Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

Adaptive and anisotropic approximation and the mesh/metric equivalence

Jean-Marie Mirebeau

CNRS, University Paris-Sud

November 18, 2015

Journées de Géométrie Algorithmique, Cargèse, 2015

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnes classes

Conclusion

Motivation : anisotropic phenomena

The solutions of many PDE's exhibit a strongly anisotropic behavior.

- Boundary layers in fluid simulation.
- Spikes and edges of metallic objects in electromagnetism.
- Shockwaves in transport equations.

Figure : Fluid simulation around a supersonic plane (F. Alauzet).

Mesh optimization

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

Objective: improve the trade-off between accuracy and complexity.

- Accuracy: for example, the error between the solution and its approximation in some given norm.
- Complexity: typically tied to the cardinality of the mesh.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

An appetizer: given a function $f : \Omega \to \mathbb{R}$ and an integer N, construct a triangulation \mathcal{T} of Ω which minimizes

 $\|\nabla (f-\mathrm{I}_{\mathcal{T}} f)\|_{L^2(\Omega)},$

over all triangulations such that $\#(\mathcal{T}) \leq N$, with $I_{\mathcal{T}}$ the piecewise linear interpolant.

the numerical examples N = 500 and $f(x,y) := \tanh(10(\sin(5y) - 2x)) + x^2y + y^3.$

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothne classes

Conclusion

An appetizer: given a function $f : \Omega \to \mathbb{R}$ and an integer N, construct a triangulation \mathcal{T} of Ω which minimizes

 $\|\nabla(f-\mathrm{I}_{\mathcal{T}} f)\|_{L^2(\Omega)},$

over all triangulations such that $\#(\mathcal{T}) \leq N$, with $I_{\mathcal{T}}$ the piecewise linear interpolant.

In the numerical examples N = 500 and $f(x, y) := \tanh(10(\sin(5y) - 2x)) + x^2y + y^3.$

Figure : Sharp transition along the curve sin(5y) = 2x, of width 1/10.

metrics. Jean-Marie

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position

Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnes classes

Conclusion

A classical result

Let $\Omega \subset \mathbb{R}^2$ be a polygonal domain, let $f \in H^2(\Omega)$ and let \mathcal{T} be a triangulation.

Ciarlet-Raviart

On each $T \in \mathcal{T}$, the local error satisfies

$$\|\nabla (f - \mathbf{I}_{\mathcal{T}} f)\|_{L^{2}(\mathcal{T})} \leq C_{0} \frac{h_{\mathcal{T}}^{2}}{r_{\mathcal{T}}} \|d^{2}f\|_{L^{2}(\mathcal{T})},$$

where $h_T := \text{diam}(T)$ and r_T is the radius of the largest disc inscribed in T, and C_0 is an absolute constant.

Consequence: with $h = \max_{T \in \mathcal{T}} h_T$

 $\|\nabla(f-\mathrm{I}_{\mathcal{T}} f)\|_{L^{2}(\Omega)} \leq C(\mathcal{T}) h \|d^{2}f\|_{L^{2}(\Omega)},$

with $C(\mathcal{T}) = C_0 \max_{\mathcal{T} \in \mathcal{T}} \frac{h_{\mathcal{T}}}{r_{\mathcal{T}}}$ that remains bounded for isotropic triangulations.

Jean-Marie Mirebeau

Position

Angles

Equivalence of

A classical result

Let $\Omega \subset \mathbb{R}^2$ be a polygonal domain, let $f \in H^2(\Omega)$ and let \mathcal{T} be a triangulation.

Ciarlet-Raviart

On each $T \in \mathcal{T}$, the local error satisfies

$$\|\nabla (f - I_{\mathcal{T}} f)\|_{L^{2}(\mathcal{T})} \leq C_{0} \frac{h_{\mathcal{T}}^{2}}{r_{\mathcal{T}}} \|d^{2}f\|_{L^{2}(\mathcal{T})},$$

where $h_T := \text{diam}(T)$ and r_T is the radius of the largest disc inscribed in T, and C_0 is an absolute constant.

Consequence: with $h = \max_{T \in \mathcal{T}} h_T$

 $\|\nabla (f - I_{\mathcal{T}} f)\|_{L^{2}(\Omega)} \leq C(\mathcal{T}) h \|d^{2}f\|_{L^{2}(\Omega)},$

with $C(\mathcal{T}) = C_0 \max_{\mathcal{T} \in \mathcal{T}} \frac{h_T}{r_T}$ that remains bounded for isotropic triangulations.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position

Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

In terms of $N = \#(\mathcal{T})$, this gives

$$\sqrt{N} \| \nabla (f - \mathrm{I}_{\mathcal{T}} f) \|_{L^2(\Omega)} \leq C'(\mathcal{T}) \| d^2 f \|_{L^2(\Omega)},$$

where $C'(\mathcal{T}) = C_0 \sqrt{|\Omega|} \frac{\max_{T \in \mathcal{T}} h_T^2/r_T}{\min_{T \in \mathcal{T}} \sqrt{|T|}}$, that remains bounded for uniform triangulations:

$$h \sim h_T \sim r_T \sim \sqrt{|T|} \Rightarrow h \sim N^{-1/2}$$

Anisotropic approxima- tion, meshes, metrics.	The parameters of a triangle.				
Jean-Marie Mirebeau	Position	Area	Aspect ratio and orientation	Angles	
Parameters Position Area Aspect ratio and orientation Angles	٠				
Mesh/Metric Equivalence Equivalence of meshes and metrics	•				
Smoothness classes	•				
Conclusion				`	

Anisotropic approxima- tion, meshes, metrics.	The parameters of a triangle.					
Jean-Marie Mirebeau	Position	Area	Aspect ratio and orientation	Angles		
Approximation		•		4		
Parameters	•					
Position Area Aspect ratio and orientation Angles						
Mesh/Metric Equivalence Equivalence of meshes and metrics	•					
Smoothness classes	•					
Conclusion				`		
	Uniform	lsotropic	Anisotropic	Optimal		
	triangulation	triangulation	triangulation	anisotropic triangulation		

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position

Area

Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnes classes

Conclusion

Isotropic meshes: the triangle seen as a disk. Theorem (Adaptive approximation: DeVore-Yu) For any $f \in W^{2,1}(\Omega)$, $\Omega =]0,1[^2$, there exists a sequence $(\mathcal{T}_N)_{N\geq 2}$ of (isotropic) triangulations of Ω , $\#(\mathcal{T}_N) \leq N$, such that

 $\sqrt{N} \|\nabla (f - \mathrm{I}_{\mathcal{T}_N} f)\|_{L^2(\Omega)} \leq C \|M(d^2 f)\|_{L^1(\Omega)}$

M(g): Hardy-Littlewood maximal function of g.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position

Area

Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence or meshes and metrics

Smoothness classes

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error $\|\nabla(f I_T f)\|_{L^2(T)}$.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position

Area

Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence or meshes and metrics

Smoothness classes

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error $\|\nabla(f I_T f)\|_{L^2(T)}$.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position

Area

Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence or meshes and metrics

Smoothness classes

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error $\|\nabla(f I_T f)\|_{L^2(T)}$.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position

Area

Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence or meshes and metrics

Smoothness classes

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error $\|\nabla(f I_T f)\|_{L^2(T)}$.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position

Area

Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence or meshes and metrics

Smoothness classes

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error $\|\nabla(f I_T f)\|_{L^2(T)}$.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position

Area

Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence or meshes and metrics

Smoothness classes

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error $\|\nabla(f I_T f)\|_{L^2(T)}$.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position

Area

Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error $\|\nabla(f I_T f)\|_{L^2(T)}$.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position

Area

Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence or meshes and metrics

Smoothness classes

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error $\|\nabla(f I_T f)\|_{L^2(T)}$.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position

Area

Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error $\|\nabla(f I_T f)\|_{L^2(T)}$.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position

Area

Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence or meshes and metrics

Smoothness classes

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error $\|\nabla(f I_T f)\|_{L^2(T)}$.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position

Area

Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence or meshes and metrics

Smoothness classes

Conclusion

Key principle : error equidistribution

- ► Refine the triangle with largest local error $\|\nabla(f I_T f)\|_{L^2(T)}$.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position

Area

Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence or meshes and metrics

Smoothness classes

Conclusion

Key principle : error equidistribution

- ▶ Refine the triangle with largest local error ||∇(f − I_T f)||_{L²(T)}.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position

Area

Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence o meshes and metrics

Smoothnes classes

Conclusion

Key principle : error equidistribution

- ▶ Refine the triangle with largest local error ||∇(f − I_T f)||_{L²(T)}.
- Propagate the refinement to preserve conformity.
- Iterate until prescribed number of triangles is met.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and

orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

Aspect ratio: the triangle seen as an ellipse.

The ellipse of minimal area containing a triangle \mathcal{T} has equation

$$(z-z_T)^{\mathrm{T}} \mathcal{H}_T(z-z_T) \leq 1,$$

where \mathcal{H}_T is a symmetric positive definite matrix and z_T is the barycenter of T.

Jean-Marie Mirebeau

Anisotropic mesh generation

Given a metric $H : \Omega \to S_2^+$ produce a triangulation \mathcal{T} such that : for any $T \in \mathcal{T}$ and any $z \in T$,

 $H(z)\simeq \mathcal{H}_T$

Figure : A metric and an adapted triangulation (credit: J. Schoen)

More detail on this later.

Anisotropic Approximation

Parameters

Position

Aspect ratio and orientation

Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation

Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnes classes

Conclusion

 $\pi = ax^2 + 2bxy + cy^2 : \text{homogeneous quadratic polynomial.}$ $L_G(\pi) := \inf_{\det H=1} \sup_{\mathcal{H}_T=H} \|\nabla(\pi - I_T \pi)\|_{L^2(T)}.$

Near) Minimizing matrix *H*

Figure : Level lines of π (red, dashed), ellipse (blue, thick) associated to (near) optimal H which is proportional to the absolute value of the matrix associated to π .

Explicit equivalent of L_G

$L_{G}(\pi) \simeq \sqrt{\|\pi\|} \sqrt[4]{|\det \pi|},$

where $\|\pi\|$ and det π are the norm and determinant of the symmetric matrix associated to π .

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area

Aspect ratio and orientation

Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothne classes

Conclusion

 $\pi = ax^2 + 2bxy + cy^2 : \text{homogeneous quadratic polynomial.}$ $L_G(\pi) := \inf_{\det H = 1} \sup_{\mathcal{H}_T = H} \|\nabla(\pi - I_T \pi)\|_{L^2(T)}.$

(Near) Minimizing matrix H

Figure : Level lines of π (red, dashed), ellipse (blue, thick) associated to (near) optimal H which is proportional to the absolute value of the matrix associated to π .

Explicit equivalent of L_G

$$L_{\boldsymbol{G}}(\pi) \simeq \sqrt{\|\pi\|} \sqrt[4]{|\det \pi|},$$

where $\|\pi\|$ and det π are the norm and determinant of the symmetric matrix associated to π .

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area

Aspect ratio and orientation

Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothne classes

Conclusion

 $\pi = ax^2 + 2bxy + cy^2 : \text{homogeneous quadratic polynomial.}$ $L_G(\pi) := \inf_{\det H = 1} \sup_{\mathcal{H}_T = H} \|\nabla(\pi - I_T \pi)\|_{L^2(T)}.$

(Near) Minimizing matrix H

Figure : Level lines of π (red, dashed), ellipse (blue, thick) associated to (near) optimal H which is proportional to the absolute value of the matrix associated to π .

Explicit equivalent of L_G

$$L_G(\pi) \simeq \sqrt{\|\pi\|} \sqrt[4]{|\det \pi|},$$

where $\|\pi\|$ and det π are the norm and determinant of the symmetric matrix associated to π .

Jean-Marie Mirebeau Local model :

$$f(x_0+x, y_0+y) = \alpha + (\beta x + \gamma y) + \underbrace{(ax^2 + 2bxy + cy^2)}_{\pi = \frac{1}{2}d^2 f(x_0, y_0)} + \mathcal{O}(|x|^3 + |y|^3)$$

Theorem

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

For any bounded polygonal domain Ω and any $f \in C^2(\overline{\Omega})$ there exists a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations of Ω , $\#(\mathcal{T}_N) \le N$, such that

 $\limsup_{N\to\infty} \sqrt{N} \|\nabla (f - \mathrm{I}_{\mathcal{T}_N} f)\|_{L^2(\Omega)} \leq C \|L_G(d^2 f)\|_{L^1(\Omega)}$

An unusual estimate

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area

Aspect ratio and orientation

Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

$$\limsup_{N\to\infty} \sqrt{N} \|\nabla (f - \mathrm{I}_{\mathcal{T}_N} f)\|_{L^2(\Omega)} \leq C \|L_G(d^2 f)\|_{L^1(\Omega)}$$

 The quantity L_G(d²f(z)) ≃ √||d²f(z)|| ∜ |det(d²f(z))| depends nonlinearly on f.
Defining A(f) := ||L_G(d²f)||_{L¹} we generally do not have A(f + g) ≤ C(A(f) + A(g)).

• The estimate holds asymptotically as $N \to \infty$.

An unusual estimate

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area

Aspect ratio and orientation

Angles

Mesh/Metric Equivalence

Equivalence o meshes and metrics

Smoothnes classes

Conclusion

$$\limsup_{N\to\infty} \sqrt{N} \|\nabla (f - \mathrm{I}_{\mathcal{T}_N} f)\|_{L^2(\Omega)} \leq C \|L_G(d^2 f)\|_{L^1(\Omega)}$$

- The quantity $L_G(d^2f(z)) \simeq \sqrt{\|d^2f(z)\|} \sqrt[4]{|\det(d^2f(z))|}$ depends nonlinearly on f.
- Defining $A(f) := \|L_G(d^2 f)\|_{L^1}$ we generally do not have

 $A(f+g) \leq C(A(f) + A(g)).$

• The estimate holds asymptotically as $N \to \infty$.

An unusual estimate

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Positior Area

Aspect ratio and orientation

Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnes classes

Conclusion

$$\limsup_{N\to\infty} \sqrt{N} \|\nabla (f - \mathrm{I}_{\mathcal{T}_N} f)\|_{L^2(\Omega)} \leq C \|L_G(d^2 f)\|_{L^1(\Omega)}$$

- The quantity $L_G(d^2f(z)) \simeq \sqrt{\|d^2f(z)\|} \sqrt[4]{|\det(d^2f(z))|}$ depends nonlinearly on f.
- Defining $A(f) := \|L_G(d^2 f)\|_{L^1}$ we generally do not have

$$A(f+g) \leq C(A(f)+A(g)).$$

• The estimate holds asymptotically as $N \to \infty$.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation

Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnes classes

Conclusion

Angles: the triangle seen as a triangle (!) $\pi = ax^2 + 2bxy + cy^2$: homogeneous quadratic polynomial.

$$L_{A}(\pi) := \inf_{|\mathcal{T}|=1} \|\nabla(\pi - I_{\mathcal{T}} \pi)\|_{L^{2}(\mathcal{T})}$$

Figure : Interpolation of a parabola on a acute or obtuse mesh.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation

Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnes classes

Conclusion

Angles: the triangle seen as a triangle (!) $\pi = ax^2 + 2bxy + cy^2$: homogeneous quadratic polynomial.

$$L_{A}(\pi) := \inf_{|\mathcal{T}|=1} \|\nabla(\pi - I_{\mathcal{T}} \pi)\|_{L^{2}(\mathcal{T})}.$$

(Near) Minimizing triangle

Figure : The minimizing triangle for L_A has acute angles and is more anisotropic than the minimizing ellipse for L_G .

Explicit equivalent of L_A

$$L_{\mathcal{A}}(\pi) \simeq \sqrt{|\det \pi|}.$$

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation

Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnes classes

Conclusion

Angles: the triangle seen as a triangle (!) $\pi = ax^2 + 2bxy + cy^2$: homogeneous quadratic polynomial.

$$L_{A}(\pi) := \inf_{|\mathcal{T}|=1} \|\nabla(\pi - I_{\mathcal{T}} \pi)\|_{L^{2}(\mathcal{T})}$$

(Near) Minimizing triangle

Figure : The minimizing triangle for L_A has acute angles and is more anisotropic than the minimizing ellipse for L_G .

Explicit equivalent of L_A

$$L_A(\pi) \simeq \sqrt{|\det \pi|}.$$
Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation

Angles

Mesh/Metric Equivalence

Equivalence o meshes and metrics

Smoothne: classes

Conclusion

Theorem

For any bounded polygonal domain Ω and any $f \in C^2(\overline{\Omega})$ there exists a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations of Ω , $\#(\mathcal{T}_N) \le N$, such that

$$\limsup_{N\to\infty} \sqrt{N} \|\nabla (f - \mathrm{I}_{\mathcal{T}_N} f)\|_{L^2(\Omega)} \leq \left\| L_{\mathcal{A}} \left(\frac{d^2 f}{2} \right) \right\|_{L^1(\Omega)}.$$

Furthermore for any admissible sequence $(\mathcal{T}_N)_{N\geq N_0}$ of triangulations, $\#(\mathcal{T}_N)\leq N$, one has

 $\liminf_{N\to\infty} \sqrt{N} \|\nabla (f - \mathrm{I}_{\mathcal{T}_N} f)\|_{L^2(\Omega)} \ge \left\| L_A\left(\frac{d^2f}{2}\right) \right\|_{L^1(\Omega)}$

Admissibility :

$$\sup_{N\geq N_0} \left(N^{\frac{1}{2}} \sup_{T\in \mathcal{T}_N} \operatorname{diam}(T) \right) < \infty.$$

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation

Angles

Mesh/Metri Equivalence

Equivalence o meshes and metrics

Smoothnes classes

Conclusion

Theorem

For any bounded polygonal domain Ω and any $f \in C^2(\overline{\Omega})$ there exists a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations of Ω , $\#(\mathcal{T}_N) \le N$, such that

$$\limsup_{N\to\infty} \sqrt{N} \|\nabla (f - \mathrm{I}_{\mathcal{T}_N} f)\|_{L^2(\Omega)} \leq \left\| L_A\left(\frac{d^2f}{2}\right) \right\|_{L^1(\Omega)}.$$

Furthermore for any admissible sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations, $\#(\mathcal{T}_N) \le N$, one has

$$\liminf_{N\to\infty} \sqrt{N} \|\nabla (f - \mathrm{I}_{\mathcal{T}_N} f)\|_{L^2(\Omega)} \ge \left\| L_A\left(\frac{d^2f}{2}\right) \right\|_{L^1(\Omega)}$$

.

Admissibility :

$$\sup_{N\geq N_0} \left(N^{\frac{1}{2}} \sup_{T\in \mathcal{T}_N} \operatorname{diam}(T) \right) < \infty.$$

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation

Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

Guideline of the upper estimate (heuristic)

The asymptotically optimal sequence is built using a two-scale local patching strategy. (Not suited for applications)

Initial triangulation of the domain.

- ▶ The interior of each cell is tiled with a triangle "optimally adapted" in size and shape to the Taylor development of *f*.
- Additional triangles at the interfaces ensure conformity.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation

Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

- Initial triangulation of the domain.
- The interior of each cell is tiled with a triangle "optimally adapted" in size and shape to the Taylor development of f.
- Additional triangles at the interfaces ensure conformity.

Guideline of the upper estimate (heuristic)

The asymptotically optimal sequence is built using a two-scale local patching strategy. (Not suited for applications)

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation

Angles

Mesh/Metric Equivalence

Equivalence or meshes and metrics

Smoothnes classes

Conclusion

Guideline of the upper estimate (heuristic)

The asymptotically optimal sequence is built using a two-scale local patching strategy. (Not suited for applications)

- Initial triangulation of the domain.
- The interior of each cell is tiled with a triangle "optimally adapted" in size and shape to the Taylor development of f.
- Additional triangles at the interfaces ensure conformity.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation

Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

Finite elements of arbitrary degree m-1

• $L_G(d^m f)$ and $L_A(d^m f)$ similarly defined.

• Optimal asymptotic estimate involving *L_A*.

Explicit expression of L_A using Hilbert's invariants.
 Explicit near minimizers of L_A, L_G for P₂ elements.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation

Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnese classes

Conclusion

Finite elements of arbitrary degree m-1

- $L_G(d^m f)$ and $L_A(d^m f)$ similarly defined.
- Optimal asymptotic estimate involving *L_A*.
 - Explicit expression of L_A using Hilbert's invariants.
 Explicit near minimizers of L_A, L_G for P₂ elements.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation

Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

Finite elements of arbitrary degree m-1

- $L_G(d^m f)$ and $L_A(d^m f)$ similarly defined.
- Optimal asymptotic estimate involving L_A .
- Explicit expression of L_A using Hilbert's invariants.

Explicit near minimizers of L_A , L_G for \mathbb{P}_2 elements.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation

Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnese classes

Conclusion

Finite elements of arbitrary degree m-1

- $L_G(d^m f)$ and $L_A(d^m f)$ similarly defined.
- Optimal asymptotic estimate involving *L_A*.
- Explicit expression of L_A using Hilbert's invariants.
- Explicit near minimizers of L_A , L_G for \mathbb{P}_2 elements.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation

Angles

Mesh/Metric Equivalence

Equivalence o meshes and metrics

Smoothness classes

Conclusion

Finite elements of arbitrary degree m-1

- $L_G(d^m f)$ and $L_A(d^m f)$ similarly defined.
- Optimal asymptotic estimate involving *L_A*.
- Explicit expression of L_A using Hilbert's invariants.
- Explicit near minimizers of L_A , L_G for \mathbb{P}_2 elements. Aspect ratio for $\pi = ax^3 + 3bx^2y + 3cxy^2 + dy^3$:

$$\mathcal{M}_{\mathcal{A}}(\pi) := \sqrt{\left(egin{array}{c} a & b \ b & c \end{array}
ight)^2 + \left(egin{array}{c} b & c \ c & d \end{array}
ight)^2},$$
 $\mathcal{M}_{\mathcal{G}}(\pi) := \mathcal{M}_{\mathcal{A}}(\pi) + \left(rac{-\operatorname{disc}(\pi)}{\|\pi\|}
ight)_+^{rac{1}{3}}\operatorname{Id},$

where disc $\pi = 4(ac - b^2)(bd - c^2) - (ad - bc)^2$.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation

Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnese classes

Conclusion

Finite elements of arbitrary degree m-1

- $L_G(d^m f)$ and $L_A(d^m f)$ similarly defined.
- Optimal asymptotic estimate involving *L_A*.
- Explicit expression of L_A using Hilbert's invariants.
- Explicit near minimizers of L_A , L_G for \mathbb{P}_2 elements.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation

Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnes classes

Conclusion

Finite elements of arbitrary degree m-1

- $L_G(d^m f)$ and $L_A(d^m f)$ similarly defined.
- Optimal asymptotic estimate involving L_A .
- Explicit expression of L_A using Hilbert's invariants.
- Explicit near minimizers of L_A , L_G for \mathbb{P}_2 elements.

Numerical experiments : $\|\nabla (f - I_T^{m-1} f)\|_{L^2}$, with 500 triangles.

	Uniform	Isotropic	Based on L_G	Based on L_A
\mathbf{P}_1	110	51	11	?
\mathbf{P}_2	79	14	0.88	?

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothne: classes

Conclusion

Anisotropic Finite Element Approximation

ntroduction : Parameters of a triangle

Mesh/Metric Equivalence Equivalence of meshes and metrics

Anisotropic smoothness classes

Conclusion and perspectives

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

Equivalence of meshes and metrics

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

Metrics and triangulations on \mathbb{R}^2 Definition (Equivalence triangulation/metric) A (conforming) triangulation \mathcal{T} of \mathbb{R}^2 is C-equivalent to a metric $H \in C^0(\mathbb{R}^2, S_2^+)$ if for all $T \in \mathcal{T}$ and $z \in T$ one has

 $C^{-1}H(z) \leq \mathcal{H}_T \leq CH(z).$

Figure : A metric and an equivalent triangulation, Credit : J. Schoen

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothne classes

Conclusion

Metrics and triangulations on \mathbb{R}^2 Definition (Equivalence triangulation/metric) A (conforming) triangulation \mathcal{T} of \mathbb{R}^2 is C-equivalent to a metric $H \in C^0(\mathbb{R}^2, S_2^+)$ if for all $\mathcal{T} \in \mathcal{T}$ and $z \in T$ one has

 $C^{-1}H(z) \leq \mathcal{H}_T \leq CH(z).$

Definition (Equivalence collection of triangulations/ collection of metrics)

A collection \mathbb{T} of triangulations of \mathbb{R}^2 is equivalent to a collection $\mathbb{H} \subset C^0(\mathbb{R}^2, S_2^+)$ of metrics if there exists C such that

▶ $\forall T \in \mathbb{T}, \exists H \in \mathbb{H}$, such that T and H are C-equivalent.

▶ $\forall H \in \mathbb{H}, \exists T \in \mathbb{T}$, such that T and H are *C*-equivalent.

Jean-Marie Mirebeau

Area Angles

Equivalence of meshes and metrics

Theorem

 $T \in \mathcal{T}$

Isotropic triangulations

Triangulations produced by FreeFem

is e т

$$H(z) = \frac{\mathrm{Id}}{s(z)^2} \quad \text{where} \quad |s(z) - s(z')| \le |z - z'|$$

 $\operatorname{diam}(T)^2 \leq 4|T|$

quivalent to the collection
$${\mathbb H}$$
 of metrics ${\sf H}$ of the form

The collection \mathbb{T} of all triangulations \mathcal{T} satisfying for each

$$H(z) = rac{\mathrm{Id}}{s(z)^2}$$
 where $|s(z) - s(z')| \le |z - z|$

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothne classes

Conclusion

From isotropic to anisotropic metrics Isotropic "Lipschitz" metrics $H(z) = s(z)^{-2}$ Id. Two equivalent properties: \bullet (d) $\forall z, z' \in \mathbb{R}^2$, $|s(z) - s(z')| \le |z - z'|$

► (r) $\forall z, z' \in \mathbb{R}^2$, $\left| \ln \left(\frac{s(z')}{s(z)} \right) \right| \le d_H(z, z')$

where d_H denotes the Riemannian distance

$$d_{\mathcal{H}}(z,z') := \inf_{\substack{\gamma(0)=z\\\gamma(1)=z'}} \int_0^1 \sqrt{\gamma'(t)^{\mathrm{T}} \, \mathcal{H}(\gamma(t)) \, \gamma'(t)} \, dt.$$

Anisotropic "Lipschitz" metrics

 $H(z) = S(z)^{-2}$. Two natural (but non-equivalent) generalizations:

(D) ∀z, z' ∈ ℝ², ||S(z) - S(z')|| ≤ |z - z'|
(R) ∀z, z' ∈ ℝ², ½ ||In (S(z)⁻¹S(z')²S(z)⁻¹)|| ≤ d_H(z)

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothne classes

Conclusion

From isotropic to anisotropic metrics Isotropic "Lipschitz" metrics $H(z) = s(z)^{-2}$ Id. Two equivalent properties: $(d) \forall z, z' \in \mathbb{R}^2, |s(z) - s(z')| \le |z - z'|$

► (r) $\forall z, z' \in \mathbb{R}^2$, $\left| \ln \left(\frac{s(z')}{s(z)} \right) \right| \le d_H(z, z')$

where d_H denotes the Riemannian distance

$$d_{\mathcal{H}}(z,z') := \inf_{\substack{\gamma(0)=z\\\gamma(1)=z'}} \int_0^1 \sqrt{\gamma'(t)^{\mathrm{T}} \, \mathcal{H}(\gamma(t)) \, \gamma'(t)} \, dt.$$

Anisotropic "Lipschitz" metrics

 $H(z) = S(z)^{-2}$. Two natural (but non-equivalent) generalizations:

▶ (D) $\forall z, z' \in \mathbb{R}^2$, $||S(z) - S(z')|| \le |z - z'|$ ▶ (R) $\forall z, z' \in \mathbb{R}^2$, $\frac{1}{2} ||\ln (S(z)^{-1}S(z')^2S(z)^{-1})|| \le d_H(z, z')^2$

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothne: classes

Conclusion

From isotropic to anisotropic metrics Isotropic "Lipschitz" metrics $H(z) = s(z)^{-2}$ Id. Two equivalent properties: \blacktriangleright (d) $\forall z, z' \in \mathbb{R}^2$, $|s(z) - s(z')| \le |z - z'|$ \blacktriangleright (r) $\forall z, z' \in \mathbb{R}^2$, $\left| \ln \left(\frac{s(z')}{s(z)} \right) \right| \le d_H(z, z')$

where d_H denotes the Riemannian distance

$$d_{\mathcal{H}}(z,z') := \inf_{\substack{\gamma(0)=z\\\gamma(1)=z'}} \int_0^1 \sqrt{\gamma'(t)^{\mathrm{T}} \, \mathcal{H}(\gamma(t)) \, \gamma'(t)} \, dt.$$

Anisotropic "Lipschitz" metrics

 $H(z) = S(z)^{-2}$. Two natural (but non-equivalent) generalizations:

▶ (D) ∀z, z' ∈ ℝ², ||S(z) - S(z')|| ≤ |z - z'|
▶ (R) ∀z, z' ∈ ℝ², ½ ||In (S(z)⁻¹S(z')²S(z)⁻¹)|| ≤ d_H(z, z')

Graded Triangulations

Definition

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnes classes

Conclusion

A triangulation \mathcal{T} of \mathbb{R}^2 is K-graded if for all $T, T' \in \mathcal{T}$,

$T \text{ intersects } T' \quad \Rightarrow \quad K^{-1} \mathcal{H}_T \leq \mathcal{H}_{T'} \leq K \mathcal{H}_T.$

Non Graded

Graded

Theorem

For any $K \ge K_0$ the collection \mathbb{T} of K-graded triangulations is equivalent to the collection \mathbb{H} of metrics satisfying (R). Key ingredient : mesh generation results by Labelle, Shewchuk (2D). Boissonnat, Wormser, Yvinec (dD)

Graded Triangulations

Definition

Jean-Marie Mirebeau

Angles

Equivalence of meshes and metrics

A triangulation \mathcal{T} of \mathbb{R}^2 is K-graded if for all $T, T' \in \mathcal{T}$,

T intersects $T' \Rightarrow K^{-1}\mathcal{H}_T < \mathcal{H}_{T'} < K\mathcal{H}_T$.

Graded

Theorem

For any $K \geq K_0$ the collection \mathbb{T} of K-graded triangulations is equivalent to the collection \mathbb{H} of metrics satisfying (R). Key ingredient : mesh generation results by Labelle, Shewchuk (2D). Boissonnat, Wormser, Yvinec (dD)

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

Heuristic of the construction of \mathcal{T} from HConstruct a collection $\mathcal{V} \subset \mathbb{R}^2$ of sites which satisfies: covering For all $z \in \mathbb{R}^2$, $d_H(z, \mathcal{V}) := \min_{v \in \mathcal{V}} d(z, v) \leq 1$. separation For all $v \neq w \in \mathcal{V}$, $d_H(v, w) \geq 1$. (or $\geq \delta_0 > 0$).

nnect sites when Anisotropic Voronoi regions intersect. Idean case $Vor(v) := \{z : |z - v| = \min_{w \in V} |z - w|\}$ wré, & al $Vor(v) := \{z : d_H(z, v) = \min_{w \in V} d_H(z, w)\}$.

 $\forall \mathsf{or}(\mathsf{v}) := \{\mathsf{z} : \|\mathsf{z} - \mathsf{v}\|_{H(\mathsf{v})} = \min_{\mathsf{v}} \|\mathsf{z} - \mathsf{v}\|_{H(\mathsf{v})}\}$

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnes classes

Conclusion

Heuristic of the construction of \mathcal{T} from H

Construct a collection $\mathcal{V} \subset \mathbb{R}^2$ of sites which satisfies: covering For all $z \in \mathbb{R}^2$, $d_H(z, \mathcal{V}) := \min_{v \in \mathcal{V}} d(z, v) \leq 1$.

separation For all $v \neq w \in \mathcal{V}$, $d_H(v, w) \ge 1$. (or $\ge \delta_0 > 0$).

Connect sites when Anisotropic Voronoi regions intersect. Euclidean case $Vor(v) := \{z ; |z - v| = \min_{w \in \mathcal{V}} |z - w|\}$. Peyré, & al $Vor(v) := \{z ; d_H(z, v) = \min_{w \in \mathcal{V}} d_H(z, w)\}$. Shewchuk, & al Define $||u||_M := \sqrt{u^T M u}$.

$$Vor(v) := \{z ; \|z - v\|_{H(v)} = \min_{w \in \mathcal{V}} \|z - w\|_{H(w)} \}.$$

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnes classes

Conclusion

Heuristic of the construction of \mathcal{T} from H

Construct a collection $\mathcal{V} \subset \mathbb{R}^2$ of sites which satisfies: covering For all $z \in \mathbb{R}^2$, $d_H(z, \mathcal{V}) := \min_{v \in \mathcal{V}} d(z, v) \leq 1$.

separation For all $v \neq w \in \mathcal{V}$, $d_H(v, w) \ge 1$. (or $\ge \delta_0 > 0$).

Connect sites when Anisotropic Voronoi regions intersect. Euclidean case $Vor(v) := \{z ; |z - v| = \min_{w \in \mathcal{V}} |z - w|\}$. Peyré, & al $Vor(v) := \{z ; d_H(z, v) = \min_{w \in \mathcal{V}} d_H(z, w)\}$. Shewchuk, & al Define $||u||_{\mathcal{M}} := \sqrt{u^T M u}$.

$$Vor(v) := \{z ; \|z - v\|_{H(v)} = \min_{w \in \mathcal{V}} \|z - w\|_{H(w)} \}.$$

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnes classes

Conclusion

Heuristic of the construction of \mathcal{T} from H

Construct a collection $\mathcal{V} \subset \mathbb{R}^2$ of sites which satisfies:

covering For all $z \in \mathbb{R}^2$, $d_H(z, \mathcal{V}) := \min_{v \in \mathcal{V}} d(z, v) \leq 1$. separation For all $v \neq w \in \mathcal{V}$, $d_H(v, w) \geq 1$. (or $\geq \delta_0 > 0$).

Connect sites when Anisotropic Voronoi regions intersect. Euclidean case $Vor(v) := \{z ; |z - v| = \min_{w \in \mathcal{V}} |z - w|\}$. Peyré, & al $Vor(v) := \{z ; d_H(z, v) = \min_{w \in \mathcal{V}} d_H(z, w)\}$. Shewchuk, & al Define $||u||_M := \sqrt{u^T M u}$,

$$Vor(v) := \{z ; \|z - v\|_{H(v)} = \min_{w \in \mathcal{V}} \|z - w\|_{H(w)} \}.$$

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

QuasiAcute triangulations

Definition

A triangulation T is K-QuasiAcute if

• \mathcal{T} is K-graded.

There exists a K-refinement \mathcal{T}' of \mathcal{T} such that any angle θ of any $T \in \mathcal{T}'$ satisfies

 $heta \leq \pi - rac{1}{K}.$

 \mathcal{T} : *K*-QuasiAcute \mathcal{T}' : *K*-refinement of \mathcal{T} .

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

QuasiAcute triangulations

Definition

A triangulation T is K-QuasiAcute if

- \mathcal{T} is *K*-graded.
- There exists a K-refinement T' of T such that any angle θ of any T ∈ T' satisfies

$$heta \leq oldsymbol{\pi} - rac{1}{K}.$$

 \mathcal{T} : *K*-QuasiAcute

 \mathcal{T}' : *K*-refinement of \mathcal{T} .

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

QuasiAcute triangulations

Definition

A triangulation T is K-QuasiAcute if

• \mathcal{T} is *K*-graded.

There exists a K-refinement T' of T such that any angle θ of any T ∈ T' satisfies

$$heta \leq \pi - rac{1}{K}.$$

Theorem

For all $K \ge K_0$ the collection \mathbb{T} of K-QuasiAcute triangulations is equivalent to the collection \mathbb{H} of metrics satisfying simultaneously (R) and (D).

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnes classes

Conclusion

Quasi-Acute mesh generation

Heuristic : the vertices of the anisotropic triangulation must be aligned. A solution :

▶ Generate an isotropic triangulation adapted to ||M⁻¹||⁻¹ Id.

- Sample some part of the edges of the isotropic triangulation, to obtain the vertices of the anisotropic triangulation.
- Intersect with the full edges to refine and eliminate remaining obtuse triangles.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothne classes

Conclusion

Quasi-Acute mesh generation

Heuristic : the vertices of the anisotropic triangulation must be aligned. A solution :

- ▶ Generate an isotropic triangulation adapted to ||*M*⁻¹||⁻¹ Id.
- Sample some part of the edges of the isotropic triangulation, to obtain the vertices of the anisotropic triangulation.
- Intersect with the full edges to refine and eliminate remaining obtuse triangles.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothne classes

Conclusion

Quasi-Acute mesh generation

Heuristic : the vertices of the anisotropic triangulation must be aligned. A solution :

- ▶ Generate an isotropic triangulation adapted to ||*M*⁻¹||⁻¹ Id.
- Sample some part of the edges of the isotropic triangulation, to obtain the vertices of the anisotropic triangulation.
- Intersect with the full edges to refine and eliminate remaining obtuse triangles.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

Figure : Ellipse field, quasi-acute triangulation.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

Figure : Ellipse field, quasi-acute triangulation.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnes classes

Conclusion

Figure : Voronoi diagram computed via anisotropic fast marching. Left: Point insertion via farthest point sampling. Right: point insertion aimed at producing QA-triangulation.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

A comparison: how to capture a curvilinear discontinuity. Objective: layer of width δ of triangles covering a smooth curve, using an Isotropic, QuasiAcute or Graded triangulation.

lsotropic $\#(\mathcal{T})\simeq \delta^{-1}$

 $\begin{aligned} & \mathsf{QuasiAcute} \\ \#(\mathcal{T}) \simeq \delta^{-\frac{1}{2}} |\ln \delta| \end{aligned}$

 $\begin{array}{l} \mathsf{Graded} \\ \#(\mathcal{T}) \simeq \delta^{-\frac{1}{2}} \end{array}$

No restriction $\#(\mathcal{T}) \simeq \delta^{-\frac{1}{2}}$
Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

Anisotropic smoothness classes: from finite element approximation to image models

Figure : A cartoon function, and an adapted triangulation. Picture : Gabriel Peyré

A. Cohen, J.-M. Mirebeau, *Anisotropic smoothness classes: from finite element approximation to image models*, Journal of Mathematical Imaging and Vision, 2010.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

Approximation of cartoon functions

If $g = \sum_{1 \le i \le r} g_i \chi_{\Omega_i}$ where $g_i \in C^2(\overline{\Omega}_i)$ and $\partial \Omega_i$ is piecewise C^2 , then there exists a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations such that

 $\mathbf{N} \| g - \mathrm{I}_{\mathcal{T}_N} g \|_{L^2(\Omega)} \leq C(g).$

On the other hand, we have for smooth functions:

ieorem (Chen,Sun Xu; Babenko)

f $f\in C^2(\overline{\Omega})$ and $(\mathcal{T}_N)_{N\geq N_0}$ is an optimally adapted sequence hen

$$\limsup_{N\to\infty} \frac{N}{\|f - I_{\mathcal{T}_N} f\|_{L^2(\Omega)}} \le C \left\| \sqrt{|\det d^2 f|} \right\|_{L^{\frac{2}{3}}(\Omega)}$$

How to connect these estimates ? Does $\left\|\sqrt{\left|\det d^2g\right|}\right\|_{L^2_3}$ make sense if g is a cartoon function ?

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

Approximation of cartoon functions

If $g = \sum_{1 \le i \le r} g_i \chi_{\Omega_i}$ where $g_i \in C^2(\overline{\Omega}_i)$ and $\partial \Omega_i$ is piecewise C^2 , then there exists a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations such that

 $\mathbf{N} \| g - \mathrm{I}_{\mathcal{T}_N} g \|_{L^2(\Omega)} \leq C(g).$

On the other hand, we have for smooth functions:

Theorem (Chen, Sun Xu; Babenko)

If $f\in C^2(\overline{\Omega})$ and $(\mathcal{T}_N)_{N\geq N_0}$ is an optimally adapted sequence then

$$\limsup_{N \to \infty} \frac{N}{\|f - I_{\mathcal{T}_N} f\|_{L^2(\Omega)}} \le C \left\| \sqrt{|\det d^2 f|} \right\|_{L^{\frac{2}{3}}(\Omega)}$$

How to connect these estimates ? Does $\left\|\sqrt{\left|\det d^2g\right|}\right\|_{L^{\frac{2}{3}}}$ make sense if g is a cartoon function ?

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

Approximation of cartoon functions

If $g = \sum_{1 \le i \le r} g_i \chi_{\Omega_i}$ where $g_i \in C^2(\overline{\Omega}_i)$ and $\partial \Omega_i$ is piecewise C^2 , then there exists a sequence $(\mathcal{T}_N)_{N \ge N_0}$ of triangulations such that

 $\mathbf{N} \| g - \mathrm{I}_{\mathcal{T}_N} g \|_{L^2(\Omega)} \leq C(g).$

On the other hand, we have for smooth functions:

Theorem (Chen, Sun Xu; Babenko)

If $f\in C^2(\overline{\Omega})$ and $(\mathcal{T}_N)_{N\geq N_0}$ is an optimally adapted sequence then

$$\limsup_{N \to \infty} \frac{N}{\|f - I_{\mathcal{T}_N} f\|_{L^2(\Omega)}} \le C \left\| \sqrt{|\det d^2 f|} \right\|_{L^{\frac{2}{3}}(\Omega)}$$

How to connect these estimates ? Does $\left\|\sqrt{\left|\det d^2g\right|}\right\|_{L^{\frac{2}{3}}}$ make sense if g is a cartoon function ?

Jean-Marie Mirebeau For any $f\in C^2(\overline\Omega)$

$$J(f) := \left\| \sqrt{|\det d^2 f|} \right\|_{L^{\frac{2}{3}}}$$

.

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

If g is a cartoon function with discontinuity set E we define

$$J(g) := \lim_{\delta \to 0} J(g * \varphi_{\delta}),$$

where $\varphi_{\delta} := \delta^{-2} \varphi(\delta^{-1} \cdot)$ is a mollifier.

Proposition

$$J(g)^{\frac{2}{3}} = \left\| \sqrt{|\det d^2g|} \right\|_{L^{\frac{2}{3}}(\Omega \setminus E)}^{\frac{2}{3}} + C(\varphi) \left\| [g] \sqrt{|\kappa|} \right\|_{L^{\frac{2}{3}}(E)}^{\frac{2}{3}}$$

where [g] is the jump of g, and κ the curvature of E. Compare with

 $TV(g) = \|\nabla g\|_{L^1(\Omega \setminus E)} + \|[g]\|_{L^1(E)}.$

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

For any
$$f \in C^2(\overline{\Omega})$$

 $J(f) := \left\| \sqrt{|\det d^2 f|} \right\|_{L^{\frac{2}{3}}}.$

If g is a cartoon function with discontinuity set E we define

$$J(g) := \lim_{\delta \to 0} J(g * \varphi_{\delta}),$$

where $\varphi_{\delta} := \delta^{-2} \varphi(\delta^{-1} \cdot)$ is a mollifier.

Proposition

$$J(g)^{\frac{2}{3}} = \left\| \sqrt{|\det d^2g|} \right\|_{L^{\frac{2}{3}}(\Omega \setminus E)}^{\frac{2}{3}} + C(\varphi) \left\| [g] \sqrt{|\kappa|} \right\|_{L^{\frac{2}{3}}(E)}^{\frac{2}{3}}$$

where
$$[g]$$
 is the jump of g, and κ the curvature of E.
Compare with

 $TV(g) = \|\nabla g\|_{L^1(\Omega \setminus E)} + \|[g]\|_{L^1(E)}.$

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

For any
$$f\in C^2(\overline\Omega)$$
 $J(f):=\left\|\sqrt{|\det d^2f|}
ight\|_{L^{rac{2}{3}}}$

If g is a cartoon function with discontinuity set E we define

$$J(g) := \lim_{\delta \to 0} J(g * \varphi_{\delta}),$$

٠

where $\varphi_{\delta} := \delta^{-2} \varphi(\delta^{-1} \cdot)$ is a mollifier.

Proposition

$$J(g)^{\frac{2}{3}} = \left\| \sqrt{|\det d^2g|} \right\|_{L^{\frac{2}{3}}(\Omega \setminus E)}^{\frac{2}{3}} + C(\varphi) \left\| [g] \sqrt{|\kappa|} \right\|_{L^{\frac{2}{3}}(E)}^{\frac{2}{3}}$$

where [g] is the jump of g, and κ the curvature of E.

Compare with

 $TV(g) = \|\nabla g\|_{L^1(\Omega \setminus E)} + \|[g]\|_{L^1(E)}.$

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio an orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

For any
$$f\in C^2(\overline\Omega)$$
 $J(f):=\left\|\sqrt{|\det d^2f|}
ight\|_{L^{rac{3}{2}}}$

If g is a cartoon function with discontinuity set E we define

$$J(g) := \lim_{\delta \to 0} J(g * \varphi_{\delta}),$$

where $\varphi_{\delta} := \delta^{-2} \varphi(\delta^{-1} \cdot)$ is a mollifier.

Proposition

$$J(g)^{\frac{2}{3}} = \left\| \sqrt{|\det d^2g|} \right\|_{L^{\frac{2}{3}}(\Omega \setminus E)}^{\frac{2}{3}} + C(\varphi) \left\| [g] \sqrt{|\kappa|} \right\|_{L^{\frac{2}{3}}(E)}^{\frac{2}{3}}$$

where [g] is the jump of g, and κ the curvature of E. Compare with

$$TV(g) = \|\nabla g\|_{L^1(\Omega \setminus E)} + \|[g]\|_{L^1(E)}.$$

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

Piecewise constant functions

$$TV(g) = \int_{\Gamma} |[g]|$$

$$l(g)^{\frac{2}{3}} = \int_{\Gamma} |[g]|^{\frac{2}{3}} |\kappa|^{\frac{1}{3}}$$

Figure : $TV(g) \ll J(g)$

Figure : $TV(g) \simeq J(g)$

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

A model inspired by the virtual cortex first layer V1

• Eye sees an intensity map $u : \mathbb{R}^2 \to \mathbb{R}$.

Neurons of V1 are specialized in the detection of a stimulus at position $x \in \mathbb{R}^2$ in direction $\theta \in \mathbb{S}^1$.

Neuron at (x, θ) interacts with $(x, \theta + \delta\theta)$ and $(x + \theta\delta h, \theta)$.

Denote the neural state by $U: \mathbb{R}^2 \times \mathbb{S}^1 \to \mathbb{R}$. We propose a nodel where the brain constructs U by minimizing

$$\iint |\langle \nabla_{\mathsf{x}} U, \theta \rangle|^p + |\partial_{\theta} U|^p \, d\mathsf{x} \, d\theta.$$

subjects to the constraints $\forall x, u(x) = \int U(x, \theta) d\theta$

Theorem

If u is a cartoon function, and p < 3/2 then there exists a lift U with finite energy.

Question: Non-asymptotic approximation results, based on anisotropic triangulations, for those u which admit a lift U of finite energy with p = 3/2?

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

A model inspired by the virtual cortex first layer V1

- Eye sees an intensity map $u : \mathbb{R}^2 \to \mathbb{R}$.
- Neurons of V1 are specialized in the detection of a stimulus at position x ∈ ℝ² in direction θ ∈ S¹.

▶ Neuron at (x, θ) interacts with $(x, \theta + \delta\theta)$ and $(x + \theta\delta h, \theta)$.

Figure : Bosking et al (97), Petitot (99)

Denote the neural state by $U: \mathbb{R}^2 \times \mathbb{S}^1 \to \mathbb{R}$. We propose a

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

A model inspired by the virtual cortex first layer V1

- Eye sees an intensity map $u : \mathbb{R}^2 \to \mathbb{R}$.
- Neurons of V1 are specialized in the detection of a stimulus at position x ∈ ℝ² in direction θ ∈ S¹.

• Neuron at (x, θ) interacts with $(x, \theta + \delta \theta)$ and $(x + \theta \delta h, \theta)$.

Figure : Bosking et al (97), Petitot (99)

Denote the neural state by $U : \mathbb{R}^2 \times \mathbb{S}^1 \to \mathbb{R}$. We propose a

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

A model inspired by the virtual cortex first layer V1

- Eye sees an intensity map $u : \mathbb{R}^2 \to \mathbb{R}$.
- Neurons of V1 are specialized in the detection of a stimulus at position x ∈ ℝ² in direction θ ∈ S¹.
- Neuron at (x, θ) interacts with $(x, \theta + \delta\theta)$ and $(x + \theta\delta h, \theta)$.

Figure : Bosking et al (97), Petitot (99)

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

A model inspired by the virtual cortex first layer V1

- Eye sees an intensity map $u : \mathbb{R}^2 \to \mathbb{R}$.
- Neurons of V1 are specialized in the detection of a stimulus at position x ∈ ℝ² in direction θ ∈ S¹.
- Neuron at (x, θ) interacts with $(x, \theta + \delta \theta)$ and $(x + \theta \delta h, \theta)$.

Figure : Bosking et al (97), Petitot (99)

Denote the neural state by $U: \mathbb{R}^2 \times \mathbb{S}^1 \to \mathbb{R}$. We propose a

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

A model inspired by the virtual cortex first layer V1

- Eye sees an intensity map $u : \mathbb{R}^2 \to \mathbb{R}$.
- Neurons of V1 are specialized in the detection of a stimulus at position x ∈ ℝ² in direction θ ∈ S¹.
- ▶ Neuron at (x, θ) interacts with $(x, \theta + \delta\theta)$ and $(x + \theta\delta h, \theta)$.

Denote the neural state by $U: \mathbb{R}^2 \times \mathbb{S}^1 \to \mathbb{R}$. We propose a model where the brain constructs U by minimizing

$$\iint |\langle \nabla_{\mathsf{x}} U, \theta \rangle|^{p} + |\partial_{\theta} U|^{p} \, d\mathsf{x} \, d\theta.$$

subjects to the constraints $\forall x, u(x) = \int U(x, \theta) d\theta$

Theorem

If u is a cartoon function, and p < 3/2 then there exists a lift U with finite energy.

Question: Non-asymptotic approximation results, based on anisotropic triangulations, for those u which admit a lift U of finite energy with p = 3/2?

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

A model inspired by the virtual cortex first layer V1

- Eye sees an intensity map $u : \mathbb{R}^2 \to \mathbb{R}$.
- Neurons of V1 are specialized in the detection of a stimulus at position x ∈ ℝ² in direction θ ∈ S¹.
- Neuron at (x, θ) interacts with $(x, \theta + \delta\theta)$ and $(x + \theta\delta h, \theta)$.

Denote the neural state by $U: \mathbb{R}^2 \times \mathbb{S}^1 \to \mathbb{R}$. We propose a model where the brain constructs U by minimizing

$$\iint |\langle \nabla_{\mathsf{x}} U, \theta \rangle|^{p} + |\partial_{\theta} U|^{p} \, d\mathsf{x} \, d\theta.$$

subjects to the constraints $\forall x, u(x) = \int U(x, \theta) d\theta$

Theorem

If u is a cartoon function, and p < 3/2 then there exists a lift U with finite energy.

Question: Non-asymptotic approximation results, based on anisotropic triangulations, for those u which admit a lift U of finite energy with p = 3/2 ?

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

A model inspired by the virtual cortex first layer V1

- Eye sees an intensity map $u : \mathbb{R}^2 \to \mathbb{R}$.
- Neurons of V1 are specialized in the detection of a stimulus at position x ∈ ℝ² in direction θ ∈ S¹.
- Neuron at (x, θ) interacts with $(x, \theta + \delta\theta)$ and $(x + \theta\delta h, \theta)$.

Denote the neural state by $U: \mathbb{R}^2 \times \mathbb{S}^1 \to \mathbb{R}$. We propose a model where the brain constructs U by minimizing

$$\iint |\langle \nabla_{\mathsf{x}} U, \theta \rangle|^{p} + |\partial_{\theta} U|^{p} \, d\mathsf{x} \, d\theta.$$

subjects to the constraints $\forall x, u(x) = \int U(x, \theta) d\theta$

Theorem

If u is a cartoon function, and p < 3/2 then there exists a lift U with finite energy.

Question: Non-asymptotic approximation results, based on anisotropic triangulations, for those u which admit a lift U of finite energy with p = 3/2 ?

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothness classes

Conclusion

Conclusion and perspectives

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnes classes

Conclusion

Conclusion:

► A result of algorithmic geometry for QuasiAcute triangulations.

Sharp asymptotic estimates for \mathbb{P}_m interpolation error on optimal mesh, for H^1 but also L^p and $W^{1,p}$ norms.

Some quantities remain meaningful for cartoon functions. e.g. $J(f) = \|\sqrt{\det(d^2 f)}\|_{L^{\frac{2}{3}}}$.

Perspectives:

- Quasi-Acute meshes in 3D ?
- Anisotropic Function spaces.
- Non asymptotic error estimates.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnes classes

Conclusion

Conclusion:

- A result of algorithmic geometry for QuasiAcute triangulations.
- ► Sharp asymptotic estimates for P_m interpolation error on optimal mesh, for H¹ but also L^p and W^{1,p} norms.
 - Some quantities remain meaningful for cartoon functions. e.g. $J(f) = \|\sqrt{\det(d^2 f)}\|_{L^{\frac{2}{3}}}$.

Perspectives:

- Quasi-Acute meshes in 3D ?
- Anisotropic Function spaces.
- Non asymptotic error estimates.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnes classes

Conclusion

Conclusion:

- A result of algorithmic geometry for QuasiAcute triangulations.
- Sharp asymptotic estimates for P_m interpolation error on optimal mesh, for H¹ but also L^p and W^{1,p} norms.
- Some quantities remain meaningful for cartoon functions. e.g. $J(f) = \|\sqrt{\det(d^2 f)}\|_{L^{\frac{2}{3}}}$.

Perspectives:

- Quasi-Acute meshes in 3D ?
- Anisotropic Function spaces.
- Non asymptotic error estimates.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnes classes

Conclusion

Conclusion:

- A result of algorithmic geometry for QuasiAcute triangulations.
- Sharp asymptotic estimates for P_m interpolation error on optimal mesh, for H¹ but also L^p and W^{1,p} norms.
- Some quantities remain meaningful for cartoon functions. e.g. $J(f) = \|\sqrt{\det(d^2 f)}\|_{L^{\frac{2}{3}}}$.

Perspectives:

- Quasi-Acute meshes in 3D ?
- Anisotropic Function spaces.
- Non asymptotic error estimates.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnes classes

Conclusion

Conclusion:

- A result of algorithmic geometry for QuasiAcute triangulations.
- Sharp asymptotic estimates for P_m interpolation error on optimal mesh, for H¹ but also L^p and W^{1,p} norms.
- Some quantities remain meaningful for cartoon functions. e.g. $J(f) = \|\sqrt{\det(d^2 f)}\|_{L^{\frac{2}{3}}}$.

Perspectives:

- Quasi-Acute meshes in 3D ?
- Anisotropic Function spaces.
- Non asymptotic error estimates.

Jean-Marie Mirebeau

Anisotropic Approximation

Parameters

Position Area Aspect ratio and orientation Angles

Mesh/Metric Equivalence

Equivalence of meshes and metrics

Smoothnes classes

Conclusion

Conclusion:

- A result of algorithmic geometry for QuasiAcute triangulations.
- Sharp asymptotic estimates for P_m interpolation error on optimal mesh, for H¹ but also L^p and W^{1,p} norms.
- Some quantities remain meaningful for cartoon functions. e.g. $J(f) = \|\sqrt{\det(d^2 f)}\|_{L^{\frac{2}{3}}}$.

Perspectives:

- Quasi-Acute meshes in 3D ?
- Anisotropic Function spaces.
- Non asymptotic error estimates.