Projection of a Smooth Space Curve:

 Numeric and Certified Topology ComputationMarc Pouget

Joint work with

Rémi Imbach
Guillaume Moroz

Projection and apparent contour

3 D curve $=$ intersection of 2 implicit surfaces

$$
\begin{aligned}
& \mathcal{C}:\left\{\begin{array}{l}
p(x, y, z)=0 \\
q(x, y, z)=0
\end{array} \quad,(x, y, z) \in \mathbb{R}^{3}\right. \\
& \mathcal{B}=\pi_{(x, y)}(\mathcal{C})
\end{aligned}
$$

Projection and apparent contour

3 D curve $=$ intersection of 2 implicit surfaces

$$
\begin{aligned}
\mathcal{C} & :\left\{\begin{array}{l}
p(x, y, z)=0 \\
\frac{\partial p}{\partial z}(x, y, z)=0
\end{array} \quad,(x, y, z) \in \mathbb{R}^{3}\right. \\
\mathcal{B} & =\pi_{(x, y)}(\mathcal{C})
\end{aligned}
$$

Topology of a plane curve

$$
\mathcal{B}=\left\{(x, y) \in \mathbb{R}^{2} \mid f(x, y)=0\right\}
$$

Singularities:

$$
\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, f(x, y)=\frac{\partial f}{\partial x}(x, y)=\frac{\partial f}{\partial y}(x, y)=0\right.\right\}
$$

- Restrict to box B_{0}

Topology of a plane curve

$$
\mathcal{B}=\left\{(x, y) \in \mathbb{R}^{2} \mid f(x, y)=0\right\}
$$

Singularities:

$$
\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, f(x, y)=\frac{\partial f}{\partial x}(x, y)=\frac{\partial f}{\partial y}(x, y)=0\right.\right\}
$$

- Restrict to box B_{0}
- Isolate in boxes:
- singularities
- boundary points
- at least 1 point per cc

Topology of a plane curve

$$
\mathcal{B}=\left\{(x, y) \in \mathbb{R}^{2} \mid f(x, y)=0\right\}
$$

Singularities:

$$
\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, f(x, y)=\frac{\partial f}{\partial x}(x, y)=\frac{\partial f}{\partial y}(x, y)=0\right.\right\}
$$

- Restrict to box B_{0}
- Isolate in boxes:
- singularities
- boundary points
- at least 1 point per cc
- Compute local topology at singularities

Topology of a plane curve

$$
\mathcal{B}=\left\{(x, y) \in \mathbb{R}^{2} \mid f(x, y)=0\right\}
$$

Singularities:

$$
\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, f(x, y)=\frac{\partial f}{\partial x}(x, y)=\frac{\partial f}{\partial y}(x, y)=0\right.\right\}
$$

- Restrict to box B_{0}
- Isolate in boxes:
- singularities
- boundary points
- at least 1 point per cc
- Compute local topology at singularities
- Connect boxes : Graph

Symbolic tool box

- Gröbner basis
- Triangular decomposition
- Rational univariate representation
+ Handle any types of singularities
+ Bit complexity analysis
- Global analysis
- High complexity
- Restricted to polynomial functions
- Generic case is typically the worst case

Numerical tool box

- Subdivision
- Homotopy
+ Local: analysis restricted to a box
+ Adaptative: running time sensitive to the local geometry
+ Fast limited precision computation
+ Certification via interval analysis
+ Not restricted to polynomials: only evaluation required
- Difficult to analyse the complexity
- Need generic assumptions: regular solutions

Example: counting solutions of $f(x)=0$

- Symbolic: f polynomial, squarefree part $=f / \operatorname{gcd}\left(f, f^{\prime}\right)$
- Numeric:
- Newton iteration: $x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)$
- Homotopy
- Subdivision + Interval analysis

Example: counting solutions of $f(x)=0$

- Symbolic: f polynomial, squarefree part $=f / \operatorname{gcd}\left(f, f^{\prime}\right)$
- Numeric:
- Newton iteration: $x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)$
- Homotopy
- Subdivision + Interval analysis

Subdivide interval I_{0} until

- $0 \notin \square f(I) \longrightarrow$ no solution in I
- or $0 \notin \square f^{\prime}(I) \longrightarrow$ check the sign of f at endpoints

Example: counting solutions of $f(x)=0$

- Symbolic: f polynomial, squarefree part $=f / \operatorname{gcd}\left(f, f^{\prime}\right)$
- Numeric:
- Newton iteration: $x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)$
- Homotopy
- Subdivision + Interval analysis

Subdivide interval I_{0} until

- $0 \notin \square f(I) \longrightarrow$ no solution in I
- or $0 \notin \square f^{\prime}(I) \longrightarrow$ check the sign of f at endpoints

Example: counting solutions of $f(x)=0$

- Symbolic: f polynomial, squarefree part $=f / \operatorname{gcd}\left(f, f^{\prime}\right)$
- Numeric:
- Newton iteration: $x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)$
- Homotopy
- Subdivision + Interval analysis

Subdivide interval I_{0} until

- $0 \notin \square f(I) \longrightarrow$ no solution in I
- or $0 \notin \square f^{\prime}(I) \longrightarrow$ check the sign of f at endpoints

Use instead $g=f+\lambda f^{\prime}, \lambda \in \mathbb{R}$

- works only for solutions of multiplicity 2

$$
\left(g^{\prime}=f^{\prime}+\lambda f^{\prime \prime} \neq 0\right)
$$

- adds spurious solutions

Interval analysis

Arithmetic operations

$$
\begin{aligned}
& {[a, b] \oplus[c, d]=[a+c, b+d]} \\
& {[a, b] \otimes[c, d]=[\min (a c, a d, b c, b d), \max (a c, a d, b c, b d)]}
\end{aligned}
$$

Interval function extension of $f: \mathbb{R} \longrightarrow \mathbb{R}$

- $\square f(I) \supseteq\{f(x) \mid x \in I\}$
- convergence: $w(\square f(I)) \longrightarrow 0$ as $w(I=[a, b])=b-a \longrightarrow 0$

Examples

- f polynomial, use interval arithmetic operations
- Mean value evaluation $\square f(I):=f(\operatorname{mid}(I))+\square f^{\prime}(I)(I-\operatorname{mid}(I))$

Exclusion criterion:
$0 \notin \square f(I) \Longrightarrow f$ has no solution in I
... But $0 \in \square f(I)$ does NOT imply that f has no solution in I

Newton/Krawczyk operator

$F: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$
$F(X)=0$: system of n equations, n unknowns.
Assume the solutions are regular: the determinant of the jacobian J_{F} does not vanish at the solutions.

Interval Newton operator: $m \in X \subset \mathbb{R}^{n}, N(X)=m-J_{F}^{-1}(m) \square F(X)$
Krawczyk operator $=$ mean value evaluation of N

$$
K(X)=N(m)+\square J_{N}(X)(X-m)
$$

Lemma.

- $K(X) \subset X \Longrightarrow \exists$! solution in X
- $K(X) \cap X=\emptyset \Longrightarrow$ no solution in X
- Quadratic convergence
- Neumaier, Interval methods for systems of equations, 1990
- Dedieu, Points fixes, zeros et la methode de Newton, 2006
- Rump, Verification methods: Rigorous results using floating point arithmetic, Acta Numerica, 2010

Subdivision algorithm

Input: $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, X_{0}$ box of \mathbb{R}^{n} Output: A list R of boxes containing solutions in X_{0} of $F=0$
$L:=\left\{X_{0}\right\}$
Repeat:
$X:=$ L.pop
If $0 \in F(X)$ then
If $K_{F}(X) \subset \operatorname{Int}(X)$ then insert X in R
Else If $K_{F}(X) \cap X \neq \emptyset$ then

bisect X and insert its sub-boxes in L End if

End if

Until $L=\emptyset$
Return R
9

Our problem: Isolate singularities

Projection of a 3D smooth curve: Generic singularities are Nodes $=$ transverse intersection of 2 branches

Apparent contour:
Generic singularities are Nodes and Cusps

Subresultant approach in 2D

$\mathcal{B}=\left\{(x, y) \in \mathbb{R}^{2} \mid r(x, y)=0\right\}$, where $r(x, y)=\operatorname{Res}\left(p, p_{z}, z\right)(x, y)$
Singularities of \mathcal{B} are the solutions of

$$
r(x, y)=\frac{\partial r}{\partial x}(x, y)=\frac{\partial r}{\partial y}(x, y)=0
$$

- Over-determined
- Cusps are solutions of multiplicity 2

Subresultant approach in 2D

$\mathcal{B}=\left\{(x, y) \in \mathbb{R}^{2} \mid r(x, y)=0\right\}$, where $r(x, y)=\operatorname{Res}\left(p, p_{z}, z\right)(x, y)$
Singularities of \mathcal{B} are the solutions of

$$
r(x, y)=\frac{\partial r}{\partial x}(x, y)=\frac{\partial r}{\partial y}(x, y)=0
$$

- Over-determined
- Cusps are solutions of multiplicity 2

Let s_{10}, s_{11}, s_{22} be the coefficients of the subresultant sequence of p and p_{z} wrt z
$\left(\mathcal{S}_{2}\right) \quad s_{10}(x, y)=s_{11}(x, y)=0$ and $s_{22}(x, y) \neq 0$

Lemma.

- Square system
- Nodes and cusps are regular solutions
[IMP15] R. Imbach, G. Moroz, and M. Pouget. Numeric certified algorithm for the topology of resultant and discriminant curves. Research Report RR-8653, Inria, April 2015.

4D approach

$$
\begin{aligned}
& \mathcal{C}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid p(x, y, z)=p_{z}(x, y, z)=0\right\} \\
& \mathcal{B}=\left\{(x, y) \in \mathbb{R}^{2} \mid \exists z \in \mathbb{R} \text { s.t. }(x, y, z) \in \mathcal{C}\right\}
\end{aligned}
$$

- Node: $\left(x, y, z_{1}\right),\left(x, y, z_{2}\right) \in \mathcal{C}$, with $z_{1} \neq z_{2}$
- Cusp: $\left(x, y, z_{1}\right),\left(x, y, z_{2}\right) \in \mathcal{C}$, with $z_{1}=z_{2}$

Set $z_{1}=c-\sqrt{r}, z_{2}=c+\sqrt{r}$, with c center and \sqrt{r} radius of $\left[z_{1} z_{2}\right]$

4D approach

$$
\begin{aligned}
& \mathcal{C}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid p(x, y, z)=p_{z}(x, y, z)=0\right\} \\
& \mathcal{B}=\left\{(x, y) \in \mathbb{R}^{2} \mid \exists z \in \mathbb{R} \text { s.t. }(x, y, z) \in \mathcal{C}\right\}
\end{aligned}
$$

$$
\left(\mathcal{S}_{4}\right)\left\{\begin{array}{rl}
\frac{1}{2}(p(x, y, c+\sqrt{r}) & +p(x, y, c-\sqrt{r})) \\
=0 \\
\frac{1}{2 \sqrt{r}}(p(x, y, c+\sqrt{r}) & -p(x, y, c-\sqrt{r})) \\
\frac{1}{2}\left(p_{z}(x, y, c+\sqrt{r})\right. & \left.+p_{z}(x, y, c-\sqrt{r})\right) \\
=0 \\
\frac{1}{2 \sqrt{r}}\left(p_{z}(x, y, c+\sqrt{r})\right. & \left.-p_{z}(x, y, c-\sqrt{r})\right)
\end{array}=0\right.
$$

Lemma. \mathcal{S}_{4} is regular, its solutions project to cusps and nodes of \mathcal{B}
R. Imbach, G. Moroz, M. Pouget. Numeric and Certified Isolation of the Singularities of the Projection of a Smooth Space Curve, MACIS 2015

- Node: $\left(x, y, z_{1}\right),\left(x, y, z_{2}\right) \in \mathcal{C}$, with $z_{1} \neq z_{2}$
- Cusp: $\left(x, y, z_{1}\right),\left(x, y, z_{2}\right) \in \mathcal{C}$, with $z_{1}=z_{2}$

Set $z_{1}=c-\sqrt{r}, z_{2}=c+\sqrt{r}$, with c center and \sqrt{r} radius of $\left[z_{1} z_{2}\right.$]

Certified numerical tracking in 3D

- Enclose $\mathcal{C} \subset \cup C_{k}$, with $C_{k}=\left(x_{k}, y_{k}, z_{k}\right)$ 3D box
- More efficient than a classic 3D subdivision
- Correct topology
- Certification via a parametric interval Krawczyk test
[MGGJ13] B. Martin, A. Goldsztejn, L. Granvilliers, and C. Jermann. Certified parallelotope continuation for one-manifolds. SIAM Journal on Numerical Analysis, 2013.

Certified numerical tracking in 3D

- Enclose $\mathcal{C} \subset \cup C_{k}$, with $C_{k}=\left(x_{k}, y_{k}, z_{k}\right)$ 3D box
- Enclose $\pi_{(x, y)}(\mathcal{C})=\mathcal{B} \subset \cup \pi_{(x, y)}\left(C_{k}\right)$

Certified numerical tracking in 3D

- Enclose $\mathcal{C} \subset \cup C_{k}$, with $C_{k}=\left(x_{k}, y_{k}, z_{k}\right)$ 3D box
- Enclose $\pi_{(x, y)}(\mathcal{C})=\mathcal{B} \subset \cup \pi_{(x, y)}\left(C_{k}\right)$
- Restrict the 4D solving domain of \mathcal{S}_{4}
- Cusp in $\mathcal{B}_{k} \longleftrightarrow$ sol. in $\left.\left(x_{k}, y_{k}, z_{k},\left[0\left(\frac{w\left(z_{k}\right)}{2}\right]\right)^{2}\right]\right)$
- Node in $\mathcal{B}_{i j}=\mathcal{B}_{i} \cap \mathcal{B}_{j} \neq \emptyset \longleftrightarrow$ sol. in $\left(x_{i j}, y_{i j}, \frac{z_{i}+z_{j}}{2},\left[0,\left(\frac{z_{i}-z_{j}}{2}\right)^{2}\right]\right)$

Experiments: isolation of singularities

Degree of $p(x, y, z)$	RSCube \mathbb{R}^{2}	\mathcal{S}_{2} (Sub-resultant) in $_{[-1,1]^{2}}$	\mathcal{S}_{4} in $[-1,1]^{2} \times \mathbb{R}^{2} \times \mathbb{R}^{+}$	\mathcal{S}_{4} with curve tracking
5	3.1	0.05	24.8	1.25
6	32	0.50	8.40	2.36
7	254	4.44	43.8	4.13
8	1898	37.9	70.2	5.91
9	9346	23.1	45.6	5.30

Average running times in seconds for 5 random dense polynomials of degree d, bitsize 8

- Symbolic method becomes intractable (RSCube via triangular decomposition by F. Rouillier)
- Subdivision: working in 4D is more expensive than in 2D
- Subdivision: tracking the curve is efficient
template
template
template
template

