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Applications with the standard quadratic cost
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Jean-Marie » Use semi-Discrete Optimal transport to measure the
distance from a collection of Dirac masses to a density.

Quantization w Z ,u,-(SX,., pLeb

1<i<n

» Goes, Breeden, Ostromoukhov, Desbrun (2012)
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Jean-Marie » Use semi-Discrete Optimal transport to measure the
distance from a collection of Dirac masses to a density.

Quantization w Z ,u,-(SX,., pLeb

1<i<n

» Goes, Breeden, Ostromoukhov, Desbrun (2012) take an
image intensity for p, fix identical weights p; = ., and
optimize over the positions x;, 1 < i < n.
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Jean-Marie » Incompressible fluid in domain X, |X| = 1. No viscosity.

Mirebeau
Otv + (v-V)v = Vp, divv = 0.

Euler

E Merigot, M, Minimal geodesics along volume preserving maps
through semi-discrete optimal transport, Preprint.
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» Observe Initial xp ; and final x7 ; positions of N particles.
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wmaee EUler equations of incompressible fluids

Jean-Marie

Mirebeau » Incompressible fluid in domain X, |[X| = 1. No viscosity.
» Observe Initial xp ; and final x7; positions of N particles.

» Reconstruct intermediate positions x; ; by minimizing

% Z Z Ixt,i — xt,iv1]” +A Z w % Z Ox.;» Lebx

Euler

0<t<T 1<i<N 1<t<T 1<i<N
Vv ~~
Kinetic energy Penalization of compression

Merigot, M, Minimal geodesics along volume preserving maps
through semi-discrete optimal transport, Preprint.
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wmaee EUler equations of incompressible fluids

Jean-Marie » Incompressible fluid in domain X, [X| = 1. No viscosity.
» Observe Initial xg; and final x7 ; positions of N particles.
> Reconstruct intermediate positions x; ; by minimizing

Euler % Z Z ’Xt7i_Xt,i+1|2+A Z w % Z (5xt’,-, Lebx

0<t< T 1<i<N 1<t<T 1<i<N

Kinetic energy Penalization of compression

» Motivation: geodesics on SDiff = {s € C*°(X, X);
det Vs = 1}, w.r.t the L? metric, obey Euler equations, in
Lagrangian coordinates. Arnold (66)

§t == Vpost. (1)

E Merigot, M, Minimal geodesics along volume preserving maps
through semi-discrete optimal transport, Preprint.



o EUler equations of incompressible fluids

transport

Jean-Mari . . . . .
Mirebeau » Incompressible fluid in domain X, |X| = 1. No viscosity.

» Observe Initial xp ; and final x7; positions of N particles.
> Reconstruct intermediate positions x; ; by minimizing

Euler

% Z Z Ixt,i — xt,iv1]” +A Z w % Z Ox.;» Lebx

0<t< T 1<i<N 1<t<T 1<i<N

~~ ~~

Kinetic energy Penalization of compression

» Motivation: geodesics on SDiff = {s € C*°(X, X);
det Vs = 1}, w.r.t the L2 metric, obey Euler equations, in
Lagrangian coordinates. Arnold (66)

» Convergence: as N, T, A\ — oo suitably, minimizers
converge to a Generalized flow (Brenier 89), i.e. a measure
on C°([0,1], X), solving a relaxation of Euler equations.

Merigot, M, Minimal geodesics along volume preserving maps
through semi-discrete optimal transport, Preprint.
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Evolution PDEs via the JKO scheme

» JKO < implicit gradient descent w.r.t Wasserstein metric

1
Hpt1 i= argmin 2—W(u,,,,u) + F(p).
uEProb(Q) 47



opimat Evolution PDEs via the JKO scheme

Jean-Marie » JKO < implicit gradient descent w.r.t Wasserstein metric

Mirebeau

1
pnyr = argmin o W(un, 1) + F(p).
pEProb(Q) <7

» Formally converges to an evolution PDE as 7 — 0

f(pLebQ):/QF(X,p(x))dx = Op =div(pVO,F (-, p)).

2
W00y .

Figure : Simulation of crowd motion under a congestion constraint.
Benamou, Carlier, Mérigot, Oudet (2014).

JKO



opimat Evolution PDEs via the JKO scheme

Jean-Marie » JKO < implicit gradient descent w.r.t Wasserstein metric

Mirebeau

1
pnyr = argmin o W(un, 1) + F(p).
pEProb(Q) <7

» Formally converges to an evolution PDE as 7 — 0
F(pLebg) = / F(x,p(x))dx = 0Oip =div(pVO,F(-, p)).
Q

» Theoretical scheme proposed by Jordan, Kinderlehrer and
Otto, to obtain existence results for these PDEs.

2
W00 .

Figure : Simulation of crowd motion under a congestion constraint.
Benamou, Carlier, Mérigot, Oudet (2014).

JKO
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Optimization under the constraint of convexity

Finite set X C RY, map u: X — R.

» u has a convex extension iff its subgradients are non-empty

du(x) == {p e R%;Vy € X, u(x) + (p,y — x) < u(y)}
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wmaere Optimization under the constraint of convexity

Jean-Marie

Mirebeau Finite set X C RY, map u: X — R.

» u has a convex extension iff its subgradients are non-empty
Ou(x) = {p € R Vy € X, u(x) + (p,y — x) < u(y)}

Convexity > aU(X) = Lag¢(x) with QZJ(X) = %‘X|2 _ u(X).
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wmaere Optimization under the constraint of convexity

Jean-Marie

Mirebeau Finite set X (- Rd, map u: X — R.
» u has a convex extension iff its subgradients are non-empty

du(x) == {p e R%;Vy € X, u(x) + (p,y — x) < u(y)}

comey > Ju(x) = Lagy(x) with 1(x) = 3|x|? — u(x).
» u has a strictly convex extension with gradients in €,
where Q is a convex bounded domain, iff

00 > — Z|n|du )N Q|

xeX

This barrier function is convex in w.
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Mirebeau Finite set X (- Rd, map u: X — R.
» u has a convex extension iff its subgradients are non-empty

du(x) == {p e R%;Vy € X, u(x) + (p,y — x) < u(y)}

comey > Ju(x) = Lagy(x) with 1(x) = 3|x|? — u(x).
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Convexity

Optimization under the constraint of convexity

Finite set X C RY, map u: X — R.

» u has a convex extension iff its subgradients are non-empty
Ou(x) = {p € R Vy € X, u(x) + (p,y — x) < u(y)}

> Ju(x) = Lag,(x) with 9 (x) = SIx[? = u(x).
» u has a strictly convex extension with gradients in €,
where Q is a convex bounded domain, iff

00 > — Z In[0u(x) N Q| = Ent(Vu Lebg)
xeX

This barrier function is convex in u.

» Optimal transport interpretation: the gradient of the
Legendre Fenchel conjugate u* defines an optimal
transport Vu* : (Q,Lebg) — (X, Vuj, Lebg), product —
customer. We penalize the image measure entropy.
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The Monopolist problem (Rochet, Chone, 98)

» Monopolist produces goods g € Ri at cost ¢(q),
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The Monopolist problem (Rochet, Chone, 98)

» Monopolist produces goods g € Ri at cost c(q),
» Monopolist unilaterally sets prices 7(q),



e 1he Monopolist problem (Rochet, Chone, 98)

transport

ircbems » Monopolist produces goods g € RY at cost ¢(q),
» Monopolist unilaterally sets prices 7(q),
» Customer of type z € ]Ri maximizes his net utility

U(z) = sup (q,2) —7(q)
—~—~

Convexity d
geR ¥ ’
+ Utility Price



e 1he Monopolist problem (Rochet, Chone, 98)

transport

Mincbem » Monopolist produces goods g € RY at cost c(q), c(0) = 0.
» Monopolist unilaterally sets prices 7(q), except 7(0) = 0.
» Customer of type z € ]Ri maximizes his net utility

U(z) = sup (q,2) —7(q)
—~~

Convexity d
geR ¥ ’
+ Utility Price
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Monopolist problem (Rochet, Chone, 98)

Monopolist produces goods g € R+ at cost c(q), ¢(0) =
Monopolist unilaterally sets prices 7(q), except 7(0) = 0.
Customer of type z € ]Ri maximizes his net utility

U(z) = sup (q,z) —m(q)
geRy - N
Utility Price

Customer z buys product q(z) , monopolist gains

m(q(2)) — c(a(2)) = (a(2), 2) — U(2) — c(q(2)),
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The Monopolist problem (Rochet, Chone, 98)

>

>

>

Monopolist produces goods g € RY at cost c(q), c(0) =
Monopolist unilaterally sets prices 7(q), except m(0) = 0.
Customer of type z € ]Ri maximizes his net utility
U(z) = sup (q,2) —7(q)
—~—

d
qeR v
+ Utility Price

Customer z buys product q(z) = VU(z), monopolist gains

m(q(2)) — c(a(2)) = (q(2), 2) — U(z) — c(q(2)),
= (VU(z2),z) — U(z) — c(VU(2)).



e 1he Monopolist problem (Rochet, Chone, 98)

transport

Mincbeon » Monopolist produces goods g € RY at cost c(q), c(0)
» Monopolist unilaterally sets prices 7m(q), except 7(0) =
» Customer of type z € ]Ri maximizes his net utility
U(z) = sup (q,2) —7(q)
—~—

Convex ity d
qeR v
+ Utility Price

0.

Customer z buys product q(z) = VU(z), monopolist gains

m(q(2)) — c(a(2)) = (q(2), 2) — U(z) — c(q(2)),
= (VU(z2),z) — U(z) — c(VU(2)).

» Customer density p on Rj’_.

Profit = /Rd<VU(z),z>U(Z)C(VU(z)) du(z).
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The Monopolist problem (Rochet, Chone, 98)

>

>

>

Monopolist produces goods g € RY at cost c(q), c(0) =
Monopolist unilaterally sets prices 7(q), except m(0) = 0.
Customer of type z € ]Ri maximizes his net utility
U(z) = sup (q,2) —7(q)
—~—

d
qeR v
+ Utility Price

Customer z buys product q(z) = VU(z), monopolist gains

m(q(2)) — c(a(2)) = (q(2), 2) — U(z) — c(q(2)),
= (VU(z2),z) — U(z) — c(VU(2)).

» Customer density p on Rj’_, is known to the monopolist

Profit = max /Rd<VU(z),z>U(z)c(VU(z))d,u(z).

U convex



Optimal
transport

Jean-Marie
Mirebeau

Quantization
Euler

JKO
Convexity

Reflector
design
Unbalanced
transport
Optimal
mining

\

10 12 14 16 18 20

Figure : Customer density z uniform on Q = [1,2]?, monopolist
production cost c(q) = %[q|?. Left: solution u.

f J-m. Mirebeau, Adaptive Anisotropic and Hierarchical Cones of
Convex functions, Numerische Mathematik (2015).

Profit = max /Rd<Vu(z),z) —u(z) — c¢(Vu(z)) du(z).

u convex
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20

N

05

0 12 14 16 18 20 05 10 15 20
Figure : Customer density z uniform on Q = [1,2]?, monopolist
production cost c(q) = %[q|. Left: solution u. Center: product sales
density Vu#p.

J.-M. Mirebeau, Adaptive Anisotropic and Hierarchical Cones of
Convex functions, Numerische Mathematik (2015).

u convex

Profit = max /Rd<Vu(z),z) —u(z) — c(Vu(z)) du(z).
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10 12 14 16 18 20 05 10 15 20 10 12 14 16 18 20

Figure : Customer density z uniform on Q = [1,2]?, monopolist
production cost c(q) = %|q|. Left: solution u. Center: product sales
density Vu#pu. Right: Qy := {rank(V?u) = k}.

J.-M. Mirebeau, Adaptive Anisotropic and Hierarchical Cones of
Convex functions, Numerische Mathematik (2015).

u convex

Profit = max /Rd<Vu(z),z) —u(z) — c(Vu(z)) du(z).
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Convexity

02 04 06 08 10 12 14

Figure : Customer density y uniform on disk D((3/2,3/2),1/2) or
triangle centered at (3/2,3/2). Left: solution u. Center: product line
(=Subgradient cells=Laguerre diagram). Right: dual triangulation.
No one buys the null product in the triangle case.

Joint work with Q. Merigot
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Figure : Product line for a uniform density of customers on [1,2]3

u convex

Profit = max /Rd<Vu(z),z> —u(z) — c(Vu(z)) du(z).
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Figure : Several bodies of width 1. The glass surface remains flat and
at height 1 (Palais de la découverte, Paris).
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Figure : Numerical minimization of volume among convex bodies of
width 1. Our experiments support Meissner's conjecture.
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Applications involving a modified transport cost
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Reflector design

» Objective: Project a point-source light onto a uniform
density, a non-blinding headlight, a logo...

Figure : by Warner®, Mercedes®, Benamou, Merigot, Thibert (15)
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Reflector design

» Objective: Project a point-source light onto a uniform
density, a non-blinding headlight, a logo...
» Masks loose energy = transport instead light by reflection

©PUBLICITY PICTURE

Figure : by Warner®, Mercedes®, Benamou, Merigot, Thibert (15)
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» Masks loose energy = transport instead light by reflection
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Figure : by Warner®, Mercedes®, Benamou, Merigot, Thibert (15)
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Jean-Marie » Objective: Project a point-source light onto a uniform
density, a non-blinding headlight, a logo...
» Masks loose energy = transport instead light by reflection
» Light rays only follow shortest paths = optimal transport.

Reflector
esign

Figure : by Warner®, Mercedes®, Benamou, Merigot, Thibert (15)
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Reflector design

» Objective: Project a point-source light onto a uniform
density, a non-blinding headlight, a logo...

» Masks loose energy = transport instead light by reflection

» Light rays only follow shortest paths = optimal transport.

» Non-quadratic cost function e.g. c(x,y) = —In(1 — (x, y)),
for x,y € S. (concave reflector and point source.)

Figure : by Warner®, Mercedes®, Benamou, Merigot, Thibert (15)
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transport Reflector deSIgn

Jean-Marie » Objective: Project a point-source light onto a uniform

density, a non-blinding headlight, a logo...

» Masks loose energy = transport instead light by reflection

» Light rays only follow shortest paths = optimal transport.

» Non-quadratic cost function e.g. c(x,y) = —In(1 — (x, y)),
for x,y € S. (concave reflector and point source.)

» Machado, Merigot, Thibert (2015) implement CGAL®
exact geometric predicates for these Laguerre diagrams.

Reflector
esign

Figure : by Warner®, Mercedes®, Benamou, Merigot, Thibert (15)
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Optimal transport with source terms

2 N
W (po, p1) —|nf/ / |m|” Otp+divm =0

» Optimal transport cost, with c(x,y) = 3|x — y|?, is the
kinetic energy required to move a pressureless fluid from
density po to p1. Benamou, Brenier (2002).

» p: fluid density. m: fluid momentum.
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Optimal transport with source terms

~ 1 2 2 P di _
W (po, p1) = inf / / M St p+divm=o
omo o JqQ p p(0) = po, p(0) = p1

» Optimal transport cost, with c(x,y) = %|x — y|?, is the
kinetic energy required to move a pressureless fluid from
density po to p1. Benamou, Brenier (2002).

» p: fluid density. m: fluid momentum.

» Possibility to add a source term o.

Peyre et al, Savaré et al, Kondratyev et al (2015)
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Optimal transport with source terms

W(po,p1) = inf

v

v

v

1/ |m|? + o2 ot Op+divm=o
pmafo Jo o p — |p(0) = po, p(0) = p1

Optimal transport cost, with c(x,y) = %|x — y|?, is the
kinetic energy required to move a pressureless fluid from
density po to p1. Benamou, Brenier (2002).

p: fluid density. m: fluid momentum.

Possibility to add a source term o.
Peyre et al, Savaré et al, Kondratyev et al (2015)

W defines a distance between measures of distinct masses.
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~ 1 2 2 P di _
W (po, p1) = inf / / M St ip+divm=o
pmofo Jo P p(0) = po, p(0) = p1

» Optimal transport cost, with c(x,y) = %|x — y|?, is the
kinetic energy required to move a pressureless fluid from
density po to p1. Benamou, Brenier (2002).

» p: fluid density. m: fluid momentum.

Ganapre » Possibility to add a source term o.

Peyre et al, Savaré et al, Kondratyev et al (2015)

» W defines a distance between measures of distinct masses.

» Static semi-discrete formulation requires constructing cells

Lagy(x) = {P eRY Wy € X, =t [p— x| _ cosy|p —yl}

L=9() = 1-90)
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Optimal mining

» Open pit mining requires excavating topsoil above ore.
» Ore at x is extracted if it pays for removal of cone C(x)
above, left in place otherwise.
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Optimal mining

» Open pit mining requires excavating topsoil above ore.
» Ore at x is extracted if it pays for removal of cone C(x)
above, left in place otherwise. (Risk of landslide)
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Optimal mining

» Open pit mining requires excavating topsoil above ore.

» Ore at x is extracted if it pays for removal of cone C(x)
above, left in place otherwise.

» Optimal pit given by an Optimal Transport problem, from
ore to topsoil distributions, and with cost

0 if y € C(x),

c(x,y) =
(y) 400 otherwise,

+ two sinks. Ekeland, Queyranne (14)
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