#### Jean-Marie Mirebeau

### Discretization

### Applications

- Quantization Euler JKO Convexity
- Applications involving a modified transport cost
- Reflector design Unbalanced transport Optimal mining

# Semi-Discrete Optimal Transport and its applications

Jean-Marie Mirebeau

CNRS, University Paris Sud

November 18, 2015

Joint work with Q. Merigot Journées de Géométrie Algorithmique, Cargèse, 2015

### Jean-Marie Mirebeau

### Discretization

### Applications

Quantization Euler JKO Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

## Semi-Discrete Optimal Transport

Applications with the standard quadratic cost Image quantization Euler equations of incompressible fluids Evolution PDEs via the JKO flow Optimization under the constraint of convexity

Applications involving a modified transport cost Reflector design Unbalanced Optimal Transport Optimal mining

### Jean-Marie Mirebeau

### Discretization

### Applications

Quantization Euler JKO Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

## Semi-Discrete Optimal Transport

pplications with the standard quadratic cost Image quantization Euler equations of incompressible fluids Evolution PDEs via the JKO flow Optimization under the constraint of convexity

Applications involving a modified transport cost Reflector design Unbalanced Optimal Transport Optimal mining

### Jean-Marie Mirebeau

## Semi-Discrete Optimal Transport

## Discretization

## Applications

Quantization Euler JKO Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

## Applications with the standard quadratic cost

Image quantization Euler equations of incompressible fluids Evolution PDEs via the JKO flow Optimization under the constraint of convexity

Applications involving a modified transport cost Reflector design Unbalanced Optimal Transport Optimal mining

#### Jean-Marie Mirebeau

## Discretization

### Applications

- Quantization Euler JKO Convexity
- Applications involving a modified transport cost
- Reflector design Unbalanced transport Optimal mining

# Image quantization

 Use semi-Discrete Optimal transport to measure the distance from a collection of Dirac masses to a density.

$$W\left(\sum_{1\leq i\leq n}\mu_i\delta_{\mathsf{x}_i},\ 
ho\operatorname{\mathsf{Leb}}
ight)$$

Goes, Breeden, Ostromoukhov, Desbrun (2012) take an image intensity for  $\rho$ , fix identical weights  $\mu_i = \mu_*$ , and optimize over the positions  $x_i$ ,  $1 \le i \le n$ .



#### Jean-Marie Mirebeau

## Discretization

### Applications

- Quantization Euler JKO Convexity
- Applications involving a modified transport cost
- Reflector design Unbalanced transport Optimal mining

# Image quantization

 Use semi-Discrete Optimal transport to measure the distance from a collection of Dirac masses to a density.

$$W\left(\sum_{1\leq i\leq n}\mu_i\delta_{\mathbf{x}_i}, \ 
ho\operatorname{Leb}
ight)$$

• Goes, Breeden, Ostromoukhov, Desbrun (2012) take an image intensity for  $\rho$ , fix identical weights  $\mu_i = \mu_*$ , and optimize over the positions  $x_i$ ,  $1 \le i \le n$ .



Jean-Marie Mirebeau

### Discretization

### Applications

Quantization Euler JKO Convexity

Application involving a modified transport cost

Reflector design Unbalanced transport Optimal mining Euler equations of incompressible fluids

• Incompressible fluid in domain X, |X| = 1. No viscosity.

$$\partial_t v + (v \cdot \nabla)v = \nabla p, \qquad \text{div } v = 0.$$

Observe Initial x<sub>0,i</sub> and final x<sub>T,i</sub> positions of N particles.
 Reconstruct intermediate positions x<sub>t,i</sub> by minimizing

$$\int_{-\infty}^{\infty} \sum_{1 \le i \le N} |x_{t,i} - x_{t,i+1}|^2 + \lambda \underbrace{\sum_{1 \le t < T} W\left(\frac{1}{N} \sum_{1 \le i \le N} \delta_{x_{t,i}}, \operatorname{Leb}_X\right)}_{(1 \le i \le N)}$$

Kinetic energy

Penalization of compression

Motivation: geodesics on SDiff = {s ∈ C<sup>∞</sup>(X, X); det ∇s = 1}, w.r.t the L<sup>2</sup> metric, obey Euler equations, in Lagrangian coordinates. Arnold (66)

Convergence: as N, T, λ → ∞ suitably, minimizers converge to a Generalized flow (Brenier 89), i.e. a measure on C<sup>0</sup>([0, 1], X), solving a relaxation of Euler equations.

#### lean-Marie Mirebeau

### Applications

Quantization Fuler IKO Convexity

involving a modified

Reflector design Unhalanced transport Optimal mining

# Euler equations of incompressible fluids

- Incompressible fluid in domain X, |X| = 1. No viscosity.
- Observe Initial  $x_{0,i}$  and final  $x_{T,i}$  positions of N particles.

$$\int_{U} \sum_{0 \le t < T} \sum_{1 \le i \le N} |x_{t,i} - x_{t,i+1}|^2 + \lambda \underbrace{\sum_{1 \le t < T} W\left(\frac{1}{N} \sum_{1 \le i \le N} \delta_{x_{t,i}}, \text{ Leb}_X\right)}_{\text{Kinetic energy}}$$

#### Jean-Marie Mirebeau

### Discretization

### Applications

Quantization Euler JKO Convexity

Application involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

# Euler equations of incompressible fluids

- Incompressible fluid in domain X, |X| = 1. No viscosity.
- Observe Initial  $x_{0,i}$  and final  $x_{T,i}$  positions of N particles.
- Reconstruct intermediate positions x<sub>t,i</sub> by minimizing

$$\frac{T}{N} \sum_{0 \le t < T} \sum_{1 \le i \le N} |x_{t,i} - x_{t,i+1}|^2 + \lambda \underbrace{\sum_{1 \le t < T} W\left(\frac{1}{N} \sum_{1 \le i \le N} \delta_{x_{t,i}}, \text{ Leb}_X\right)}_{\text{Kinetic energy}}$$

- Motivation: geodesics on SDiff = {s ∈ C<sup>∞</sup>(X, X); det ∇s = 1}, w.r.t the L<sup>2</sup> metric, obey Euler equations, in Lagrangian coordinates. Arnold (66)
- Convergence: as N, T, λ → ∞ suitably, minimizers converge to a Generalized flow (Brenier 89), i.e. a measure on C<sup>0</sup>([0, 1], X), solving a relaxation of Euler equations.

### Jean-Marie Mirebeau

## Discretization

### Applications

Quantization Euler JKO Convexity

Т

Ν

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

# Euler equations of incompressible fluids

▶ Incompressible fluid in domain X, |X| = 1. No viscosity.

- Observe Initial  $x_{0,i}$  and final  $x_{T,i}$  positions of N particles.
  - Reconstruct intermediate positions x<sub>t,i</sub> by minimizing

$$\underbrace{\sum_{0 \le t < T} \sum_{1 \le i \le N} |x_{t,i} - x_{t,i+1}|^2}_{\text{Kinetic energy}} + \lambda \underbrace{\sum_{1 \le t < T} W\left(\frac{1}{N} \sum_{1 \le i \le N} \delta_{x_{t,i}}, \text{ Leb}_X\right)}_{\text{Penalization of compression}}$$

 Motivation: geodesics on SDiff = {s ∈ C<sup>∞</sup>(X, X); det ∇s = 1}, w.r.t the L<sup>2</sup> metric, obey Euler equations, in Lagrangian coordinates. Arnold (66)

$$\ddot{s}_t = \nabla p \circ s_t. \tag{1}$$

Convergence: as N, T, λ → ∞ suitably, minimizers converge to a Generalized flow (Brenier 89), i.e. a measure on C<sup>0</sup>([0,1], X), solving a relaxation of Euler equations.

#### Jean-Marie Mirebeau

### Discretization

- Applications
- Quantization Euler JKO Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

# Euler equations of incompressible fluids

- Incompressible fluid in domain X, |X| = 1. No viscosity.
- Observe Initial  $x_{0,i}$  and final  $x_{T,i}$  positions of N particles.
- Reconstruct intermediate positions x<sub>t,i</sub> by minimizing

$$\underbrace{\frac{T}{N}\sum_{0 \le t < T}\sum_{1 \le i \le N} |x_{t,i} - x_{t,i+1}|^2}_{\text{Kinetic energy}} + \lambda \underbrace{\sum_{1 \le t < T} W\left(\frac{1}{N}\sum_{1 \le i \le N} \delta_{x_{t,i}}, \text{ Leb}_X\right)}_{\text{Penalization of compression}}$$

- Motivation: geodesics on SDiff = {s ∈ C<sup>∞</sup>(X, X); det ∇s = 1}, w.r.t the L<sup>2</sup> metric, obey Euler equations, in Lagrangian coordinates. Arnold (66)
- Convergence: as N, T, λ → ∞ suitably, minimizers converge to a Generalized flow (Brenier 89), i.e. a measure on C<sup>0</sup>([0, 1], X), solving a relaxation of Euler equations.

## Jean-Marie Mirebeau

### Discretization

### Applications

Quantization Euler JKO Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

# Evolution PDEs via the JKO scheme

► JKO ⇔ implicit gradient descent w.r.t Wasserstein metric

$$\mu_{n+1} := \operatorname*{argmin}_{\mu \in \mathsf{Prob}(\Omega)} \frac{1}{2\tau} W(\mu_n, \mu) + \mathcal{F}(\mu).$$

► Formally converges to an evolution PDE as  $\tau \to 0$  $\mathcal{F}(\rho \operatorname{Leb}_{\Omega}) = \int_{\Omega} F(x, \rho(x)) dx \quad \Rightarrow \quad \partial_t \rho = \operatorname{div}(\rho \nabla \partial_\rho F(\cdot, \rho)).$ 

 Theoretical scheme proposed by Jordan, Kinderlehrer and Otto, to obtain existence results for these PDEs.

Figure : Simulation of crowd motion under a congestion constraint. Benamou, Carlier, Mérigot, Oudet (2014).

Jean-Marie Mirebeau

## Discretization

### Applications

Quantization Euler JKO Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

# Evolution PDEs via the JKO scheme

• JKO  $\Leftrightarrow$  implicit gradient descent w.r.t Wasserstein metric

$$\mu_{n+1} := \operatorname*{argmin}_{\mu \in \mathsf{Prob}(\Omega)} \frac{1}{2\tau} W(\mu_n, \mu) + \mathcal{F}(\mu).$$

• Formally converges to an evolution PDE as  $\tau \to 0$  $\mathcal{F}(\rho \operatorname{Leb}_{\Omega}) = \int_{\Omega} F(x, \rho(x)) dx \Rightarrow \partial_t \rho = \operatorname{div}(\rho \nabla \partial_{\rho} F(\cdot, \rho)).$ 

 Theoretical scheme proposed by Jordan, Kinderlehrer and Otto, to obtain existence results for these PDEs.



Figure : Simulation of crowd motion under a congestion constraint. Benamou, Carlier, Mérigot, Oudet (2014).

Jean-Marie Mirebeau

## Discretization

### Applications

Quantization Euler JKO Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

# Evolution PDEs via the JKO scheme

• JKO  $\Leftrightarrow$  implicit gradient descent w.r.t Wasserstein metric

$$\mu_{n+1} := \operatorname*{argmin}_{\mu \in \mathsf{Prob}(\Omega)} \frac{1}{2\tau} W(\mu_n, \mu) + \mathcal{F}(\mu).$$

• Formally converges to an evolution PDE as au o 0

$$\mathcal{F}(\rho \operatorname{Leb}_{\Omega}) = \int_{\Omega} F(x, \rho(x)) dx \quad \Rightarrow \quad \partial_t \rho = \operatorname{div}(\rho \nabla \partial_{\rho} F(\cdot, \rho)).$$

 Theoretical scheme proposed by Jordan, Kinderlehrer and Otto, to obtain existence results for these PDEs.



Figure : Simulation of crowd motion under a congestion constraint. Benamou, Carlier, Mérigot, Oudet (2014).

### Jean-Marie Mirebeau

### Discretization

### Applications

Quantization Euler JKO

## Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

# Optimization under the constraint of convexity

Finite set  $X \subset \mathbb{R}^d$ , map  $u: X \to \mathbb{R}$ .

• *u* has a convex extension iff its subgradients are non-empty

$$\partial u(x) := \{ p \in \mathbb{R}^d; \forall y \in X, u(x) + \langle p, y - x \rangle \leq u(y) \}$$

•  $\partial u(x) = \operatorname{Lag}_{\psi}(x)$  with  $\psi(x) = \frac{1}{2}|x|^2 - u(x)$ .

 u has a strictly convex extension with gradients in Ω, where Ω is a convex bounded domain, iff

 $\infty > -\sum_{x\in X} \ln |\partial u(x) \cap \Omega| = \operatorname{Kod}(\operatorname{Vu}) \operatorname{Lobo})$ 

This barrier function is convex in *u*.

Poptimal transport interpretation: the gradient of the Legendre Fenchel conjugate u<sup>\*</sup> defines an optimal transport ∇u<sup>\*</sup>: (Ω, Leb<sub>Ω</sub>) → (X, ∇u<sup>\*</sup><sub>#</sub> Leb<sub>Ω</sub>), product → customer. We penalize the image measure entropy.

### Jean-Marie Mirebeau

## Discretization

### Applications

Quantization Euler JKO

## Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

# Optimization under the constraint of convexity

Finite set  $X \subset \mathbb{R}^d$ , map  $u: X \to \mathbb{R}$ .

u has a convex extension iff its subgradients are non-empty

$$\partial u(x) := \{ p \in \mathbb{R}^d; \forall y \in X, u(x) + \langle p, y - x \rangle \leq u(y) \}$$

• 
$$\partial u(x) = \operatorname{Lag}_{\psi}(x)$$
 with  $\psi(x) = \frac{1}{2}|x|^2 - u(x)$ .

 u has a strictly convex extension with gradients in Ω, where Ω is a convex bounded domain, iff

 $\infty > -\sum_{x \in X} \ln |\partial u(x) \cap \Omega| = \operatorname{Ext}(\operatorname{Vu}), \operatorname{Lobo})$ 

This barrier function is convex in *u*.

Poptimal transport interpretation: the gradient of the Legendre Fenchel conjugate u<sup>\*</sup> defines an optimal transport ∇u<sup>\*</sup>: (Ω, Leb<sub>Ω</sub>) → (X, ∇u<sup>\*</sup><sub>#</sub> Leb<sub>Ω</sub>), product → customer. We penalize the image measure entropy.

### Jean-Marie Mirebeau

Discretization

### Applications

Quantization Euler JKO Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

# Optimization under the constraint of convexity

Finite set  $X \subset \mathbb{R}^d$ , map  $u: X \to \mathbb{R}$ .

▶ *u* has a convex extension iff its subgradients are non-empty

$$\partial u(x) := \{ p \in \mathbb{R}^d; \forall y \in X, u(x) + \langle p, y - x \rangle \leq u(y) \}$$

• 
$$\partial u(x) = \operatorname{Lag}_{\psi}(x)$$
 with  $\psi(x) = \frac{1}{2}|x|^2 - u(x)$ .

 u has a strictly convex extension with gradients in Ω, where Ω is a convex bounded domain, iff

 $\infty > -\sum_{x \in X} \ln |\partial u(x) \cap \Omega| = \operatorname{Ent}(\nabla u_{\#}^* \operatorname{Leb}_{\Omega})$ 

## This barrier function is convex in u.

 Optimal transport interpretation: the gradient of the Legendre Fenchel conjugate u<sup>\*</sup> defines an optimal transport ∇u<sup>\*</sup>: (Ω, Leb<sub>Ω</sub>) → (X, ∇u<sup>\*</sup><sub>#</sub> Leb<sub>Ω</sub>), product → customer. We penalize the image measure entropy.

### Jean-Marie Mirebeau

Discretization

### Applications

Quantization Euler JKO

Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

# Optimization under the constraint of convexity

Finite set  $X \subset \mathbb{R}^d$ , map  $u: X \to \mathbb{R}$ .

▶ *u* has a convex extension iff its subgradients are non-empty

$$\partial u(x) := \{ p \in \mathbb{R}^d; \forall y \in X, u(x) + \langle p, y - x \rangle \leq u(y) \}$$

• 
$$\partial u(x) = \operatorname{Lag}_{\psi}(x)$$
 with  $\psi(x) = \frac{1}{2}|x|^2 - u(x)$ .

 u has a strictly convex extension with gradients in Ω, where Ω is a convex bounded domain, iff

 $\infty > -\sum_{x \in X} \ln |\partial u(x) \cap \Omega| = \operatorname{Ent}(\nabla u_{\#}^* \operatorname{Leb}_{\Omega})$ 

## This barrier function is convex in u.

 Optimal transport interpretation: the gradient of the Legendre Fenchel conjugate u<sup>\*</sup> defines an optimal transport ∇u<sup>\*</sup>: (Ω, Leb<sub>Ω</sub>) → (X, ∇u<sup>\*</sup><sub>#</sub> Leb<sub>Ω</sub>), product → customer. We penalize the image measure entropy.

### Jean-Marie Mirebeau

Discretization

### Applications

Quantization Euler JKO Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

# Optimization under the constraint of convexity

Finite set  $X \subset \mathbb{R}^d$ , map  $u : X \to \mathbb{R}$ .

u has a convex extension iff its subgradients are non-empty

$$\partial u(x) := \{ p \in \mathbb{R}^d; \forall y \in X, u(x) + \langle p, y - x \rangle \leq u(y) \}$$

• 
$$\partial u(x) = \operatorname{Lag}_{\psi}(x)$$
 with  $\psi(x) = \frac{1}{2}|x|^2 - u(x)$ .

 u has a strictly convex extension with gradients in Ω, where Ω is a convex bounded domain, iff

$$\infty > -\sum_{x \in X} \ln |\partial u(x) \cap \Omega| = \operatorname{Ent}(\nabla u_{\#}^* \operatorname{Leb}_{\Omega})$$

This barrier function is convex in u.

Optimal transport interpretation: the gradient of the Legendre Fenchel conjugate u<sup>\*</sup> defines an optimal transport ∇u<sup>\*</sup>: (Ω, Leb<sub>Ω</sub>) → (X, ∇u<sup>\*</sup><sub>#</sub> Leb<sub>Ω</sub>), product → customer. We penalize the image measure entropy.

#### Jean-Marie Mirebeau

### Discretization

Applications

Quantization Euler JKO

### Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining The Monopolist problem (Rochet, Chone, 98)
 Monopolist produces goods q ∈ ℝ<sup>d</sup><sub>+</sub> at cost c(q), c(0) = 0.
 Monopolist unilaterally sets prices π(q),
 Customer of type z ∈ ℝ<sup>d</sup> maximizes his net utility.

$$U(z) = \sup_{q \in \mathbb{R}^d_+} \underbrace{\langle q, z \rangle}_{\text{Utility}} - \underbrace{\pi(q)}_{\text{Price}}$$

 $(x)_{ij}$  ( $x_{ij}$ )  $(x)_{ij}$ 

- Customer density  $\mu$  on  $\mathbb{R}^d_+$ , is known to the monopolist.

 $\operatorname{Profit} = \max_{U \text{ convert}} \int_{\mathbb{R}^d} \langle \nabla U(z), z \rangle - U(z) - c(\nabla U(z)) \, d\mu(z).$ 

### Jean-Marie Mirebeau

### Discretization

Applications

Quantization Euler JKO

Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

# The Monopolist problem (Rochet, Chone, 98)

- Monopolist produces goods  $q \in \mathbb{R}^d_+$  at cost c(q), c(0) = 0.
  - Monopolist unilaterally sets prices  $\pi(q)$ , except  $\pi(0) = 0$ .

Customer of type  $z \in \mathbb{R}^d_+$  maximizes his net utility

$$U(z) = \sup_{q \in \mathbb{R}^d_+} \underbrace{\langle q, z \rangle}_{\text{Utility}} - \underbrace{\pi(q)}_{\text{Price}}$$

anieg, Jahogonom ,  $(x)_{ij}$  (s) product  $g(x)_{ij}$  (s) product  $g(x)_{ij}$ 

- Customer density  $\mu$  on  $\mathbb{R}^d_+$ , is known to the monopolist.

$$\operatorname{Profit} = \max_{U \text{ convers}} \int_{\mathbb{R}^d} \langle \nabla U(z), z \rangle - U(z) - c(\nabla U(z)) \, d\mu(z).$$

### Jean-Marie Mirebeau

## Discretization

Applications

Quantization Euler JKO Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

# The Monopolist problem (Rochet, Chone, 98)

• Monopolist produces goods  $q \in \mathbb{R}^d_+$  at cost c(q), c(0) = 0.

- Monopolist unilaterally sets prices  $\pi(q)$ , except  $\pi(0) = 0$ .
- Customer of type  $z \in \mathbb{R}^d_+$  maximizes his net utility

$$U(z) = \sup_{q \in \mathbb{R}^d_+} \underbrace{\langle q, z \rangle}_{ ext{Utility}} - \underbrace{\pi(q)}_{ ext{Price}}$$

Customer z buys product q(z), monopolist gains $\pi(q(z)) - c(q(z)) = \langle q(z), z \rangle - U(z) - c(q(z)),$ 

• Customer density  $\mu$  on  $\mathbb{R}^d_+$ , is known to the monopolist.

 $\operatorname{Profit} = \max_{U \text{ convert}} \int_{\mathbb{R}^d} \langle \nabla U(z), z \rangle - U(z) - c(\nabla U(z)) \, d\mu(z).$ 

Jean-Marie Mirebeau

Discretization

Applications Quantization Euler JKO Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining The Monopolist problem (Rochet, Chone, 98)

• Monopolist produces goods  $q \in \mathbb{R}^d_+$  at cost c(q), c(0) = 0.

• Monopolist unilaterally sets prices  $\pi(q)$ , except  $\pi(0) = 0$ .

• Customer of type  $z \in \mathbb{R}^d_+$  maximizes his net utility

$$U(z) = \sup_{q \in \mathbb{R}^d_+} \underbrace{\langle q, z \rangle}_{ ext{Utility}} - \underbrace{\pi(q)}_{ ext{Price}}$$

Customer z buys product  $q(z) = \nabla U(z)$ , monopolist gains  $\pi(q(z)) - c(q(z)) = \langle q(z), z \rangle - U(z) - c(q(z)),$   $= \langle \nabla U(z), z \rangle - U(z) - c(\nabla U(z)).$ 

• Customer density  $\mu$  on  $\mathbb{R}^d_+$ , is known to the monopolist.

 $\operatorname{Profit} = \max_{U \text{ convert}} \int_{\mathbb{R}^d} \langle \nabla U(z), z \rangle - U(z) - c(\nabla U(z)) \, d\mu(z).$ 

Jean-Marie Mirebeau

Discretization

Applications Quantization Euler JKO

Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining The Monopolist problem (Rochet, Chone, 98)

• Monopolist produces goods  $q \in \mathbb{R}^d_+$  at cost c(q), c(0) = 0.

- Monopolist unilaterally sets prices  $\pi(q)$ , except  $\pi(0) = 0$ .
- Customer of type  $z \in \mathbb{R}^d_+$  maximizes his net utility

$$U(z) = \sup_{q \in \mathbb{R}^d_+} \underbrace{\langle q, z \rangle}_{ ext{Utility}} - \underbrace{\pi(q)}_{ ext{Price}}$$

Customer z buys product  $q(z) = \nabla U(z)$ , monopolist gains

$$\pi(q(z)) - c(q(z)) = \langle q(z), z \rangle - U(z) - c(q(z)),$$
  
=  $\langle \nabla U(z), z \rangle - U(z) - c(\nabla U(z)).$ 

Customer density  $\mu$  on  $\mathbb{R}^d_+$ , is known to the monopolist.

 $\operatorname{Profit} = \int_{\mathbb{R}^d} \langle \nabla U(z), z \rangle - U(z) - c(\nabla U(z)) \, d\mu(z).$ 

Jean-Marie Mirebeau

Discretization

Applications Quantization Euler JKO

Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

# The Monopolist problem (Rochet, Chone, 98)

• Monopolist produces goods  $q \in \mathbb{R}^d_+$  at cost c(q), c(0) = 0.

- Monopolist unilaterally sets prices  $\pi(q)$ , except  $\pi(0) = 0$ .
- Customer of type  $z \in \mathbb{R}^d_+$  maximizes his net utility

$$U(z) = \sup_{q \in \mathbb{R}^d_+} \underbrace{\langle q, z \rangle}_{ ext{Utility}} - \underbrace{\pi(q)}_{ ext{Price}}$$

Customer z buys product  $q(z) = \nabla U(z)$ , monopolist gains

$$\pi(q(z))-c(q(z))=\langle q(z),z
angle -U(z)-c(q(z)),\ =\langle 
abla U(z),z
angle -U(z)-c(
abla U(z)).$$

- Customer density  $\mu$  on  $\mathbb{R}^d_+$ , is known to the monopolist

 $\operatorname{Profit} = \max_{U \text{ convex}} \int_{\mathbb{R}^d} \langle \nabla U(z), z \rangle - U(z) - c(\nabla U(z)) \, d\mu(z).$ 

Jean-Marie Mirebeau

Discretization

Applications Quantization Euler JKO

Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

# The Monopolist problem (Rochet, Chone, 98)

• Monopolist produces goods  $q \in \mathbb{R}^d_+$  at cost c(q), c(0) = 0.

• Monopolist unilaterally sets prices  $\pi(q)$ , except  $\pi(0) = 0$ .

• Customer of type  $z \in \mathbb{R}^d_+$  maximizes his net utility

$$U(z) = \sup_{q \in \mathbb{R}^d_+} \underbrace{\langle q, z \rangle}_{ ext{Utility}} - \underbrace{\pi(q)}_{ ext{Price}}$$

Customer z buys product  $q(z) = \nabla U(z)$ , monopolist gains

$$\pi(q(z)) - c(q(z)) = \langle q(z), z \rangle - U(z) - c(q(z)), \ = \langle \nabla U(z), z \rangle - U(z) - c(\nabla U(z)).$$

• Customer density  $\mu$  on  $\mathbb{R}^d_+$ , is known to the monopolist

$$\operatorname{Profit} = \max_{U \text{ convex}} \int_{\mathbb{R}^d} \langle \nabla U(z), z \rangle - U(z) - c(\nabla U(z)) \, d\mu(z).$$

Jean-Marie Mirebeau

Discretization

Applications Quantization Euler JKO

Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

# The Monopolist problem (Rochet, Chone, 98)

• Monopolist produces goods  $q \in \mathbb{R}^d_+$  at cost c(q), c(0) = 0.

• Monopolist unilaterally sets prices  $\pi(q)$ , except  $\pi(0) = 0$ .

• Customer of type  $z \in \mathbb{R}^d_+$  maximizes his net utility

$$U(z) = \sup_{q \in \mathbb{R}^d_+} \underbrace{\langle q, z \rangle}_{ ext{Utility}} - \underbrace{\pi(q)}_{ ext{Price}}$$

Customer z buys product  $q(z) = \nabla U(z)$ , monopolist gains

$$\pi(q(z)) - c(q(z)) = \langle q(z), z \rangle - U(z) - c(q(z)), \ = \langle \nabla U(z), z \rangle - U(z) - c(\nabla U(z)).$$

• Customer density  $\mu$  on  $\mathbb{R}^d_+$ , is known to the monopolist

$$\operatorname{Profit} = \max_{\bigcup \text{ convex}} \int_{\mathbb{R}^d} \langle \nabla U(z), z \rangle - U(z) - c(\nabla U(z)) \, d\mu(z).$$

### Jean-Marie Mirebeau

## Discretization

### Applications Quantization Euler JKO

#### Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining



Figure : Customer density  $\mu$  uniform on  $\Omega = [1, 2]^2$ , monopolist production cost  $c(q) = \frac{1}{2}|q|^2$ . Left: solution u. Center: product sales density  $\nabla u \# \mu$ . Right:  $\Omega_k := \{ \operatorname{rank}(\nabla^2 u) = k \}$ .

J.-M. Mirebeau, Adaptive Anisotropic and Hierarchical Cones of Convex functions, Numerische Mathematik (2015).

$$Profit = \max_{u \text{ convex}} \int_{\mathbb{R}^d} \langle \nabla u(z), z \rangle - u(z) - c(\nabla u(z)) d\mu(z).$$

#### Jean-Marie Mirebeau

## Discretization

### Applications Quantization Euler JKO

### Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining



Figure : Customer density  $\mu$  uniform on  $\Omega = [1, 2]^2$ , monopolist production cost  $c(q) = \frac{1}{2}|q|^2$ . Left: solution u. Center: product sales density  $\nabla u \# \mu$ . Right:  $\Omega_k := \{ \operatorname{rank}(\nabla^2 u) = k \}$ .

J.-M. Mirebeau, Adaptive Anisotropic and Hierarchical Cones of Convex functions, Numerische Mathematik (2015).

$$\operatorname{Profit} = \max_{u \text{ convex}} \int_{\mathbb{R}^d} \langle \nabla u(z), z \rangle - u(z) - c(\nabla u(z)) \, d\mu(z).$$

#### Jean-Marie Mirebeau

## Discretization

### Applications Quantization Euler JKO

### Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining



Figure : Customer density  $\mu$  uniform on  $\Omega = [1, 2]^2$ , monopolist production cost  $c(q) = \frac{1}{2}|q|^2$ . Left: solution u. Center: product sales density  $\nabla u \# \mu$ . Right:  $\Omega_k := \{ \operatorname{rank}(\nabla^2 u) = k \}$ .

J.-M. Mirebeau, Adaptive Anisotropic and Hierarchical Cones of Convex functions, Numerische Mathematik (2015).

$$Profit = \max_{u \text{ convex}} \int_{\mathbb{R}^d} \langle \nabla u(z), z \rangle - u(z) - c(\nabla u(z)) d\mu(z).$$



Figure : Customer density  $\mu$  uniform on disk D((3/2, 3/2), 1/2) or triangle centered at (3/2, 3/2). Left: solution u. Center: product line (=Subgradient cells=Laguerre diagram). Right: dual triangulation. No one buys the null product in the triangle case. Joint work with Q. Merigot

Jean-Marie Mirebeau

Discretization

Applications

Quantization Euler JKO

Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining



Figure : Product line for a uniform density of customers on  $[1,2]^3$ 

$$\operatorname{Profit} = \max_{u \text{ convex}} \int_{\mathbb{R}^d} \langle \nabla u(z), z \rangle - u(z) - c(\nabla u(z)) \, d\mu(z).$$

# Minimizing over convex bodies

### Jean-Marie Mirebeau

### Discretization

Applications Quantization Euler JKO Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining



Figure : Several bodies of width 1. The glass surface remains flat and at height 1 (Palais de la découverte, Paris).

# Minimizing over convex bodies

### Jean-Marie Mirebeau

## Discretization

## Applications

Quantization Euler JKO

Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining



Figure : Numerical minimization of volume among convex bodies of width 1. Our experiments support Meissner's conjecture.

### Jean-Marie Mirebeau

## Discretization

### Applications

Quantization Euler JKO Convexity

Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

## Semi-Discrete Optimal Transport

oplications with the standard quadratic cost Image quantization Euler equations of incompressible fluids Evolution PDEs via the JKO flow Optimization under the constraint of convexity

## Applications involving a modified transport cost

Reflector design Unbalanced Optimal Transport Optimal mining

Reflector design

### Jean-Marie Mirebeau

## Discretization

### Applications

Quantization Euler JKO Convexity

Application: involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

# Objective: Project a point-source light onto a uniform density, a non-blinding headlight, a logo...

Masks loose energy ⇒ transport instead light by reflection
Light rays only follow shortest paths ⇒ optimal transport.
Non-quadratic cost function e.g. c(x, y) = -ln(1 - ⟨x, y⟩), for x, y ∈ S<sup>2</sup>. (concave reflector and point source.)
Machado, Merigot, Thibert (2015) implement CGAL<sup>®</sup> exact geometric predicates for these Laguerre diagrams.



Reflector design

### Jean-Marie Mirebeau

## Discretization

### Applications

Quantization Euler JKO Convexity

Application: involving a modified transport cost

Reflector design Unbalanced transport Optimal

mining

# Objective: Project a point-source light onto a uniform density, a non-blinding headlight, a logo...

Masks loose energy ⇒ transport instead light by reflection
 Light rays only follow shortest paths ⇒ optimal transport.
 Non-quadratic cost function e.g. c(x, y) = - ln(1-(x, y)), for x, y ∈ S<sup>2</sup>. (concave reflector and point source.)
 Machado, Merigot, Thibert (2015) implement CGAL<sup>®</sup> exact geometric predicates for these Laguerre diagrams.



### Jean-Marie Mirebeau

## Discretization

### Applications

Quantization Euler JKO Convexity

Applications involving a modified transport cost

Reflector design Unbalanced

transport Optimal mining

# Reflector design

- Objective: Project a point-source light onto a uniform density, a non-blinding headlight, a logo...
- $\blacktriangleright$  Masks loose energy  $\Rightarrow$  transport instead light by reflection
  - Light rays only follow shortest paths ⇒ optimal transport.
    Non-quadratic cost function e.g. c(x, y) = -ln(1 ⟨x, y⟩), for x, y ∈ S<sup>2</sup>. (concave reflector and point source.)
    Machado, Merigot, Thibert (2015) implement CGAL<sup>®</sup> exact geometric predicates for these Laguerre diagrams.



Reflector design

### Jean-Marie Mirebeau

## Discretization

### Applications

- Quantization Euler JKO Convexity
- Applications involving a modified transport cost

### Reflector design

Unbalanced transport Optimal mining

# Objective: Project a point-source light onto a uniform density, a non-blinding headlight, a logo...

- $\blacktriangleright$  Masks loose energy  $\Rightarrow$  transport instead light by reflection
- ► Light rays only follow shortest paths ⇒ optimal transport.
- Non-quadratic cost function e.g. c(x, y) = − ln(1 − ⟨x, y⟩), for x, y ∈ S<sup>2</sup>. (concave reflector and point source.)
   Machado, Merigot, Thibert (2015) implement CGAL<sup>®</sup> exact geometric predicates for these Laguerre diagrams



Reflector design

### Jean-Marie Mirebeau

## Discretization

### Applications

Quantization Euler JKO Convexity

Applications involving a modified transport cost

Reflector design

Unbalanced transport Optimal mining

# Objective: Project a point-source light onto a uniform density, a non-blinding headlight, a logo...

 $\blacktriangleright$  Masks loose energy  $\Rightarrow$  transport instead light by reflection

- Light rays only follow shortest paths  $\Rightarrow$  optimal transport.
- Non-quadratic cost function e.g. c(x, y) = − ln(1 − ⟨x, y⟩), for x, y ∈ S<sup>2</sup>. (concave reflector and point source.)

Machado, Merigot, Thibert (2015) implement CGAL<sup>®</sup>
 exact geometric predicates for these Laguerre diagrams.



Reflector design

### Jean-Marie Mirebeau

## Discretization

### Applications

Quantization Euler JKO Convexity

Application: involving a modified transport cost

#### Reflector design

Unbalanced transport Optimal mining

# Objective: Project a point-source light onto a uniform density, a non-blinding headlight, a logo...

 $\blacktriangleright$  Masks loose energy  $\Rightarrow$  transport instead light by reflection

- Light rays only follow shortest paths  $\Rightarrow$  optimal transport.
- Non-quadratic cost function e.g. c(x, y) = − ln(1 − ⟨x, y⟩), for x, y ∈ S<sup>2</sup>. (concave reflector and point source.)
- Machado, Merigot, Thibert (2015) implement CGAL<sup>®</sup> exact geometric predicates for these Laguerre diagrams.



# Optimal transport with source terms

### Jean-Marie Mirebeau

## Discretization

V

## Applications

- Quantization Euler JKO Convexity
- Applications involving a modified transport cost
- Reflector design Unbalanced transport Optimal mining

$$\mathcal{W}(
ho_0,
ho_1) = \inf_{
ho,m} \int_0^1 \int_\Omega rac{|m|^2}{
ho} \quad ext{s.t.} \quad \begin{cases} \partial_t 
ho + ext{div} \ m = 0 \ 
ho(0) = 
ho_0, 
ho(0) = 
ho_1 \end{cases}$$

- Optimal transport cost, with c(x, y) = <sup>1</sup>/<sub>2</sub>|x − y|<sup>2</sup>, is the kinetic energy required to move a pressureless fluid from density ρ<sub>0</sub> to ρ<sub>1</sub>. Benamou, Brenier (2002).
- $\rho$ : fluid density. *m*: fluid momentum.
- W defines a distance between measures of distinct masses.
  - $\mathsf{Lag}_{\psi}(x) := \left\{ p \in \mathbb{R}^d; \forall y \in X, \frac{\mathsf{cos}_+ |p x|}{1 \psi(x)} \ge \frac{\mathsf{cos}_+ |p y|}{1 \psi(y)} \right\}$

# Optimal transport with source terms

### Jean-Marie Mirebeau

## Discretization

## Applications

- Quantization Euler JKO Convexity
- Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

$$\tilde{\mathcal{N}}(\rho_0,\rho_1) = \inf_{\rho,m,\sigma} \int_0^1 \int_\Omega \frac{|m|^2 + \sigma^2}{\rho} \quad \text{s.t.} \quad \begin{cases} \partial_t \rho + \operatorname{div} m = \sigma \\ \rho(0) = \rho_0, \rho(0) = \rho_1 \end{cases}$$

- Optimal transport cost, with c(x, y) = <sup>1</sup>/<sub>2</sub>|x − y|<sup>2</sup>, is the kinetic energy required to move a pressureless fluid from density ρ<sub>0</sub> to ρ<sub>1</sub>. Benamou, Brenier (2002).
- $\rho$ : fluid density. *m*: fluid momentum.
- Possibility to add a source term σ.
   Peyre et al, Savaré et al, Kondratyev et al (2015)
  - $\sim ilde{W}$  defines a distance between measures of distinct masses.
- Static semi-discrete formulation requires constructing cells

$$\mathsf{Lag}_{\psi}(x) := \left\{ p \in \mathbb{R}^{d}; \forall y \in X, \frac{\mathsf{cos}_{+} |p - x|}{1 - \psi(x)} \geq \frac{\mathsf{cos}_{+} |p - y|}{1 - \psi(y)} \right\}$$

# Optimal transport with source terms

### Jean-Marie Mirebeau

## Discretization

## Applications

- Quantization Euler JKO Convexity
- Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

$$\tilde{\mathcal{N}}(\rho_0,\rho_1) = \inf_{\rho,m,\sigma} \int_0^1 \int_\Omega \frac{|m|^2 + \sigma^2}{\rho} \quad \text{s.t.} \quad \begin{cases} \partial_t \rho + \operatorname{div} m = \sigma \\ \rho(0) = \rho_0, \rho(0) = \rho_1 \end{cases}$$

- Optimal transport cost, with c(x, y) = <sup>1</sup>/<sub>2</sub>|x − y|<sup>2</sup>, is the kinetic energy required to move a pressureless fluid from density ρ<sub>0</sub> to ρ<sub>1</sub>. Benamou, Brenier (2002).
- $\rho$ : fluid density. *m*: fluid momentum.
- Possibility to add a source term σ.
   Peyre et al, Savaré et al, Kondratyev et al (2015)
- $\tilde{W}$  defines a distance between measures of distinct masses.
- Static semi-discrete formulation requires constructing cells

 $\mathsf{Lag}_{\psi}(x) := \left\{ p \in \mathbb{R}^{d}; \forall y \in X, \frac{\cos_{+}|p-x|}{1-\psi(x)} \geq \frac{\cos_{+}|p-y|}{1-\psi(y)} \right\}$ 

# Optimal transport with source terms

### Jean-Marie Mirebeau

## Discretization

## Applications

- Quantization Euler JKO Convexity
- Applications involving a modified transport cost

Reflector design Unbalanced transport Optimal mining

$$\tilde{\mathcal{N}}(\rho_0,\rho_1) = \inf_{\rho,m,\sigma} \int_0^1 \int_\Omega \frac{|m|^2 + \sigma^2}{\rho} \quad \text{s.t.} \quad \begin{cases} \partial_t \rho + \operatorname{div} m = \sigma \\ \rho(0) = \rho_0, \rho(0) = \rho_1 \end{cases}$$

- Optimal transport cost, with c(x, y) = <sup>1</sup>/<sub>2</sub>|x − y|<sup>2</sup>, is the kinetic energy required to move a pressureless fluid from density ρ<sub>0</sub> to ρ<sub>1</sub>. Benamou, Brenier (2002).
- $\rho$ : fluid density. *m*: fluid momentum.
- Possibility to add a source term σ.
   Peyre et al, Savaré et al, Kondratyev et al (2015)
- $\tilde{W}$  defines a distance between measures of distinct masses.
- Static semi-discrete formulation requires constructing cells

$$\mathsf{Lag}_{\psi}(x) := \left\{ p \in \mathbb{R}^d; \forall y \in X, \frac{\cos_+ |p - x|}{1 - \psi(x)} \geq \frac{\cos_+ |p - y|}{1 - \psi(y)} \right\}$$

# Optimal mining

### Jean-Marie Mirebeau

### Discretization

### Applications

- Quantization Euler JKO Convexity
- Applications involving a modified transport cost
- Reflector design Unbalanced transport

Optimal mining



## • Open pit mining requires excavating topsoil above ore.

- Ore at x is extracted if it pays for removal of cone C(x) above, left in place otherwise. (Risk of landslide)
- Optimal pit given by an Optimal Transport problem, from ore to topsoil distributions, and with cost

$$c(x,y) = egin{cases} 0 & ext{if } y \in C(x), \ +\infty & ext{otherwise}, \end{cases}$$

# Optimal mining

#### Jean-Marie Mirebeau

### Discretization

### Applications

- Quantization Euler JKO Convexity
- Applications involving a modified transport cost
- Reflector design Unbalanced transport

Optimal mining



- Open pit mining requires excavating topsoil above ore.
- Ore at x is extracted if it pays for removal of cone C(x) above, left in place otherwise. (Risk of landslide)
- Optimal pit given by an Optimal Transport problem, from ore to topsoil distributions, and with cost

$$c(x,y) = egin{cases} 0 & ext{if } y \in C(x), \ +\infty & ext{otherwise}, \end{cases}$$

#### Jean-Marie Mirebeau

## Discretization

### Applications

- Quantization Euler JKO Convexity
- Applications involving a modified transport cost
- Reflector design Unbalanced transport

Optimal mining

# Optimal mining



- Open pit mining requires excavating topsoil above ore.
- Ore at x is extracted if it pays for removal of cone C(x) above, left in place otherwise. (Risk of landslide)
- Optimal pit given by an Optimal Transport problem, from ore to topsoil distributions, and with cost

$$c(x,y) = egin{cases} 0 & ext{if } y \in C(x), \ +\infty & ext{otherwise}, \end{cases}$$

#### Jean-Marie Mirebeau

## Discretization

## Applications

- Quantization Euler JKO Convexity
- Applications involving a modified transport cost
- Reflector design Unbalanced transport

Optimal mining

# Optimal mining



- Open pit mining requires excavating topsoil above ore.
- Ore at x is extracted if it pays for removal of cone C(x) above, left in place otherwise. (Risk of landslide)
- Optimal pit given by an Optimal Transport problem, from ore to topsoil distributions, and with cost

$$c(x,y) = egin{cases} 0 & ext{if } y \in C(x), \ +\infty & ext{otherwise}, \end{cases}$$