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Motivation : anisotropic phenomena

The solutions of many PDE's exhibit a strongly anisotropic
behavior.

» Boundary layers in fluid simulation.
> Spikes and edges of metallic objects in electromagnetism.

» Shockwaves in transport equations.

Figure : Fluid simulation around a supersonic plane (F. Alauzet).
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Mesh optimization

Objective: improve the trade-off between accuracy and
complexity.
» Accuracy: for example, the error between the solution and
its approximation in some given norm.

» Complexity: typically tied to the cardinality of the mesh.
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o over all triangulations such that #(7) < N, with I7 the
igsszn'?':uon piecewise linear interpolant.
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o over all triangulations such that #(7) < N, with I7 the
igff;;nf:ﬂon piecewise linear interpolant.

In the numerical examples N = 500 and

f(x,y) := tanh(10(sin(5y) — 2x)) + x°y + y°.

sin(5y) —2x i tanh(10x)
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Figure : Sharp transition along the curve sin(5y) = 2x, of width
1/10.
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Ciarlet-Raviart
On each T € T, the local error satisfies

Position

IV =17 O)ll 27 <C0l||d2f||L2(T)>

where ht :=diam(T) and rr is the radius of the largest disc
inscribed in T, and ( is an absolute constant.
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A classical result

Let Q C R? be a polygonal domain, let f € H?(Q2) and let T
be a triangulation.

Ciarlet-Raviart
On each T € T, the local error satisfies

IV =17 O)ll 27 <C0l||d2f||L2(T)>

where ht :=diam(T) and rr is the radius of the largest disc
inscribed in T, and ( is an absolute constant.

Consequence: with h = maxrcT ht
IV(f =17 )l 2y < C(T) h | d*F |l 20

with C(7T) = Co maxrer I:—; that remains bounded for
isotropic triangulations.



Anisotropic

?pproxima—
ton, meshes, In terms of N = #(T), this gives
Jean-Marie
Mirebeau VN V(f =17 )|l iz < C'(T) |d*F1l 120
where C'(T) = Gov/[Q]— | T2XTeT hT/rT , that remains bounded for

uniform trlangulatlons

hehr~rr~ /T = he NTY2,
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Position

and orientation

[ )
Uniform Isotropic Anisotropic Optimal
triangulation  triangulation triangulation anisotropic

triangulation
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Isotropic meshes: the triangle seen as a disk.

Theorem (Adaptive approximation: DeVore-Yu)

For any f € W21(Q), Q =]0, 1[?, there exists a sequence
(Tn)n>2 of (isotropic) triangulations of Q, #(Tn) < N, such
that

VN (V(Ff =17 )l 2) < CIM(d*F)]| 1 (q)

M(g) : Hardy-Littlewood maximal function of g.
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Key principle : error equidistribution

Such sequences of triangulations may be obtained by a
hierarchical refinement algorithm, starting from a coarse mesh.

> Refine the triangle with largest local error
IV(F =T O)ll 2.
» Propagate the refinement to preserve conformity.

> lterate until prescribed number of triangles is met.
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Key principle : error equidistribution

Such sequences of triangulations may be obtained by a
hierarchical refinement algorithm, starting from a coarse mesh.

> Refine the triangle with largest local error
IV(F =17 O)ll2(7).
» Propagate the refinement to preserve conformity.

> lterate until prescribed number of triangles is met.
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Aspect ratio: the triangle seen as an ellipse.

The ellipse of minimal area containing a triangle T has
equation
(z—zr)TH7(z — 2z7) < 1,

where H 1 is a symmetric positive definite matrix and zt is the
barycenter of T.
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Anisotropic mesh generation
Given a metric H : Q — S produce a triangulation 7~ such
that: forany T €T andany z€ T,

H(z) ~Hr

Figure : A metric and an adapted triangulation (credit: J. Schoen)

More detail on this later.
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7 = ax? + 2bxy + cy? : homogeneous quadratic polynomial.

Lo(r) = inf | sup [V (x —Lrm)liacr)

(Near) Minimizing matrix H

Figure : Level lines of 7 (red, dashed), ellipse (blue, thick) associated
to (near) optimal H which is proportional to the absolute value of the
matrix associated to 7.
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7 = ax? + 2bxy + cy? : homogeneous quadratic polynomial.

Lo(r) = inf | sup [V (x —Lrm)liacr)

(Near) Minimizing matrix H

Figure : Level lines of 7 (red, dashed), ellipse (blue, thick) associated
to (near) optimal H which is proportional to the absolute value of the
matrix associated to 7.

Explicit equivalent of Lg

Lo(m) ~ +/||x||/| det x|,

where ||7|| and det 7 are the norm and determinant of the
symmetric matrix associated to .
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m=1d2f(x0,y0)

Theorem
For any bounded polygonal domain Q and any f € C?(Q) there
exists a sequence (Ty)n>n, of triangulations of 2,

b #(Tn) < N, such that

im sup VA |V (F ~ 1, )|z < CllLe(oPF) sy

N—oo

'v .
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An unusual estimate

limsup VN ||V(f =T, )|l 2@) < CllLa(d*F)llre)

N—oo

> The quantity Lg(d?f(z)) ~ /||d?f(z
depends nonlinearly on f.

)[[/] det(d?f(2))]
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limsup VN ||V(f — I, f)lli2(0) < ClILe(dF)l| 11 (0

N—oo

Aspect ratio and
orientation

> The quantity Lg(d?f(z)) ~ /||d?f(2)[|</| det(d?f(z))]
depends nonlinearly on f

» Defining A(f) := ||Lg(d?f)| ;1 we generally do not have

A(f +g) < C(A(f) + A(g))-
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limsup VNI||V(f =T, /)l 20 < CllLe(d*F)llre)

N—oo

Aspect ratio and
orientation

> The quantity Lg(d%f(z)) ~ /||d?f(2)]|/| det(d?f(z))]
depends nonlinearly on f

» Defining A(f) := ||Lg(d?f)| ;2 we generally do not have

A(f +g) < C(A(F) + Alg))-

» The estimate holds asymptotically as N — oo.
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Figure : Interpolation of a parabola on a acute or obtuse mesh.
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(Near) Minimizing triangle

Angles hT 1
e

T e

LA:>—2—

rT €

Figure : The minimizing triangle for L4 has acute angles and is more
anisotropic than the minimizing ellipse for L¢.

r=xXe+Yy
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Figure : The minimizing triangle for L4 has acute angles and is more
anisotropic than the minimizing ellipse for L¢.

r=xXe+Yy

Explicit equivalent of L,

La(m) >~ /| det|.
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o< Theorem
tion. meshes. For any bounded polygonal domain Q2 and any f € C2(Q) there
Jean-Marie exists a sequence (Ty)n>n, of triangulations of €,
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#(Tn) < N, such that

limsup VN [V (f — Iz, )|l 12(0) < ‘

N—oo

d2f
(%)
Angles Furthermore for any admissible sequence (Tn)n>n, of
triangulations, #(Ty) < N, one has
d?f
u (%)

L)

Iilvnligofm IV(f =Tz, )lli2) =

@)

Admissibility :

sup (N; sup diam(T)) < 00.
N> Ny TeTy
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Angles

» Initial triangulation of the domain.
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Guideline of the upper estimate (heuristic)

The asymptotically optimal sequence is built using a two-scale
local patching strategy. (Not suited for applications)

> Initial triangulation of the domain.

» The interior of each cell is tiled with a triangle “optimally
adapted” in size and shape to the Taylor development of f.
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> Initial triangulation of the domain.

» The interior of each cell is tiled with a triangle “optimally
adapted” in size and shape to the Taylor development of f.

» Additional triangles at the interfaces ensure conformity.
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Finite elements of arbitrary degree m — 1

» Lo(d™f) and La(d™f) similarly defined.

Figure : Interpolation with anisotropic P, elements.
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Interpolation with anisotropic P, elements.

Figure :
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Finite elements of arbitrary degree m — 1

» Lo(d™f) and La(d™f) similarly defined.
» Optimal asymptotic estimate involving L.

» Explicit expression of L, using Hilbert's invariants.

Figure : Interpolation with anisotropic P, elements.
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Finite elements of arbitrary degree m — 1

» Lg(d™f) and La(d™f) similarly defined.
» Optimal asymptotic estimate involving L.
» Explicit expression of L, using Hilbert's invariants.

» Explicit near minimizers of L4, Lg for Py elements.

Figure : Interpolation with anisotropic P, elements.
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Optimal asymptotic estimate involving La.

v

v

v

Explicit expression of L4 using Hilbert's invariants.

v

Explicit near minimizers of Ly, Lg for P> elements.
Angles Aspect ratio for 7 = ax3 4 3bx%y + 3cxy? + dy*:

b 2 b 2
w3 2) < (20)
Me(m) = Ma(m) + (_d'sc(“)>+|d

where discm = 4(ac — b?)(bd — c?) — (ad — bc)?.
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» Lg(d™f) and La(d™f) similarly defined.
» Optimal asymptotic estimate involving L.
» Explicit expression of L, using Hilbert's invariants.

» Explicit near minimizers of L4, Lg for Py elements.

Figure : Interpolation with anisotropic P, elements.
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v
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v

v

Explicit expression of L4 using Hilbert's invariants.

v

Explicit near minimizers of Ly, Lg for P> elements.

Angles

Numerical experiments : ||[V(f — I'7"—_1 )12, with 500
triangles.

Uniform Isotropic Based on Ls Based on Ly
P 110 51 11 ?
P, 79 14 0.88 ?
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metric H € CO(R?,SS") iffor all T € T and z € T one has

C 'H(z) < Ht < CH(2).
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Figure : A metric and an equivalent triangulation, Credit : J. Schoen
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Mirebeau A (conforming) triangulation T of R? is C-equivalent to a
metric H € CO(R?,SS") iffor all T € T and z € T one has

C 'H(z) < Ht < CH(2).

Definition (Equivalence collection of triangulations/

Equivalence of

meshes and collection of metrics)

metrics

A collection T of triangulations of R? is equivalent to a
collection H C C°(R2,S)") of metrics if there exists C such
that

» VT €T, 3H € H, such that T and H are C-equivalent.
» VYH € H, 37 € T, such that T and H are C-equivalent.
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is equivalent to the collection H of metrics H of the form

Is(2) —s(N) < |z - 7|
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H(z) = s(z)72Id. Two equivalent properties:
» (d) Vz,Z € R?) |s(z) — s(Z)| < |z — 2/
> (r) Vz,Z € R?, )In <Ss((zz)>‘ < du(z,7)

where dy denotes the Riemannian distance

Equivalence of

1
du(z,2') == inf / ()T H(v(t)) ' (t) dt.
W.2) = inf [T HO) ()

metrics ,7(1):2/
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Isotropic “Lipschitz” metrics

Jean-Marie
Mirebeas H(z) = s(z)72Id. Two equivalent properties:
» (d) Vz,Z € R?) |s(z) — s(Z)| < |z — 2/
> (r) Vz,Z € R?, )In <Ss((zz,)>‘ < du(z,7)
where dy denotes the Riemannian distance
1
duz?) = inf [ OTHOO)(0) d
Eaes ol 0=z Jo
metrics v(1)=z

Anisotropic “Lipschitz” metrics
H(z) = S(z)~2. Two natural (but non-equivalent)
generalizations:
» (D) Vz,Z €¢R?,  [|S(z) — S(Z)| < |z — 2
> (R)
Vz,Z € R?, 1 ||In(5(2)71S5(2)?S(2)7Y) || < du(z.2')
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Non Graded Graded

Conclusion
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Jean-Marie Definition
- A triangulation T of R? is K-graded if for all T, T' € T,

Anisotropic

Approximation T intersects T" = K 'Hr <Hp < KHr.

Parameters
Position
Area

Aspect ratio and
orientation

Angles

Mesh /Metric
Equivalence

Equivalence of
meshes and
metrics

Smoothness
classes

Non Graded Graded

Conclusion

Theorem
For any K > Ky the collection T of K-graded triangulations is
equivalent to the collection H of metrics satisfying (R).

Key ingredient : mesh generation results by Labelle, Shewchuk
(2D). Boissonnat, Wormser, Yvinec (dD)
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separation For all v# w €V, dy(v,w) > 1. (or > dg > 0).
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Anisotropic > T is K_graded-
Approximation X . ,
i > There exists a K-refinement T of T such that any angle

Positon 0 of any T € T’ satisfies
;m

/!
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™ —
Mesh /Metric -
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x| =
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classes
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/

/

T : K-QuasiAcute T’ : K-refinement of 7.
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QuasiAcute triangulations
Definition
A triangulation T is K-QuasiAcute if
» T is K-graded.

» There exists a K-refinement T' of T such that any angle
0 of any T € T’ satisfies

1

0<m-——.
ST K

Theorem

For all K > Ky the collection T of K-QuasiAcute triangulations
is equivalent to the collection H of metrics satisfying
simultaneously (R) and (D).
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Quasi-Acute mesh generation

Heuristic : the vertices of the anisotropic triangulation must be
aligned. A solution :

» Generate an isotropic triangulation adapted to
M~ ~tId.
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Heuristic : the vertices of the anisotropic triangulation must be
aligned. A solution :
» Generate an isotropic triangulation adapted to
M~ ~tId.
» Sample some part of the edges of the isotropic
triangulation, to obtain the vertices of the anisotropic

triangu|ati0n-
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Couttonc of Heuristic : the vertices of the anisotropic triangulation must be

menes " aligned. A solution :

» Generate an isotropic triangulation adapted to
M~ ~tId.

» Sample some part of the edges of the isotropic
triangulation, to obtain the vertices of the anisotropic
triangulation.

> Intersect with the full edges to refine and eliminate
remaining obtuse triangles.



0/
v\«\ )

/

/

S

o .y o f
2wo . 25 .
SETY 58 5

Sg o2 o 8

o X s = a iz

o0 EsS To 55
a5 .2 §= fos
z 3 Z2L°C
npnm eM EN R
<38 - B
t WEE

Ellipse field, quasi-acute triangulation.

Figure :
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Figure : Ellipse field, quasi-acute triangulation.
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Figure : Voronoi diagram computed via anisotropic fast marching.
Left: Point insertion via farthest point sampling.
Right: point insertion aimed at producing QA-triangulation.
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Graded No restriction

H(T) =07 #(T) =07
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Anisotropic smoothness classes:

from finite element approximation to image models

Figure : A cartoon function, and an adapted triangulation. Picture :
Gabriel Peyré

A. Cohen, J.-M. Mirebeau, Anisotropic smoothness classes:
from finite element approximation to image models, Journal of
Mathematical Imaging and Vision, 2010.
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Approximation of cartoon functions

If g =" ,<ic, 8ixa, where g; € C3(Q;) and 9Q; is piecewise
C2, then there exists a sequence (7n)n>n, of triangulations
such that

Nlg — 17, gll2(0) < C(g)-

On the other hand, we have for smooth functions:

Theorem (Chen,Sun Xu; Babenko)

If f € C%(Q) and (Tn)n>n, is an optimally adapted sequence
then

ydetd2f

N—oo

limsup N || — L7, fl 20 <C‘
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Jean-Marie If g = 1<i<, 8iXa, Where g; € C?(Q;) and 09Q; is piecewise
Mirebeau C?, then there exists a sequence (Tn)n>n, of triangulations
such that

Nlg — 17, gll2(0) < C(g)-
On the other hand, we have for smooth functions:

Theorem (Chen,Sun Xu; Babenko)
If f € C%(Q) and (Tn)n>n, is an optimally adapted sequence

then
limsup N [|f — L7, £ ;2(q) < CH«/]detdzﬂ

N—oo

Smoothness
classes

L3(Q)

How to connect these estimates 7

Does H\/\detd2gl’

, make sense if g is a cartoon function ?
L3
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If g is a cartoon function with discontinuity set E we define

5"
L3

J(g) = ;i;noJ(g * ©s),

where @5 1= 6"%p(671-) is a mollifier.
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For any f € C%(Q)

|

If g is a cartoon function with discontinuity set E we define

| det d2f|

J(g) = ;i;noJ(g * ©s),

where @5 1= 6"%p(671-) is a mollifier.

Proposition

J(g)3 = H,/|detd2

where [g] is the jump of g, and k the curvature of E.

c) el s,

2
L3 Q\E) L3(
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For any f € C%(Q)

| det d2f|

|

If g is a cartoon function with discontinuity set E we define

J(g) = ;i;noJ(g * ©s),

where @5 1= 6"%p(671-) is a mollifier.

o~ ]

where [g] is the jump of g, and k the curvature of E.

Proposition

w\l\)

c) el s,

2
L3 Q\E) L3(

Compare with

TV(g) = IVellie + lglliee
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A model inspired by the virtual cortex first layer V1

» Eye sees an intensity map v : R? — R.
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A model inspired by the virtual cortex first layer V1

» Eye sees an intensity map v : R> — R.
> Neurons of V1 are specialized in the detection of a
stimulus at position x € R? in direction § € S*.
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Figure : Bosking et al (97), Petitot (99)
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A model inspired by the virtual cortex first layer V1

» Eye sees an intensity map v : R> — R.
» Neurons of V1 are specialized in the detection of a
stimulus at position x € R? in direction § € S.

Figure : Bosking et al (97), Petitot (99)
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A model inspired by the virtual cortex first layer V1

» Eye sees an intensity map v : R> — R.

» Neurons of V1 are specialized in the detection of a
stimulus at position x € R? in direction # € S.

» Neuron at (x, #) interacts with (x, 8+ 66) and (x+65h, 0).

Figure : Bosking et al (97), Petitot (99)
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Figure : Bosking et al (97), Petitot (99)
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Denote the neural state by U : R? x S — R. We propose a
model where the brain constructs U by minimizing

// [(VxU,0)|P +|0pU|P dx db.

Smoothness subjects to the constraints Vx, u(x) = [ U(x,6)d6

classes
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» Neurons of V1 are specialized in the detection of a
stimulus at position x € R? in direction 6 € S?.

» Neuron at (x, 6) interacts with (x, 6+ d6) and (x+6dh, ).

Denote the neural state by U : R? x S — R. We propose a
model where the brain constructs U by minimizing

// [(VxU,0)|P +|0pU|P dx db.

Smoothness

Smoot subjects to the constraints Vx, u(x) = [ U(x,6)d6

Theorem
If u is a cartoon function, and p < 3/2 then there exists a lift
U with finite energy.



e A model inspired by the virtual cortex first layer V1

tion, meshes,
metrics.

» Eye sees an intensity map u: R> — R.

Jean-Marie

Mirebeau » Neurons of V1 are specialized in the detection of a
stimulus at position x € R? in direction 6 € S?.

» Neuron at (x, 6) interacts with (x, 6+ d6) and (x+6dh, ).

Denote the neural state by U : R? x S — R. We propose a
model where the brain constructs U by minimizing

// [(VxU,0)|P +|0pU|P dx db.

Smoothness subjects to the constraints Vx, u(x) = [ U(x,6)d6

classes

Theorem

If u is a cartoon function, and p < 3/2 then there exists a lift
U with finite energy.

Question: Non-asymptotic approximation results, based on
anisotropic triangulations, for those u which admit a lift U of
finite energy with p =3/2 7
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» A result of algorithmic geometry for QuasiAcute
triangulations.

» Sharp asymptotic estimates for P, interpolation error on
optimal mesh, for H* but also LP and WP norms.

» Some quantities remain meaningful for cartoon functions.
eg. J(f)= ||\/det(d2f)||L%.
Perspectives:
» Quasi-Acute meshes in 3D 7
» Anisotropic Function spaces.

» Non asymptotic error estimates.

Thank you for your attention.
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