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Image quantization
I Use semi-Discrete Optimal transport to measure the

distance from a collection of Dirac masses to a density.

W

 ∑
1≤i≤n

µiδxi , ρ Leb


I Goes, Breeden, Ostromoukhov, Desbrun (2012) take an

image intensity for ρ, fix identical weights µi = µ∗, and
optimize over the positions xi , 1 ≤ i ≤ n.
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Euler equations of incompressible fluids
I Incompressible fluid in domain X , |X | = 1. No viscosity.

∂tv + (v · ∇)v = ∇p, div v = 0.

I Observe Initial x0,i and final xT ,i positions of N particles.
I Reconstruct intermediate positions xt,i by minimizing

T

N

∑
0≤t<T

∑
1≤i≤N

|xt,i − xt,i+1|2︸ ︷︷ ︸
Kinetic energy

+λ
∑

1≤t<T

W

 1
N

∑
1≤i≤N

δxt,i , LebX


︸ ︷︷ ︸

Penalization of compression

I Motivation: geodesics on SDiff = {s ∈ C∞(X ,X );
det∇s = 1}, w.r.t the L2 metric, obey Euler equations, in
Lagrangian coordinates. Arnold (66)

I Convergence: as N,T , λ→∞ suitably, minimizers
converge to a Generalized flow (Brenier 89), i.e. a measure
on C 0([0, 1],X ), solving a relaxation of Euler equations.

� Merigot, M, Minimal geodesics along volume preserving maps
through semi-discrete optimal transport, Preprint.
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Evolution PDEs via the JKO scheme

I JKO ⇔ implicit gradient descent w.r.t Wasserstein metric

µn+1 := argmin
µ∈Prob(Ω)

1
2τ

W (µn, µ) + F(µ).

I Formally converges to an evolution PDE as τ → 0

F(ρ LebΩ) =

∫
Ω
F (x , ρ(x))dx ⇒ ∂tρ = div(ρ∇∂ρF (·, ρ)).

I Theoretical scheme proposed by Jordan, Kinderlehrer and
Otto, to obtain existence results for these PDEs.

Figure : Simulation of crowd motion under a congestion constraint.
Benamou, Carlier, Mérigot, Oudet (2014).
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Optimization under the constraint of convexity
Finite set X ⊂ Rd , map u : X → R.

I u has a convex extension iff its subgradients are non-empty

∂u(x) := {p ∈ Rd ;∀y ∈ X , u(x) + 〈p, y − x〉 ≤ u(y)}

I ∂u(x) = Lagψ(x) with ψ(x) = 1
2 |x |

2 − u(x).
I u has a strictly convex extension with gradients in Ω,

where Ω is a convex bounded domain, iff

∞ > −
∑
x∈X

ln |∂u(x) ∩ Ω| = Ent(∇u∗# LebΩ)

This barrier function is convex in u.
I Optimal transport interpretation: the gradient of the

Legendre Fenchel conjugate u∗ defines an optimal
transport ∇u∗ : (Ω, LebΩ)→ (X ,∇u∗# LebΩ), product →
customer. We penalize the image measure entropy.
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The Monopolist problem (Rochet, Chone, 98)
I Monopolist produces goods q ∈ Rd

+ at cost c(q), c(0) = 0.
I Monopolist unilaterally sets prices π(q), except π(0) = 0.
I Customer of type z ∈ Rd

+ maximizes his net utility

U(z) = sup
q∈Rd

+

〈q, z〉︸ ︷︷ ︸
Utility

−π(q)︸︷︷︸
Price

Customer z buys product q(z) = ∇U(z), monopolist gains

π(q(z))− c(q(z)) = 〈q(z), z〉 − U(z)− c(q(z)),

= 〈∇U(z), z〉 − U(z)− c(∇U(z)).

I Customer density µ on Rd
+, is known to the monopolist

Profit = max
U convex

∫
Rd

〈∇U(z), z〉−U(z)−c(∇U(z)) dµ(z).
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Customer z buys product q(z) = ∇U(z), monopolist gains

π(q(z))− c(q(z)) = 〈q(z), z〉 − U(z)− c(q(z)),

= 〈∇U(z), z〉 − U(z)− c(∇U(z)).

I Customer density µ on Rd
+, is known to the monopolist

Profit = max
U convex

∫
Rd

〈∇U(z), z〉−U(z)−c(∇U(z)) dµ(z).
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Figure : Customer density µ uniform on Ω = [1, 2]2, monopolist
production cost c(q) = 1

2 |q|
2. Left: solution u. Center: product sales

density ∇u#µ. Right: Ωk := {rank(∇2u) = k}.
� J.-M. Mirebeau, Adaptive Anisotropic and Hierarchical Cones of
Convex functions, Numerische Mathematik (2015).

Profit = max
u convex

∫
Rd
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Figure : Customer density µ uniform on disk D((3/2, 3/2), 1/2) or
triangle centered at (3/2, 3/2). Left: solution u. Center: product line
(=Subgradient cells=Laguerre diagram). Right: dual triangulation.
No one buys the null product in the triangle case.
Joint work with Q. Merigot

Profit = max
u convex

∫
Rd

〈∇u(z), z〉 − u(z)− c(∇u(z)) dµ(z).
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Figure : Product line for a uniform density of customers on [1, 2]3

Profit = max
u convex

∫
Rd

〈∇u(z), z〉 − u(z)− c(∇u(z)) dµ(z).
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Minimizing over convex bodies

Figure : Several bodies of width 1. The glass surface remains flat and
at height 1 (Palais de la découverte, Paris).
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Minimizing over convex bodies

Figure : Numerical minimization of volume among convex bodies of
width 1. Our experiments support Meissner’s conjecture.
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Semi-Discrete Optimal Transport

Applications with the standard quadratic cost
Image quantization
Euler equations of incompressible fluids
Evolution PDEs via the JKO flow
Optimization under the constraint of convexity

Applications involving a modified transport cost
Reflector design
Unbalanced Optimal Transport
Optimal mining
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Reflector design
I Objective: Project a point-source light onto a uniform

density, a non-blinding headlight, a logo...
I Masks loose energy ⇒ transport instead light by reflection
I Light rays only follow shortest paths ⇒ optimal transport.
I Non-quadratic cost function e.g. c(x , y) = − ln(1−〈x , y〉),

for x , y ∈ S2. (concave reflector and point source.)
I Machado, Merigot, Thibert (2015) implement CGAL R©

exact geometric predicates for these Laguerre diagrams.

Figure : by Warner R©, Mercedes R©, Benamou, Merigot, Thibert (15)
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Optimal transport with source terms

W (ρ0, ρ1) = inf
ρ,m

∫ 1

0

∫
Ω

|m|2

ρ
s.t.

{
∂tρ+ divm = 0
ρ(0) = ρ0, ρ(0) = ρ1

I Optimal transport cost, with c(x , y) = 1
2 |x − y |2, is the

kinetic energy required to move a pressureless fluid from
density ρ0 to ρ1. Benamou, Brenier (2002).

I ρ: fluid density. m: fluid momentum.
I Possibility to add a source term σ.

Peyre et al, Savaré et al, Kondratyev et al (2015)
I W̃ defines a distance between measures of distinct masses.
I Static semi-discrete formulation requires constructing cells

Lagψ(x) :=

{
p ∈ Rd ;∀y ∈ X ,

cos+ |p − x |
1− ψ(x)

≥ cos+ |p − y |
1− ψ(y)

}
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Optimal mining

I Open pit mining requires excavating topsoil above ore.
I Ore at x is extracted if it pays for removal of cone C (x)

above, left in place otherwise. (Risk of landslide)
I Optimal pit given by an Optimal Transport problem, from

ore to topsoil distributions, and with cost

c(x , y) =

{
0 if y ∈ C (x),

+∞ otherwise,

+ two sinks. Ekeland, Queyranne (14)



Optimal
transport

Jean-Marie
Mirebeau

Discretization

Applications
Quantization
Euler
JKO
Convexity

Applications
involving a
modified
transport
cost
Reflector
design
Unbalanced
transport
Optimal
mining

Optimal mining

I Open pit mining requires excavating topsoil above ore.
I Ore at x is extracted if it pays for removal of cone C (x)

above, left in place otherwise. (Risk of landslide)
I Optimal pit given by an Optimal Transport problem, from

ore to topsoil distributions, and with cost

c(x , y) =

{
0 if y ∈ C (x),

+∞ otherwise,

+ two sinks. Ekeland, Queyranne (14)



Optimal
transport

Jean-Marie
Mirebeau

Discretization

Applications
Quantization
Euler
JKO
Convexity

Applications
involving a
modified
transport
cost
Reflector
design
Unbalanced
transport
Optimal
mining

Optimal mining

I Open pit mining requires excavating topsoil above ore.
I Ore at x is extracted if it pays for removal of cone C (x)

above, left in place otherwise. (Risk of landslide)
I Optimal pit given by an Optimal Transport problem, from

ore to topsoil distributions, and with cost

c(x , y) =

{
0 if y ∈ C (x),

+∞ otherwise,

+ two sinks. Ekeland, Queyranne (14)



Optimal
transport

Jean-Marie
Mirebeau

Discretization

Applications
Quantization
Euler
JKO
Convexity

Applications
involving a
modified
transport
cost
Reflector
design
Unbalanced
transport
Optimal
mining

Optimal mining

I Open pit mining requires excavating topsoil above ore.
I Ore at x is extracted if it pays for removal of cone C (x)

above, left in place otherwise. (Risk of landslide)
I Optimal pit given by an Optimal Transport problem, from

ore to topsoil distributions, and with cost

c(x , y) =

{
0 if y ∈ C (x),

+∞ otherwise,

+ two sinks. Ekeland, Queyranne (14)


	Semi-Discrete Optimal Transport
	Applications with the standard quadratic cost
	Image quantization
	Euler equations of incompressible fluids
	Evolution PDEs via the JKO flow
	Optimization under the constraint of convexity

	Applications involving a modified transport cost
	Reflector design
	Unbalanced Optimal Transport
	Optimal mining


