Eikonal equations

- Distance maps Pontryagin's principle Riemannian metrics
- Finsler metrics

Conclusion

Applications of Finsler shortest paths

- Models in which ascent is harder than descent.
 - Navigation at unit speed + drift due to currents.
- Segmentation with black on right, white on left. (Zach, Chan, Niethammer, 09)

Jean-Marie Mirebeau

Diffusion equations

- Stencil characterization and construction
- Monotone Discretizations

Eikonal equations

- Distance maps Pontryagin's principle
- Riemannian metrics

Finsler metrics

Conclusion

Applications of Finsler shortest paths

- Models in which ascent is harder than descent.
- Navigation at unit speed + drift due to currents.
 - Segmentation with black on right, white on left. (Zach, Chan, Niethammer, 09)

Jean-Marie Mirebeau

Diffusion equations

- Stencil characterization and construction
- Monotone Discretizations

Eikonal equations

- Distance maps Pontryagin's principle Riemannian metrics
- Finsler metrics

Conclusion

Applications of Finsler shortest paths

- Models in which ascent is harder than descent.
- Navigation at unit speed + drift due to currents.
- Segmentation with black on right, white on left. (Zach, Chan, Niethammer, 09)

(a) Geodesic active contour

(b) Finsler active contour

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics

Finsler metrics

Conclusion

Euler elastica: squared curvature penalized length $\gamma: [0,1] \rightarrow \mathbb{R}^2$, s: curvilinear abcissa, κ : curvature

$$\mathcal{E}(\gamma) := \int_{\gamma} (1+\kappa^2) ds$$

Orientation lifting and sub-Finslerian reformulation For $\Gamma = (\gamma, \theta) : [0, 1] \rightarrow \mathbb{R}^2 \times \mathbb{S}^1$ consider, with $e_{\theta} = (\cos \theta, \sin \theta)$

$$\mathcal{E}(\gamma, heta) := \int_0^1 \|\gamma'\| + rac{\| heta'\|^2}{\|\gamma'\|}$$

if $\langle \gamma', e_{\theta} \rangle = ||\gamma'||$ identically. Otherwise $\mathcal{E}(\gamma, \theta) = +\infty$. Finslerian approximation by constraint penalization Choose $\lambda \gg 1$ and consider

$$\mathcal{E}_\lambda(\gamma, heta) := \int_0^1 \sqrt{\lambda^2 \|\gamma'\|^2 + 2\lambda | heta'|^2} - (\lambda-1) \langle e_ heta, \gamma'
angle$$

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction Monotone

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian

metrics Finsler metrics

Conclusion

Euler elastica: squared curvature penalized length $\gamma : [0, 1] \rightarrow \mathbb{R}^2$, s: curvilinear abcissa, κ : curvature

$$\mathcal{E}(\gamma) := \int_{\gamma} (1+\kappa^2) ds$$

Orientation lifting and sub-Finslerian reformulation For $\Gamma = (\gamma, \theta) : [0, 1] \rightarrow \mathbb{R}^2 \times \mathbb{S}^1$ consider, with $e_{\theta} = (\cos \theta, \sin \theta)$

$$\mathcal{E}(\gamma, heta):=\int_0^1 \|\gamma'\|+rac{\| heta'\|^2}{\|\gamma'\|}$$

if $\langle \gamma', e_{\theta} \rangle = \|\gamma'\|$ identically. Otherwise $\mathcal{E}(\gamma, \theta) = +\infty$. Finslerian approximation by constraint penalization Choose $\lambda \gg 1$ and consider

$$\mathcal{E}_\lambda(\gamma, heta):=\int_0^1\sqrt{\lambda^2\|\gamma'\|^2+2\lambda| heta'|^2}-(\lambda-1)\langle e_ heta,\gamma'
angle$$

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction Monotone

Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian

metrics Finsler metrics

Conclusion

Euler elastica: squared curvature penalized length $\gamma : [0, 1] \rightarrow \mathbb{R}^2$, s: curvilinear abcissa, κ : curvature

$$\mathcal{E}(\gamma) := \int_{\gamma} (1+\kappa^2) ds$$

Orientation lifting and sub-Finslerian reformulation For $\Gamma = (\gamma, \theta) : [0, 1] \rightarrow \mathbb{R}^2 \times \mathbb{S}^1$ consider, with $e_{\theta} = (\cos \theta, \sin \theta)$

$$\mathcal{E}(\gamma,\theta) := \int_0^1 \|\gamma'\| + \frac{\|\theta'\|^2}{\|\gamma'\|} \tag{6}$$

2)

if $\langle \gamma', e_{\theta} \rangle = \|\gamma'\|$ identically. Otherwise $\mathcal{E}(\gamma, \theta) = +\infty$. Finslerian approximation by constraint penalization Choose $\lambda \gg 1$ and consider

$$\mathcal{E}_\lambda(\gamma, heta) := \int_0^1 \sqrt{\lambda^2 \|\gamma'\|^2 + 2\lambda | heta'|^2} - (\lambda-1) \langle e_ heta, \gamma'
angle$$

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction Monotone

Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics

Finsler metrics

Conclusion

Euler elastica: squared curvature penalized length $\gamma : [0, 1] \rightarrow \mathbb{R}^2$, s: curvilinear abcissa, κ : curvature

$$\mathcal{E}(\gamma) := \int_{\gamma} (1+\kappa^2) ds$$

Orientation lifting and sub-Finslerian reformulation For $\Gamma = (\gamma, \theta) : [0, 1] \rightarrow \mathbb{R}^2 \times \mathbb{S}^1$ consider, with $e_{\theta} = (\cos \theta, \sin \theta)$

$$\mathcal{E}(\gamma,\theta) := \int_0^1 \|\gamma'\| + \frac{\|\theta'\|^2}{\|\gamma'\|} \tag{2}$$

if $\langle \gamma', e_{\theta} \rangle = \|\gamma'\|$ identically. Otherwise $\mathcal{E}(\gamma, \theta) = +\infty$. Finslerian approximation by constraint penalization Choose $\lambda \gg 1$ and consider

$$\mathcal{E}_\lambda(\gamma, heta):=\int_0^1 \|\gamma'\|+rac{\| heta'\|^2}{\|\gamma'\|}+(\lambda-1)(\|\gamma'\|-\langle\gamma', extbf{e}_{ heta}
angle)+\mathcal{O}(1/\lambda).$$

Leaving an expo of centre Pompidou

Jean-Marie Mirebeau

Diffusion equations

- Stencil characterization and construction
- Monotone Discretizations

Eikonal equations

- Distance maps Pontryagin's principle Riemannian metrics
- Finsler metrics

Conclusion

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

iffusion equations

Stencil characterization and construction Monotone discretizations of PDEs

konal equations

Distance maps and Shortest Paths Pontryagin's principle Riemannian metrics and Lattice Basis Reduction Finsler metrics and the Stern-Brocot tree

Conclusion

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

 Image processing requires robust, structure preserving discretizations of strongly anisotropic PDEs.

Realisations

Adaptive numerical schemes, relying on sparse stencils, of limited extension, without restrictions on anisotropy.

- Quantitative results on minimal stencil cardinality and size.
- New applications, e.g. curvature penalized shortest paths.

Tools and techniques

The geometry of lattices of \mathbb{R}^2 , \mathbb{R}^3 .

The Stern-Brocot tree of triangles.

Open questions: Unstructured point sets. 3D asymmetric norms.

Jean-Marie Mirebeau

Diffusion equations

- Stencil characterization and construction
- Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

 Image processing requires robust, structure preserving discretizations of strongly anisotropic PDEs.

Realisations

- Adaptive numerical schemes, relying on sparse stencils, of limited extension, without restrictions on anisotropy.
 - Quantitative results on minimal stencil cardinality and size.
 New applications, e.g. curvature penalized shortest paths.

Tools and techniques

- The geometry of lattices of \mathbb{R}^2 , \mathbb{R}^3 .
- The Stern-Brocot tree of triangles.
- Open questions: Unstructured point sets. 3D asymmetric norms.

Jean-Marie Mirebeau

Diffusion equations

- Stencil characterization and construction
- Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

 Image processing requires robust, structure preserving discretizations of strongly anisotropic PDEs.

Realisations

- Adaptive numerical schemes, relying on sparse stencils, of limited extension, without restrictions on anisotropy.
- Quantitative results on minimal stencil cardinality and size.
- New applications, e.g. curvature penalized shortest paths.

Tools and techniques

- The geometry of lattices of \mathbb{R}^2 , \mathbb{R}^3 .
- The Stern-Brocot tree of triangles.
- Open questions: Unstructured point sets. 3D asymmetric norms.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

 Image processing requires robust, structure preserving discretizations of strongly anisotropic PDEs.

Realisations

- Adaptive numerical schemes, relying on sparse stencils, of limited extension, without restrictions on anisotropy.
- Quantitative results on minimal stencil cardinality and size.
- ► New applications, e.g. curvature penalized shortest paths.

Tools and techniques

- The geometry of lattices of \mathbb{R}^2 , \mathbb{R}^3 .
- The Stern-Brocot tree of triangles.
- Open questions: Unstructured point sets. 3D asymmetric norms.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

 Image processing requires robust, structure preserving discretizations of strongly anisotropic PDEs.

Realisations

- Adaptive numerical schemes, relying on sparse stencils, of limited extension, without restrictions on anisotropy.
- Quantitative results on minimal stencil cardinality and size.
- ▶ New applications, e.g. curvature penalized shortest paths.

Tools and techniques

- The geometry of lattices of \mathbb{R}^2 , \mathbb{R}^3 .
 - The Stern-Brocot tree of triangles.
- Open questions: Unstructured point sets. 3D asymmetric norms.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

 Image processing requires robust, structure preserving discretizations of strongly anisotropic PDEs.

Realisations

- Adaptive numerical schemes, relying on sparse stencils, of limited extension, without restrictions on anisotropy.
- Quantitative results on minimal stencil cardinality and size.
- ▶ New applications, e.g. curvature penalized shortest paths.

Tools and techniques

- The geometry of lattices of \mathbb{R}^2 , \mathbb{R}^3 .
- The Stern-Brocot tree of triangles.
- Open questions: Unstructured point sets. 3D asymmetric norms.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

 Image processing requires robust, structure preserving discretizations of strongly anisotropic PDEs.

Realisations

- Adaptive numerical schemes, relying on sparse stencils, of limited extension, without restrictions on anisotropy.
- Quantitative results on minimal stencil cardinality and size.
- ▶ New applications, e.g. curvature penalized shortest paths.

Tools and techniques

- The geometry of lattices of \mathbb{R}^2 , \mathbb{R}^3 .
- The Stern-Brocot tree of triangles.
- Open questions: Unstructured point sets. 3D asymmetric norms.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

 Image processing requires robust, structure preserving discretizations of strongly anisotropic PDEs.

Realisations

- Adaptive numerical schemes, relying on sparse stencils, of limited extension, without restrictions on anisotropy.
- Quantitative results on minimal stencil cardinality and size.
- ▶ New applications, e.g. curvature penalized shortest paths.

Tools and techniques

- The geometry of lattices of \mathbb{R}^2 , \mathbb{R}^3 .
- The Stern-Brocot tree of triangles.
- Open questions: Unstructured point sets. 3D asymmetric norms.

Jean-Marie Mirebeau

Diffusion equations

Stencil characterization and construction

Monotone Discretizations

Eikonal equations

Distance maps Pontryagin's principle Riemannian metrics Finsler metrics

Conclusion

 Image processing requires robust, structure preserving discretizations of strongly anisotropic PDEs.

Realisations

- Adaptive numerical schemes, relying on sparse stencils, of limited extension, without restrictions on anisotropy.
- Quantitative results on minimal stencil cardinality and size.
- ▶ New applications, e.g. curvature penalized shortest paths.

Tools and techniques

- The geometry of lattices of \mathbb{R}^2 , \mathbb{R}^3 .
- The Stern-Brocot tree of triangles.
- Open questions: Unstructured point sets. 3D asymmetric norms.