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Projection and apparent contour

3D curve = intersection of 2 implicit surfaces
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Topology of a plane curve

B={(z,y) € R?|f(z,y) = 0}
Singularities:

{(z,y) € R?|f(z,y) = 52 (2,y) = §&(z,y) = 0}
e Restrict to box By
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Topology of a plane curve

B={(z,y) € R?|f(z,y) = 0}
Singularities:
{(z,y) € R?|f(z,y) = 52 (2,y) = §&(z,y) = 0}
e Restrict to box By
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e Compute local topology at
singularities

e Connect boxes : Graph



Symbolic tool box

e Grobner basis

e Triangular decomposition

e Rational univariate representation
o

+ Handle any types of singularities
+ Bit complexity analysis

— Global analysis

— High complexity

— Restricted to polynomial functions

— Generic case is typically the worst case




Numerical tool box

e Subdivision
e Homotopy

+ Local: analysis restricted to a box

+ Adaptative: running time sensitive to the local geometry
+ Fast limited precision computation

+ Certification via interval analysis

+ Not restricted to polynomials: only evaluation required

— Difficult to analyse the complexity
— Need generic assumptions: regular solutions




Example: counting solutions of f(x) =0

e Symbolic: f polynomial, squarefree part = f/ged(f, f')

e Numeric:
e Newton iteration: x,11 =z, — f(x,)/f ()
e Homotopy
e Subdivision 4 Interval analysis
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Subdivide interval Iy until
e 0 Z[Jf(I) — no solution in [
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Example: counting solutions of f(x) =0

e Symbolic: f polynomial, squarefree part = f/ged(f, f')

e Numeric:
e Newton iteration: x,11 =z, — f(x,)/f (x,)
e Homotopy
e Subdivision 4 Interval analysis

Subdivide interval Iy until
e 0 Z[Jf(I) — no solution in [
e or 0 € Jf'(I) — check the sign of f at endpoints

May need many subdivisions




Example: counting solutions of f(x) =0

e Symbolic: f polynomial, squarefree part = f/ged(f, f')

e Numeric:
e Newton iteration: x,11 =z, — f(x,)/f (x,)
e Homotopy
e Subdivision 4 Interval analysis

Subdivide interval Iy until
e 0 Z[Jf(I) — no solution in [
e or 0 € Jf'(I) — check the sign of f at endpoints

Will not terminate

Use instead g = f + A\f/, A e R
e works only for solutions of

multiplicity 2
(¢ =1+ " #0)

> e adds spurious solutions




Interval analysis

Arithmetic operations
a,0] @ [¢,d] = |a + ¢, b+ d]
la,b] ® [¢,d] = [min(ac, ad, be, bd), max(ac, ad, be, bd)]

Interval function extension of f : R — R

o Lf(1) 2 {f(z)|lx € I}

e convergence: w(Jf(I)) — 0 as w(I = [a,b]) =b—a — 0

Examples

e f polynomial, use interval arithmetic operations
e Mean value evaluation Of (1) := f(mid(I)) + Of"(I)(I — mid(I))

Exclusion criterion:
0 ¢ f(I) = f has no solution in [
... But 0 e JOf(I) does NOT imply that f has no solution in I




Newton /Krawczyk operator

F:R*" — R"
F(X) =0 : system of n equations, n unknowns.

Assume the solutions are regular: the determinant of the jacobian Jg
does not vanish at the solutions.

Interval Newton operator: m € X C R*, N(X) =m — J," (m)OF(X)
Krawczyk operator = mean value evaluation of NV
K(X)=N(m)+0OJy(X)(X —m)
Lemma.
e K(X) C X = d! solution in X
e K(X) NX =0 = no solution in X
e Quadratic convergence

e Neumaier, Interval methods for systems of equations, 1990
e Dedieu, Points fixes, zeros et la methode de Newton, 2006
e Rump, Verification methods: Rigorous results using floating point arithmetic, Acta Numerica, 2010




Subdivision algorithm

Input: F': R" — R", Xy box of R"
Output: A list R of boxes containing /
solutions in Xy of F' =0 '
L = {XQ}
Repeat:
X := L.pop
If 0 € F(X) then
If Kp(X) C Int(X) then |
insert X in R | B(x,y)=0
Else If KF(X).ﬁX#.Q)then | WARNING.
bisect X and insert its sub-boxes in L
e Square system: as many

End if equations as unknowns
End if che ular solutions:
Until L =10 ; |

Return R det(Jr(s)) # 0
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Our problem: Isolate singularities

—

Projection of a 3D smooth curve:  Apparent contour:
Generic singularities are Nodes =  Generic singularities are Nodes and

transverse intersection of 2 Cusps
branches
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Subresultant approach in 2D

B={(z,y) € R?r(x,y) = 0}, where r(x,y) = Res(p,p., z)(x,y)

Singularities of B are the solutions of

ra,y) = Z(x,y) = 2Z(z,y) = 0

e Over-determined
e Cusps are solutions of multiplicity 2
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Subresultant approach in 2D

B={(z,y) € R?r(x,y) = 0}, where r(x,y) = Res(p,p., z)(x,y)

Singularities of B are the solutions of

r(z,y) = 55 (z,9) = §-(z,y) =0

e Over-determined
e Cusps are solutions of multiplicity 2

Let 510, 511, S22 be the coefficients of the subresultant
sequence of p and p, wrt 2

(S2)  sw(w,y) = s11(x,y) =0 and sza(z,y) # 0

Lemma.
e Square system
e Nodes and cusps are regular solutions

[IMP15] R. Imbach, G. Moroz, and M. Pouget. Numeric certified algorithm for the topology of resultant and discriminant
curves. Research Report RR-8653, Inria, April 2015.
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4D approach

C ={(z,y,2) € R3|p(z,y, 2) = p.(x,y,2) = 0}
B={(z,y) e R¥Fz € Rst. (z,y,2) € C}

™

= (6)4: : VT

e Node: (z,y, 21), (x,y, 22) € C, with 21 # 25
¢ CUSp: (wayazl)a (CU,y,Zz) € C, with 21 = 25
Set z1 = ¢ — /1,20 = ¢+ +/r, with ¢ center and +/r radius of [z1 2]
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4D approach

C ={(z,y,2) € R3|p(z,y, 2) = p.(z,y, 2) = 0}
B={(r,y) e R?*Fz € Rst. (z,y,2) €C}

%(p(ma?%c—'_ﬁ) T p($,y,6—ﬁ)) =0

(8 ) 2\1/F(p($7y7c—|_\/;) o p(x,y,c—ﬁ)) —
! %(pz(xayvc+ﬁ) + pz(mvyvc_ﬁ)) =0
; (pz(xayvc+ﬁ) — pz(az,y,c—ﬁ)) =0

Lemma. 8y is regular, its solutions project to cusps and nodes of B

R. Imbach, G. Moroz, M. Pouget. Numeric and Certified Isolation of the Singularities of the Projection of a Smooth Space
Curve, MACIS 2015

e Node: (z,y, 21), (x,y, 22) € C, with 21 # 25
¢ CUSpZ (xayazl)a (xayazZ) € C, with 21 = 25
Set z1 = ¢ — /1,20 = ¢+ +/r, with ¢ center and +/r radius of [z1 2]
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Certified numerical tracking in 3D

e Enclose C C UCYy, with Cx = (xk, Yk, z1) 3D box
- More efficient than a classic 3D subdivision
- Correct topology
- Certification via a parametric interval Krawczyk test

[MGGJ13] B. Martin, A. Goldsztejn, L. Granvilliers, and C. Jermann. Certified parallelotope continuation for
one-manifolds. SIAM Journal on Numerical Analysis, 2013.
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Certified numerical tracking in 3D

e Enclose C C UCYy, with Cx = (xk, Yk, z1) 3D box

e Enclose T (x,y) (C) =B C U7T(x7y)(0k)
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Certified numerical tracking in 3D

e Enclose C C UCYy, with Cx = (xk, Yk, z1) 3D box

e Enclose T (x,y) (C) =B C Uﬁ(x,y)(ck)

e Restrict the 4D solving domain of Sy

13

e Cusp in By <— sol. in (zg, yx, 2k, [0(%])2])

e Node in B;; = B;NB; # ) +— sol. in (x4, yij,

Zi—l—Zj
2




Experiments: isolation of singularities

Degree RSCube | Sy (Sub-resultant) Sy 1In S, with
of p(x,vy, z) R2 In [—1,1]2 [—1,1]2 x R x RT curve tracking
5) 3.1 0.05 24.8 1.25
6 32 0.50 8.40 2.360
7 254 4.44 43.8 4.13
8 1898 37.9 70.2 5.91
9 0346 23.1 45.6 5.30

Average running times in seconds for 5 random dense polynomials of
degree d, bitsize 8

e Symbolic method becomes intractable (RSCube via triangular
decomposition by F. Rouillier)
e Subdivision: working in 4D is more expensive than in 2D
e Subdivision: tracking the curve is efficient
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