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Domain adaptation

Traditional supervised learning
• We want to learn predictor such that y ≈ f (x).
• Actual P(X , Y ) unknown.
• We have access to training dataset (xi , yi )i=1,...,n

(P̂(X , Y )).
• We choose a loss function L(y , f (x)) that

measure the discrepancy.

Empirical risk minimization
We week for a predictor f minimizing

min
f

{
E

(x,y)∼P̂
L(y , f (x)) =

∑
j

L(yj , f (xj))

}
(1)

• Well known generalization results for predicting on new data.
• Loss is usually L(y , f (x)) = (y − f (x))2 for least square regression or

L(y , f (x)) = max(0, 1 − yf (x))2 for squared Hinge loss SVM.
• Cross-entropy for neural networks (among others)
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Domain Adaptation problem
Amazon DLSR

Feature extraction Feature extraction

Probability Distribution Functions over the domains

Our context
• Classification problem with data coming from different sources (domains).
• Distributions are different but related.
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Unsupervised domain adaptation problem
Amazon DLSR

Feature extraction Feature extraction

Source Domain Target Domain

+ Labels

not working !!!!

decision function

no labels !

Problems
• Labels only available in the source domain, and classification is conducted in

the target domain.
• Classifier trained on the source domain data performs badly in the target

domain
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Is Domain Adaptation a real problem ?

• Ubiquitous problem in Deep Learning ! People can not afford to label billions of
data for every single problems

• Novel interesting challenges if one considers learning from synthetic data
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What about Remote Sensing ?

Image from [Benjdira et al., 2019]

Remote Sensing context
The sources of shift between a labelled source and the target are numerous
• different atmospheric conditions, time of acquisition
• different geographic zones, different spectral responses/shapes for objects of the same class
• different captors with varying spatial/spectral resolution, or even nature of the data (LiDAR,

RADAR, etc.)

Nicolas Courty MACLEAN - GDR Isis 6/59
6/59



Short state-of-the-art

Problem: how to learn a classifier that can be good on several domains with only
labels in one of the domain ?
• Theory [Urner et al., 2011, Ben-David et al., 2012] measures the difficulty of

this task in terms of discrepancy of the representations of the data.
• Possible solutions include:

◦ find domain invariant representation of the data (subspace projection, feature
learning)

◦ transform data from one domain into ’similar’ versions in the other domain
(adversarial methods)

◦ Most of the time a notion of divergence between the distributions is involved:
• Second order statistical moments
• Maximum Mean Discrepancy (MMD)
• Optimal Transport !
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The tree that hides the forest

Several variants of this problem can be considered:
• Unsupervised vs semi-supervised Domain Adaptation: depending on the

available knowledge from the source
• Heterogeneous Domain Adaptation: data do not lie in the same space
• Multi vs Single source Domain Adaptation: when the number of available

source domains is more than one.
• Covariate vs Target shift: are the class-conditional distributions P(X |label)

different, or is it the class proportions P(label) ?
• Domain Generalization: several source domains are available, but the target is

not; One wants to achieve the best generalization performance.
• Source free Domain Adaptation: only a classifier on the source domain is

available (not the samples)
• many more (Few|one|zero shot domain adaptation|generalization, federated

DA, etc.)
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Change in the class space

When the label space is changing:

Image adapted from [You et al., 2019]
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The origins of optimal transport

Problem [Monge, 1781]
• How to move dirt from one place (déblais) to another (remblais) while

minimizing the effort ?
• Find a mapping T between the two distributions of mass (transport).
• Optimize with respect to a displacement cost c(x , y) (optimal).
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The origins of optimal transport

x y

Source s

Target t

c(x,y) x

y

T(x)
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Optimal transport (Kantorovich formulation)

y
x

Joint distribution (x, y) = s(x) t(y)

Source s(x)
Target t(y)
(x, y)

y
x

Transport cost c(x, y) = |x y|2

c(x, y)

• The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic
coupling π ∈ P(Ωs × Ωt) between Ωs and Ωt :

π0 = argmin
π

∫
Ωs ×Ωt

c(x, y)π(x, y)dxdy, (2)

s.t. π ∈ Π =
{

π ≥ 0,
∫
Ωt

π(x, y)dy = µs ,
∫
Ωs

π(x, y)dx = µt

}
• π is a joint probability measure with marginals µs and µt .
• Linear Program that always have a solution.

Nicolas Courty MACLEAN - GDR Isis 12/59
12/59



Wasserstein distance

Source distribution

Target distributions

Divergences (scaled)
W1

1
W2

2
l1 (TV)
l2 (sq. eucl.)

Wasserstein distance

W p
p (µs , µt) = min

π∈Π

∫
Ωs ×Ωt

c(x, y)π(x, y)dxdy = E
(x,y)∼π

[c(x, y)] (3)

where c(x, y) = ∥x − y∥p

• Do not need the distribution to have overlapping support.
• Subgradients can be computed with the dual variables of the LP.
• Works for continuous and discrete distributions (histograms, empirical).
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Discrete Optimal transport

Distributions
Source s

Target t

Matrix C OT matrix                   

OT Linear Program

π0 = argmin
π∈Π

{
⟨π, C⟩F =

∑
i ,j

γi ,jci ,j

}
where C is a cost matrix with ci ,j = c(xs

i , xt
j ) and the marginals constraints are

Π =
{

π ∈ (R+)ns ×nt | π1nt = µs , πT 1ns = µt
}

Solved with Network Flow solver of complexity O(n3 log(n)).
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Discrete Optimal transport

Distributions

Source s

Target t

Matrix C OT matrix with samples
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Regularized optimal transport

γλ
0 = argmin

π∈Π

⟨π, C⟩F + λΩ(π), (4)

Regularization term Ω(π)
• Entropic regularization [Cuturi, 2013].
• Group Lasso [Courty et al., 2016a].
• KL, Itakura Saito, β-divergences, L2, etc.

Why regularize?
• Smooth the “distance” estimation:

Wλ(µs , µt) =
⟨
γλ

0 , C
⟩

F
• Encode prior knowledge on the data.
• Better posed problem (convex, stability).
• Fast algorithms to solve the OT problem.

=0
=1

e-
2

=1
e-

1
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Entropic regularized optimal transport

Distributions

Source s

Target t

Reg. OT matrix with =1e-3 Reg. OT matrix with =1e-2

Entropic regularization [Cuturi, 2013]

Ω(π) =
∑

i ,j

π(i , j) log π(i , j)

• Regularization with the negative entropy of π.
• Solution of the form πλ

0 = diag(u) exp(−C/λ)diag(v).
• Sinkhorn-Knopp algorithm (implementation in parallel, GPU).
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Entropic regularized optimal transport
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Optimal transport for domain adaptationDataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Assumptions
• There exist a transport in the feature space T between the two domains.
• The transport preserves the conditional distributions:

Ps(y |xs) = Pt(y |T(xs)).

3-step strategy [Courty et al., 2016b, PAMI]
1. Estimate optimal transport between distributions.
2. Transport the training samples with barycentric mapping .
3. Learn a classifier on the transported training samples.
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Transporting the discrete samples

Distributions

Source s

Target t

Classt OT Reg. Entropic OT

Barycentric mapping [Ferradans et al., 2014]

T̂π0 (xs
i ) = argmin

x

∑
j

π0(i , j)c(x, xt
j ). (5)

• The mass of each source sample is spread onto the target samples (line of π0).
• The mapping is the barycenter of the target samples weighted by π0

• Closed form solution for the quadratic loss.
• Limited to the samples in the distribution (no out of sample).
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Transporting the discrete samples

Distributions

Source s

Target t

Classic OT (LP) Reg. Entropic OT
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Class-based regularization

0 5 10 15

0

5

10

15

Optimal matrix γ

Group lasso regularization
• We group components of π using classes from the source domain:

Ωc(π) =
∑

j

∑
c

||π(Ic , j)||pq, (6)

• Ic contains the indices of the lines related to samples of the class c in the
source domain.

• || · ||pq denotes the ℓq norm to the power of p.
• For p ≤ 1, we encourage a target domain sample j to receive masses only from

“same class” source samples.
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Optimal transport for domain adaptationDataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Discussion

• Works very well in practice for large class of transformation
[Courty et al., 2016b].

• Can use other type of estimated mapping
[Perrot et al., 2016, Seguy et al., 2017].

But
• Model transformation only in the feature space.
• Requires the same class proportion between domains [Tuia et al., 2015].
• We estimate a T : Rd → Rd mapping for training a classifier f : Rd → R.
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Adapting directly Joint Distributions
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Joint distribution and classifier estimation

Joint distribution OT (JDOT, [Courty et al., 2017, NIPS])
• Model the transformation of labels (allow change of proportion/value).
• Learn an optimal target predictor with no labels on target samples.
• Approach theoretically justified (learning bound, cf. paper)

Joint distributions and dataset
• We work with the joint feature/label distributions.
• Let Ps(X , Y ) ∈ P(Ω × C) and Pt(X , Y ) ∈ P(Ω × C) the source and target

joint distribution.
• We have access to an empirical sampling P̂s = 1

Ns

∑Ns
i=1 δxs

i ,ys
i

of the source
distribution defined by Xs = {xs

i }Ns
i=1 and label information Ys = {ys

i }Ns
i=1.

• but the target domain is defined only by an empirical distribution in the feature
space with samples Xt = {xt

i }Nt
i=1.
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Joint distribution OT

Proxy joint distribution
• Let f be a Ω → C function from a given class of hypothesis H.
• We define the following joint distribution that use f as a proxy of y

P f
t = (x, f (x))x∼µt (7)

and its empirical counterpart P̂t
f

= 1
Nt

∑Nt
i=1 δxt

i ,f (xt
i ) .

Learning with JDOT
We propose to learn the predictor f that minimize :

min
f

{
W1(P̂s , P̂t

f
) = inf

π∈∆

∑
ij

D(xs
i , ys

i ; xt
j , f (xt

j ))πij

}
(8)

• ∆ is the transport polytope.
• distance in joint space: D(xs

i , ys
i ; xt

j , f (xt
j )) = α∥xs

i − xt
j ∥2 + L(ys

i , f (xt
j )) with

α > 0.
• We search for the predictor f that better align the joint distributions.
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Optimization problem

min
f ∈H,π∈∆

∑
i ,j

πi ,j
(
αd(xs

i , xt
j ) + L(y s

i , f (xt
j ))

)
+ λΩ(f ) (9)

Optimization procedure
• Ω(f ) is a regularization for the predictor f
• We propose to use block coordinate descent (BCD)/Gauss Seidel.
• Provably converges to a stationary point of the problem.

π update for a fixed f
• Classical OT problem.
• Solved by network simplex.
• Regularized OT can be used

(add a term to problem (9))

f update for a fixed π

min
f ∈H

∑
i ,j

πi ,jL(y s
i , f (xt

j )) + λΩ(f ) (10)

• Weighted loss from all source labels.
• π performs label propagation.
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Classification with JDOT
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Least square regression with quadratic regularization
For a fixed π the optimization problem is equivalent to

min
f ∈H

∑
j

1
nt

∥ŷj − f (xt
j )∥2 + λ∥f ∥2 (11)

• ŷj = nt
∑

j πi ,jy s
i is a weighted average of the source target values (a.k.a label

propagation).
• Note that this problem is linear instead of quadratic.
• Can use any solver (linear, kernel ridge, neural network).
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What is Label propagation ?

The operation ŷj = nt
∑

j πi ,jy s
i can be understood intuitively as a way to estimate

(one-hot encoded) labels onto the samples of the target domain
• thanks to the coupling matrix π
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Impact of the changes in class distributions ?

Source domain / learning set Target domain / testing set

wt
iws

i

Ideal case

Source domain / learning set Target domain / testing set

wt
i

ws
i

     is unknown wt
i

same distribution is assumed

ws
i=

Source domain / learning set Target domain / testing set

wt
iws

i

Reality

Source domain / learning set Target domain / testing set

wt
i

     is  known wt
i

ws
i

Weights are adapted to match target distribution
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Solving for Target Shift
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Target Shift in DA

Target Shift in DA
• Class conditional distributions are the same between domains
• Only proportions of samples from each class is changing
• The Generalized Target Shift problem is harder and consider that both are

changing (not covered in this presentation)

JCPOT [Redko et al., 2019, AISTATS 2019]
The idea is to simultaneously estimate the proportions of classes ∆ in the target
domain.
• Possible in the multi-source domain adaptation context (several source domains

are available)
• we cast the problem as a Wasserstein barycenter problem:

min
∆

K∑
k=1

W p
p (µ(k)

s , µ∆
t )

where K is the number of available source domains.
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Illustrations of JCPOT (1/2)

Covariate shift DA mixes instances from different classes!
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Illustrations of JCPOT (2/2)

Our method handles target shift efficiently!
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Remote Sensing data
• Zurich Summer’ data set composed of 20 satellite images
• 4 classes: Roads, Buildings, Trees and Grass
• 17 source and 1 target domain
• Average class proportions [0.25 ± 0.07, 0.4 ± 0.13, 0.22 ± 0.11, 0.13 ± 0.11]

Input satellite images

Satellite images with 4 classes
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Classification results

# of source
domains

Average class
proportions

# of source
instances

No
adaptation

OTDA
PT

OTDA
LP

MDA
Causal

JCPOT
LP

Target
only

2 [0.17 0.4 0.16 0.27] 2’936 0.61 0.52 0.57 0.65 0.66 0.65
5 [0.22 0.39 0.18 0.21] 6’716 0.62 0.55 0.6 0.66 0.68 0.64
8 [0.25 0.46 0.17 0.12] 16’448 0.63 0.54 0.59 0.67 0.71 0.65
11 [0.26 0.48 0.16 0.1] 21’223 0.63 0.54 0.58 0.67 0.72 0.673
14 [0.26 0.45 0.19 0.1] 27’875 0.63 0.52 0.58 0.67 0.72 0.65
17 [0.25 0.42 0.20 0.13] 32’660 0.63 0.5 0.59 0.67 0.73 0.61
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Going deep !
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Domain adaptation with Wasserstein distance

Domain adaptation for deep learning [Shen et al., 2018]
• Modern DA aim at aligning source and target in the deep representation :

DANN [Ganin et al., 2016], MMD [Tzeng et al., 2014], CORAL [Sun and Saenko, 2016].
• Wasserstein distance used as objective for the adaptation [Shen et al., 2018].
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Large scale JDOT [Damodaran et al., 2018, ECCV]

Large scale JDOT
• How to scale JDOT to tackle large datasets/ deep learning architectures ?
• Use minibatches instead for computing the transport in the primal

[Genevay et al., 2017]
• Learn simultaneously the best embedding !
• Evaluate batch-local couplings on (sufficiently large) couples of random

(without replacement) batches in source and target domain
• update f from these couplings

Algorithm : Deep JDOT
Inputs: Source data X s , y s , Target data X t

for BCD Iterations do
for each Source/Target minibatch do

Solve OT with JDOT loss
Perform label propagation on minibatch

end for
Update model f on one epoch

end for
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DeepJDOT in a glance

g

g

+

+
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DeepJDOT in a glance
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Large scale datasets

Description MNIST→ USPS USPS→MNIST SVHN→MNIST MNIST→ MNIST-M
Source samples 60000 9298 73257 60000
Target samples 9298 60000 60000 60000
height/width 16×16 16×16 32×32×3 28×28×3

• Four cross domain digits datasets: MNIST, USPS, SVHN, MNIST-M .
• We consider a deep convolutional architecture.
• Dropout is used on the dense layers when training.

Nicolas Courty MACLEAN - GDR Isis 39/59
39/59



Experimental Results for large scale JDOT

• StochJDOT = ablation study, no learning of the embedding (cost is Euclidean
distance in original feature space)
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Emebddings
Source (red) VS target (blue) Class discrimination
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Figure: t-SNE embeddings of 2‘000 test samples for MNIST (source) and MNIST-M
(target) for Source only classifier, DANN, StochJDOT and DeepJDOT. The left column
shows domain comparisons, where colors represent the domain. The right column shows
the ability of the methods to discriminate classes (samples are colored w.r.t. their classes).
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Embeddings

Source (red) VS target (blue) Class discrimination
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Figure: t-SNE embeddings of 2‘000 test samples for MNIST (source) and MNIST-M
(target) for Source only classifier, DANN and DeepJDOT. The left column shows domain
comparisons, where colors represent the domain. The right column shows the ability of
the methods to discriminate classes (samples are colored w.r.t. their classes).
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Remote Sensing data
Image classification problem between UC Merced (top) and WHU-RS19 (bottom)
datasets (backbone network is ResNet-50).

agricultural airplane beach buildings med. resid. overpass

farmland airport beach commercial residential viaduct

Table: Overall accuracies for the discussed datasets and domain adaptation methods.

Method Adaptation: source → target
UC Merced → WHU-RS19 WHU-RS19 → UC Merced

Source only 0.66 0.59
MMD 0.68 0.68

DeepCORAL 0.68 0.67
DeepJDOT 0.75 0.73
Target only 1.00 1.00

Source & target 1.00 1.00
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Wait ! You said Mini-batch ????
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Minibatch Optimal Transport

Idea : Compute OT between the minibatches from domains

Minibatch Optimal Transport

MBOTp
p(µs , µt) := E(X ,Y )∼µs ⊗m⊗µt ⊗m [W p

p (bs , bt)]

where bs = 1
m

∑
i δX i and bt = 1

m
∑

i δY i .
• Interesting asymptotic properties [Fatras et al., 2020]
• Exchange sum and gradients ! [Fatras et al., 2021b]
• Can be defined for other OT variants applied on the batches
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MBOT behavior
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Properties of MBOT
• Preserve marginal constraints
• Globally, acts as a regularization of the π matrix

We need a way to mitigate effects of sampling !
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Unbalanced Optimal Transport
Solution: change the original OT by Unbalanced Optimal Transport.

Definition
Unbalanced Optimal Transport measures the distance between probablity
distributions, but with relaxed marginals.

UOTτ ,ε(α, β) = min
π∈M+(X ×Y)

∫
cdπ + εKL(π|α ⊗ β) + τ(KL(π1∥α) + KL(π2∥β)),

where π is the transport plan, π1 and π2 the plan’s marginals, τ ≥ 0 is the
marginal penalization and ε ≥ 0 is the regularization coefficient.
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Minibatch Unbalanced OT
OT
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• Reduce the errors associated to bad matchings due to sample effects
• Target shift impact is reduced
• Allows to do partial domain adaptation !

JUMBOT [Fatras et al., 2021a, ICML 2021]
Simply replace the computation of OT in deep JDOT by Unbalanced OT
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Office Home dataset

Network : pre-trained ResNet 50 with an additional classification layer.

Figure taken from [Venkateswara et al., 2017]. 65 classes in the source and target
domains for balanced DA and 25 classes in the target domains for partial DA.
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Office Home experiments

da

Method A-C A-P A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P avg
resnet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
dann (*) 44.3 59.8 69.8 48.0 58.3 63.0 49.7 42.7 70.6 64.0 51.7 78.3 58.3

cdan-e(*) 52.5 71.4 76.1 59.7 69.9 71.5 58.7 50.3 77.5 70.5 57.9 83.5 66.6
deepjdot (*) 50.7 68.6 74.4 59.9 65.8 68.1 55.2 46.3 73.8 66.0 54.9 78.3 63.5

alda (*) 52.2 69.3 76.4 58.7 68.2 71.1 57.4 49.6 76.8 70.6 57.3 82.5 65.8
rot (*) 47.2 71.8 76.4 58.6 68.1 70.2 56.5 45.0 75.8 69.4 52.1 80.6 64.3
jumbot 55.2 75.5 80.8 65.5 74.4 74.9 65.2 52.7 79.2 73.0 59.9 83.4 70.0

pda

resnet-50 46.3 67.5 75.9 59.1 59.9 62.7 58.2 41.8 74.9 67.4 48.2 74.2 61.4
deepjdot(*) 48.2 66.2 76.6 56.1 57.8 64.5 58.3 42.7 73.5 65.7 48.2 73.7 60.9

pada 51.9 67.0 78.7 52.2 53.8 59.0 52.6 43.2 78.8 73.7 56.6 77.1 62.1
etn 59.2 77.0 79.5 62.9 65.7 75.0 68.3 55.4 84.4 75.7 57.7 84.5 70.4

ba3us(*) 56.7 76.0 84.8 73.9 67.8 83.7 72.7 56.5 84.9 77.8 64.5 83.8 73.6
jumbot 62.7 77.5 84.4 76.0 73.3 80.5 74.7 60.8 85.1 80.2 66.5 83.9 75.5

No experiments yet on remote sensing data !
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Qualitative analysis: Ablation and sensitivity

Methods U → M S → M
deepjdot 96.4 ± 0.3 95.4 ± 0.1

entropic deepjdot 97.1 ± 0.3 97.6 ± 0.1
jumbot 98.2 ± 0.1 98.9 ± 0.1
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Outline

Domain adaptation: vanilla and new problems
Basics of Domain Adaptation
The many faces of domain adaptation

OT solutions for Domain Adaptation
(Short) Intro to Optimal Transport
Class-based regularization
OT on joint distributions (JDOT)
Impact of class proportion
Deep Domain Adaptation with JDOT
Mini-batch OT

Concluding remarks
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Optimal transport for deep Domain Adaptation
OT matrix                   

Learning with optimal transport
• A natural and powerful divergence for domain

adaptation.
• Tunable cost functions encode complex relations in

feature space.
• Recent optimization procedures opened it to

medium/large scale datasets.
• Sensible loss between non overlapping distributions

(not the case for MMD).

On-going works
• Domain adaptation on different tasks (detection,

semantic segmentation, etc.) and on heterogeneous
data (see our recent COOT NeurIPS paper)

• Domain adaptation for time series with OT
• Toward a unified approach for domain generalization

with OT
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Thank you
Python code available on GitHub: https://github.com/PythonOT/POT
• OT LP solver, Sinkhorn (stabilized, ε−scaling, GPU)
• Domain adaptation with OT.
• Barycenters, Wasserstein unmixing.
• Wasserstein Discriminant Analysis.
• Gromov-Wasserstein and variants for graphs
• New ! Different backend support (Numpy, JAX, Pytorch)

Codes for DeepJDOT and JUMBOT also available from dedicated githubs
(Tensorflow, PyTorch)

Papers available on my website:
http://people.irisa.fr/Nicolas.Courty/
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