
1

Marc Pouget

Projection of a Smooth Space Curve:

Joint work with

Guillaume Moroz
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Projection and apparent contour

3D curve = intersection of 2 implicit surfaces

C :

⇢
p(x, y, z) = 0

q(x, y, z) = 0

, (x, y, z) 2 R3

B = ⇡(x,y)(C)
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Projection and apparent contour

3D curve = intersection of 2 implicit surfaces

B = ⇡(x,y)(C)

C :

⇢
p(x, y, z) = 0

@p

@z

(x, y, z) = 0

, (x, y, z) 2 R3
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Topology of a plane curve

B = {(x, y) 2 R2|f(x, y) = 0}
Singularities:

{(x, y) 2 R2|f(x, y) = @f

@x

(x, y) =

@f

@y

(x, y) = 0}
• Restrict to box B0
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Topology of a plane curve

B = {(x, y) 2 R2|f(x, y) = 0}
Singularities:

{(x, y) 2 R2|f(x, y) = @f

@x

(x, y) =

@f

@y

(x, y) = 0}
• Restrict to box B0

• Isolate in boxes:
• singularities
• boundary points
• at least 1 point per cc

• Compute local topology at
singularities

• Connect boxes : Graph
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Symbolic tool box

• Gröbner basis
• Triangular decomposition
• Rational univariate representation
• ...

+ Handle any types of singularities
+ Bit complexity analysis

– Global analysis
– High complexity
– Restricted to polynomial functions
– Generic case is typically the worst case
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Numerical tool box

• Subdivision
• Homotopy

+ Local: analysis restricted to a box
+ Adaptative: running time sensitive to the local geometry
+ Fast limited precision computation
+ Certification via interval analysis
+ Not restricted to polynomials: only evaluation required

– Di�cult to analyse the complexity
– Need generic assumptions: regular solutions
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Example: counting solutions of f(x) = 0

• Symbolic: f polynomial, squarefree part = f/ gcd(f, f

0
)

• Numeric:
• Newton iteration: x

n+1 = x

n

� f(x

n

)/f

0
(x

n

)

• Homotopy
• Subdivision + Interval analysis
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Example: counting solutions of f(x) = 0

• Symbolic: f polynomial, squarefree part = f/ gcd(f, f

0
)

• Numeric:
• Newton iteration: x

n+1 = x

n

� f(x

n

)/f

0
(x

n

)

• Homotopy
• Subdivision + Interval analysis

Subdivide interval I0 until
• 0 62 ⇤f(I) �! no solution in I

• or 0 62 ⇤f

0
(I) �! check the sign of f at endpoints

I
1

⇤f(I
2

)

⇤f(I
1

)

I
2



6
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• Symbolic: f polynomial, squarefree part = f/ gcd(f, f
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)

• Numeric:
• Newton iteration: x

n+1 = x

n

� f(x

n

)/f

0
(x

n

)

• Homotopy
• Subdivision + Interval analysis

Subdivide interval I0 until
• 0 62 ⇤f(I) �! no solution in I

• or 0 62 ⇤f

0
(I) �! check the sign of f at endpoints

⇤f(I
2

)
I
2

May need many subdivisions
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Example: counting solutions of f(x) = 0

• Symbolic: f polynomial, squarefree part = f/ gcd(f, f

0
)

• Numeric:
• Newton iteration: x

n+1 = x

n

� f(x

n

)/f

0
(x

n

)

• Homotopy
• Subdivision + Interval analysis

Subdivide interval I0 until
• 0 62 ⇤f(I) �! no solution in I

• or 0 62 ⇤f

0
(I) �! check the sign of f at endpoints

⇤f(I
2

)
I
2

Will not terminate

Use instead g = f + �f

0, � 2 R
• works only for solutions of

multiplicity 2
(g0 = f 0 + �f 00 6= 0 )

• adds spurious solutions
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Interval analysis

Arithmetic operations
[a, b]� [c, d] = [a+ c, b+ d]

[a, b]⌦ [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

Interval function extension of f : R �! R
• ⇤f(I) ◆ {f(x)|x 2 I}
• convergence: w(⇤f(I)) �! 0 as w(I = [a, b]) = b� a �! 0

Examples
• f polynomial, use interval arithmetic operations
• Mean value evaluation ⇤f(I) := f(mid(I)) +⇤f

0
(I)(I �mid(I))

Exclusion criterion:
0 62 ⇤f(I) =) f has no solution in I

... But 0 2 ⇤f(I) does NOT imply that f has no solution in I
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Newton/Krawczyk operator
F : Rn �! Rn

F (X) = 0 : system of n equations, n unknowns.
Assume the solutions are regular: the determinant of the jacobian J

F

does not vanish at the solutions.

Interval Newton operator: m 2 X ⇢ Rn

, N(X) = m� J

�1
F

(m)⇤F (X)

Krawczyk operator = mean value evaluation of N
K(X) = N(m) +⇤J

N

(X)(X �m)

Lemma.
• K(X) ⇢ X =) 9! solution in X

• K(X) \X = ; =) no solution in X

• Quadratic convergence

• Neumaier, Interval methods for systems of equations, 1990

• Dedieu, Points fixes, zeros et la methode de Newton, 2006

• Rump, Verification methods: Rigorous results using floating point arithmetic, Acta Numerica, 2010
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Subdivision algorithm

Input: F : Rn ! Rn, X0 box of Rn

Output: A list R of boxes containing
solutions in X0 of F = 0

L := {X0}
Repeat:

X := L.pop

If 0 2 F (X) then
If K

F

(X) ⇢ Int(X) then
insert X in R

Else If K
F

(X) \X 6= ; then
bisect X and insert its sub-boxes in L

End if
End if

Until L = ;
Return R

WARNING:
• Square system: as many
equations as unknowns
• Regular solutions:
det(J

F

(s)) 6= 0
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Our problem: Isolate singularities

Projection of a 3D smooth curve:
Generic singularities are Nodes =
transverse intersection of 2
branches

Apparent contour:
Generic singularities are Nodes and
Cusps
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Subresultant approach in 2D

B = {(x, y) 2 R2|r(x, y) = 0}, where r(x, y) = Res(p, p

z

, z)(x, y)

Singularities of B are the solutions of
r(x, y) =

@r

@x

(x, y) =

@r

@y

(x, y) = 0

• Over-determined
• Cusps are solutions of multiplicity 2
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Subresultant approach in 2D

B = {(x, y) 2 R2|r(x, y) = 0}, where r(x, y) = Res(p, p

z

, z)(x, y)

Singularities of B are the solutions of
r(x, y) =

@r

@x

(x, y) =

@r

@y

(x, y) = 0

Let s10, s11, s22 be the coe�cients of the subresultant
sequence of p and p

z

wrt z
(S2) s10(x, y) = s11(x, y) = 0 and s22(x, y) 6= 0

[IMP15] R. Imbach, G. Moroz, and M. Pouget. Numeric certified algorithm for the topology of resultant and discriminant

curves. Research Report RR-8653, Inria, April 2015.

• Over-determined
• Cusps are solutions of multiplicity 2

Lemma.
• Square system
• Nodes and cusps are regular solutions
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4D approach

C = {(x, y, z) 2 R3|p(x, y, z) = p

z

(x, y, z) = 0}
B = {(x, y) 2 R2|9z 2 R s.t. (x, y, z) 2 C}

• Node: (x, y, z1), (x, y, z2) 2 C, with z1 6= z2

• Cusp: (x, y, z1), (x, y, z2) 2 C, with z1 = z2

Set z1 = c�
p
r, z2 = c+

p
r, with c center and

p
r radius of [z1z2]
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4D approach

C = {(x, y, z) 2 R3|p(x, y, z) = p

z

(x, y, z) = 0}
B = {(x, y) 2 R2|9z 2 R s.t. (x, y, z) 2 C}

• Node: (x, y, z1), (x, y, z2) 2 C, with z1 6= z2

• Cusp: (x, y, z1), (x, y, z2) 2 C, with z1 = z2

Set z1 = c�
p
r, z2 = c+

p
r, with c center and

p
r radius of [z1z2]

(S4)

8
>><

>>:

1
2 (p(x, y, c+

p
r) + p(x, y, c�

p
r)) = 0

1
2
p
r

(p(x, y, c+

p
r) � p(x, y, c�

p
r)) = 0

1
2 (pz(x, y, c+

p
r) + p

z

(x, y, c�
p
r)) = 0

1
2
p
r

(p

z

(x, y, c+

p
r) � p

z

(x, y, c�
p
r)) = 0

Lemma. S4 is regular, its solutions project to cusps and nodes of B
R. Imbach, G. Moroz, M. Pouget. Numeric and Certified Isolation of the Singularities of the Projection of a Smooth Space

Curve, MACIS 2015
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Certified numerical tracking in 3D
• Enclose C ⇢ [C

k

, with C

k

= (x

k

, y

k

, z

k

) 3D box
- More e�cient than a classic 3D subdivision
- Correct topology
- Certification via a parametric interval Krawczyk test

[MGGJ13] B. Martin, A. Goldsztejn, L. Granvilliers, and C. Jermann. Certified parallelotope continuation for

one-manifolds. SIAM Journal on Numerical Analysis, 2013.
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Certified numerical tracking in 3D
• Enclose C ⇢ [C

k

, with C

k

= (x

k

, y

k

, z

k

) 3D box

• Enclose ⇡(x,y)(C) = B ⇢ [⇡(x,y)(Ck

)
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Certified numerical tracking in 3D
• Enclose C ⇢ [C

k

, with C

k

= (x

k

, y

k

, z

k

) 3D box

• Enclose ⇡(x,y)(C) = B ⇢ [⇡(x,y)(Ck

)

• Restrict the 4D solving domain of S4

• Cusp in B
k

 ! sol. in (x

k

, y

k

, z

k

, [0(

w(zk)
2 ])

2
])

• Node in B
ij

= B
i

\B
j

6= ;  ! sol. in (x

ij

, y

ij

,

zi+zj

2 , [0, (

zi�zj

2 )

2
])
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Experiments: isolation of singularities

Degree RSCube S2 (Sub-resultant) S4 in S4 with

of p(x, y, z) R2 in [�1, 1]2 [�1, 1]2 ⇥ R ⇥ R+ curve tracking

5 3.1 0.05 24.8 1.25
6 32 0.50 8.40 2.36
7 254 4.44 43.8 4.13
8 1898 37.9 70.2 5.91
9 9346 23.1 45.6 5.30

• Symbolic method becomes intractable (RSCube via triangular
decomposition by F. Rouillier)
• Subdivision: working in 4D is more expensive than in 2D
• Subdivision: tracking the curve is e�cient

Average running times in seconds for 5 random dense polynomials of

degree d, bitsize 8
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template
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