

Domain Alignment in Representation Space Using Cycle-Consistent Adversarial Learning

Rodrigo Caye Daudt

05 July 2021

Domain Adaptation in Remote Sensing

There are many possible sources for domain shift in remote sensing imaging data.

Low resolution sensor

Different Sensors

High resolution sensor

Domain Adaptation in Remote Sensing

There are many possible sources for domain shift in remote sensing imaging data.

Different Seasons

Winter

Spring

Domain Adaptation in Remote Sensing

There are many possible sources for domain shift in remote sensing imaging data.

Different Geographical Regions

Fribourg, Switzerland

Marrakech, Morocco

The (simplest) problem definition for change detection is fairly straightforward. How to accomplish it is often not.

The (simplest) problem definition for change detection is fairly straightforward. How to accomplish it is often not.

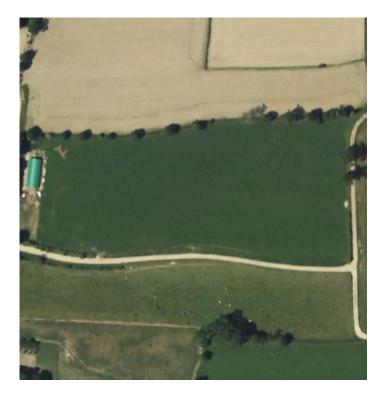


Image at T₁

The (simplest) problem definition for change detection is fairly straightforward. How to accomplish it is often not.

Image at T_1

Image at T₂

The (simplest) problem definition for change detection is fairly straightforward. How to accomplish it is often not.

Image at T₁

Image at T_2

Change map

Domain shifts in change detection can be very subtle.

Case study: detection of buildings damaged by different types of **natural disasters**.¹

¹ <u>https://xview2.org/</u>

Domain shifts in change detection can be very subtle.

Case study: detection of buildings damaged by different types of **natural disasters**.¹

Wildfire

¹ <u>https://xview2.org/</u>

Domain shifts in change detection can be very subtle.

Case study: detection of buildings damaged by different types of **natural disasters**.¹

Wildfire

Tsunami

¹ <u>https://xview2.org/</u>

Domain shifts in change detection can be very subtle.

Case study: detection of buildings damaged by different types of **natural disasters**.¹

Wildfire

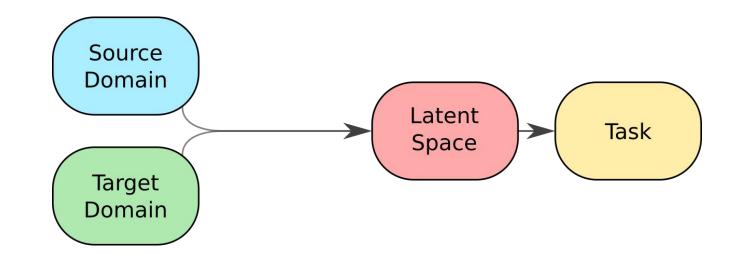
Tsunami

Flood

¹ <u>https://xview2.org/</u>

Main Objective: Domain Alignment

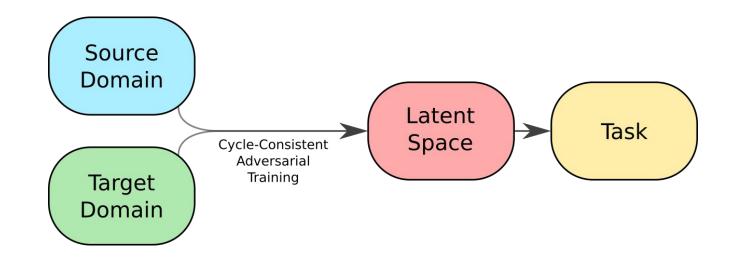
Our objective is to find a representation space (feature space) where the representation depends only on the contents of the input image and not on the domain of origin.



A hypothetical "same object" in two domains should have very similar representations in this latent space.

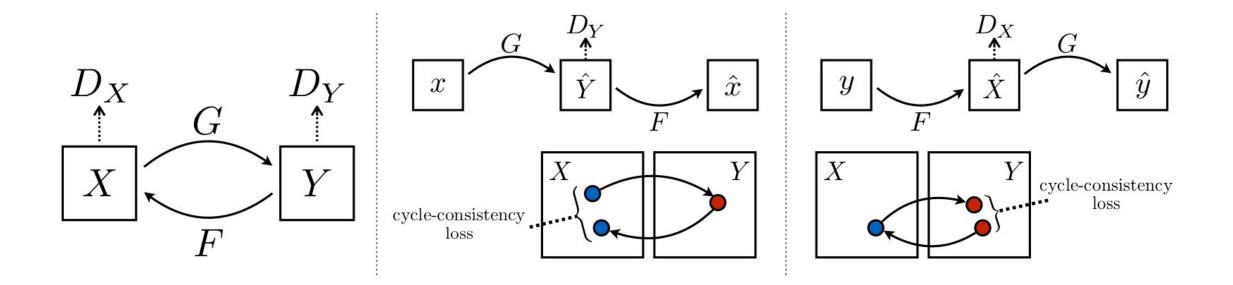
Main Objective: Domain Alignment

This is achieved using cycle-consistent adversarial training (originally proposed to develop the CycleGAN architecture).

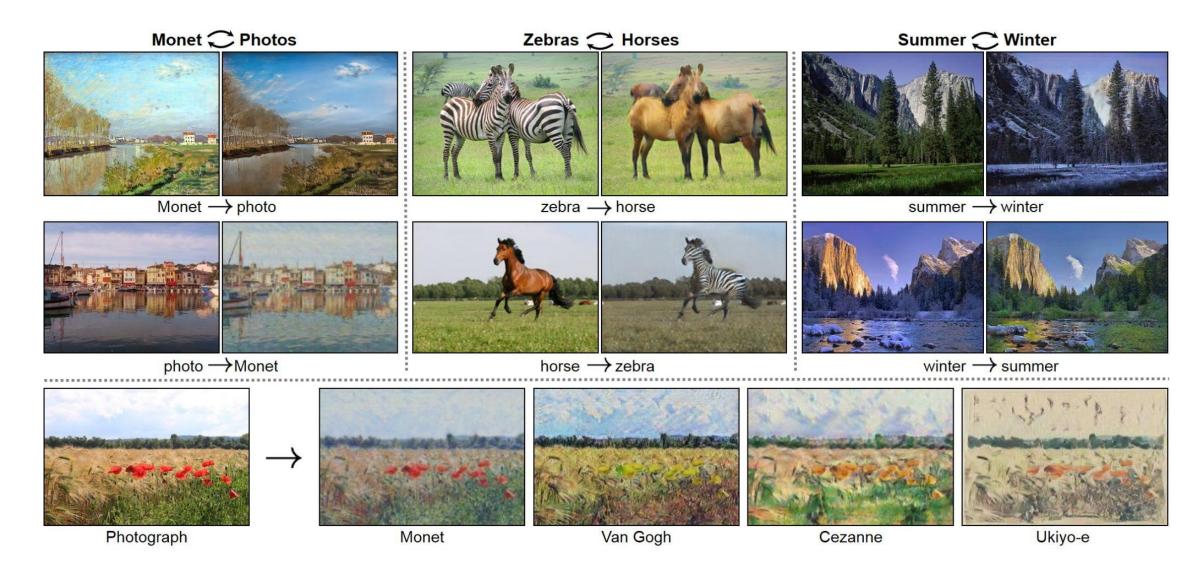


CycleGAN

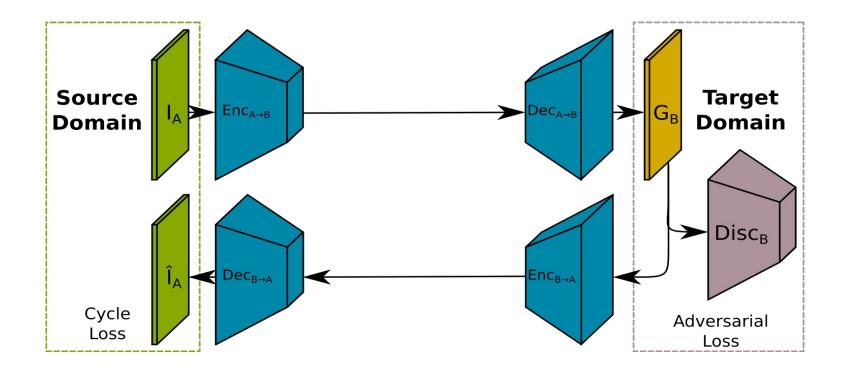
Main concept: a **forward translation** and a **backward translation** should approach an **identity transformation** (i.e. should have a result close to the input).



One big advantage: CycleGAN learns from **unpaired data**!

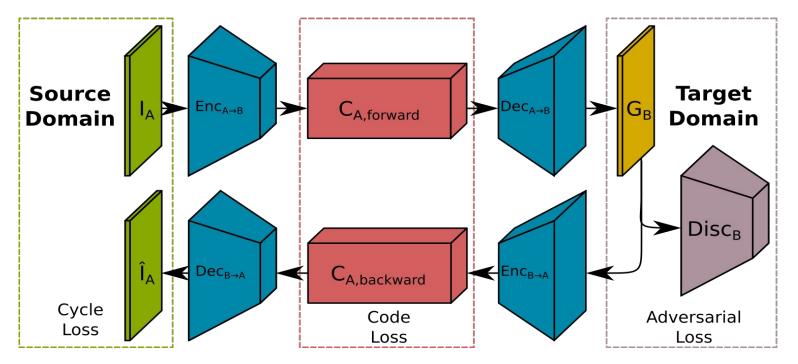


CycleGAN uses once encoder-decoder network for each translation direction.



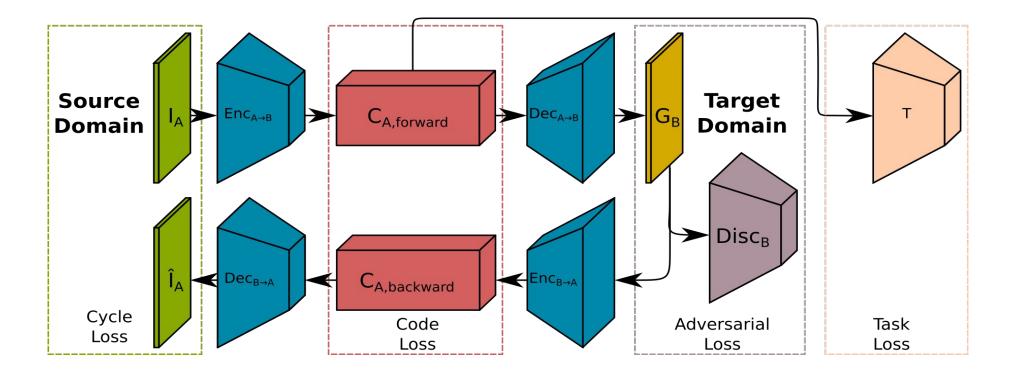
Only one path is shown here for simplicity, but two are possible: A-B-A and B-A-B.

The encoded representation in the forward and backward translations are what we are trying to align (not done in the original CycleGAN).



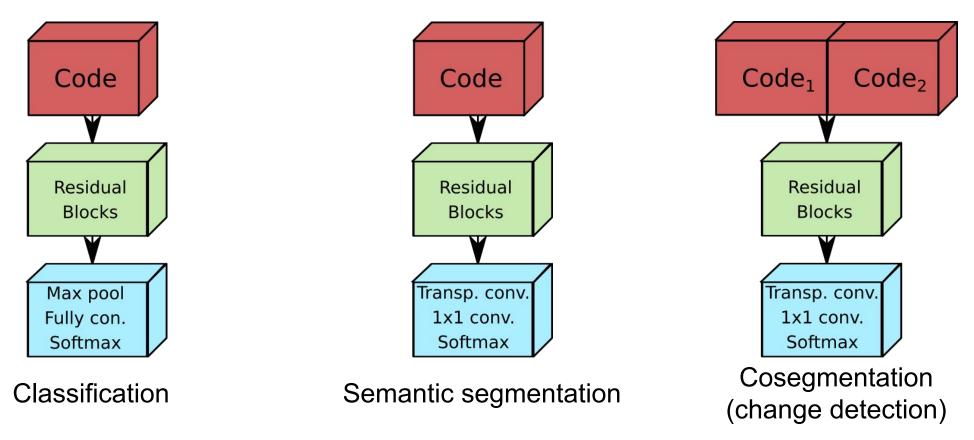
Intuitively, a discriminator would align the codes. In practice we show that this is not a good idea, and a simple L1 loss is more efficient.

A task can then be performed using this representation as input.

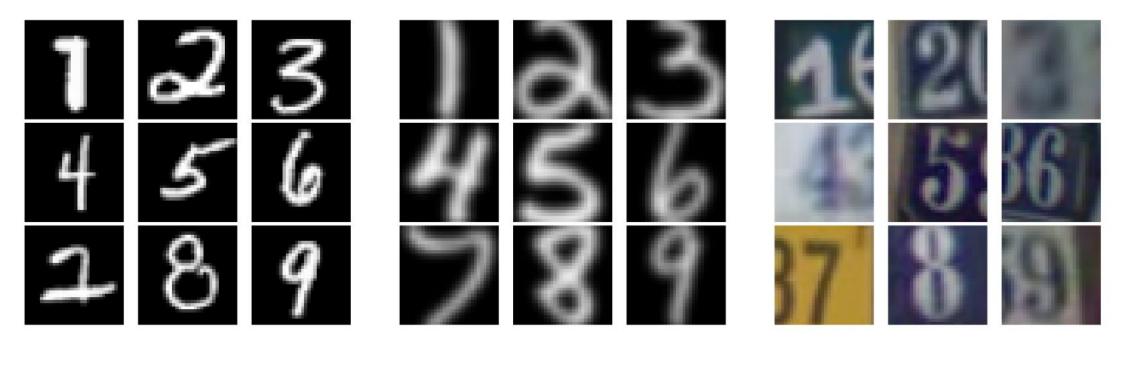


Simultaneous training of all the elements also encourages the encoders to learn a representation that is useful for the desired task.

We can input the code into different task networks to accomplish different tasks.



Application: Digit Recognition



MNIST

USPS

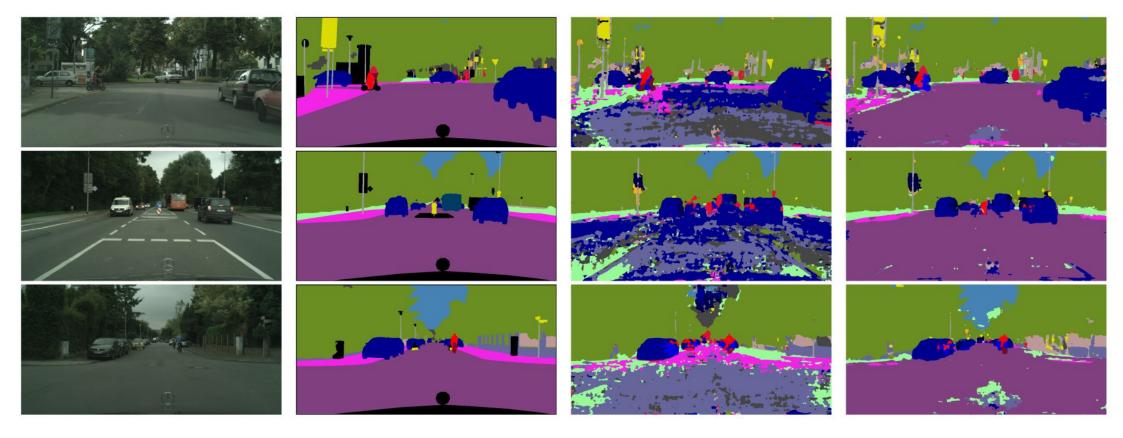
SVHN

Application: Digit Recognition

Model	$MNIST \to USPS$	$USPS \to MNIST$	$SVHN \rightarrow MNIST$	
Source only	0.957	0.779	0.723	
DANN	-	-	0.736	
DTN	-	-	0.844	
CoGAN	0.912	0.891	-	
ADDA	0.894	0.901	0.760	
CyCADA	0.956	0.965	0.904	
DINE (shared enc.)	0.982	0.973	0.713*	
DINE (normal)	0.982	0.981	0.803	
Target only	0.973	0.995	0.995	

GTA 5

Cityscapes



Input

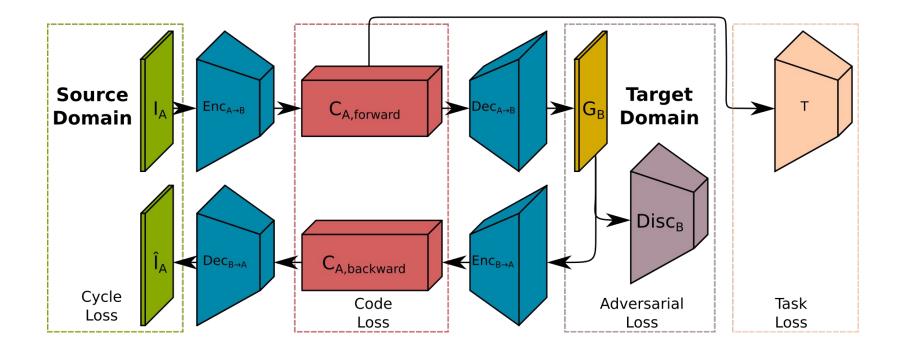
Ground truth

Source supervision

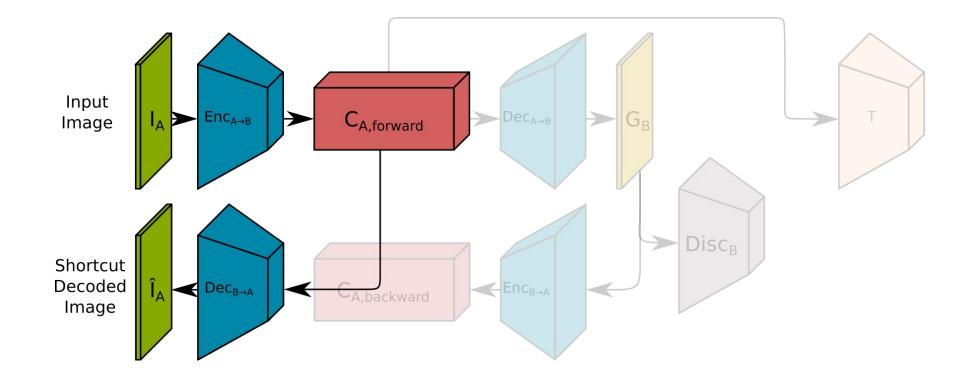
DINE

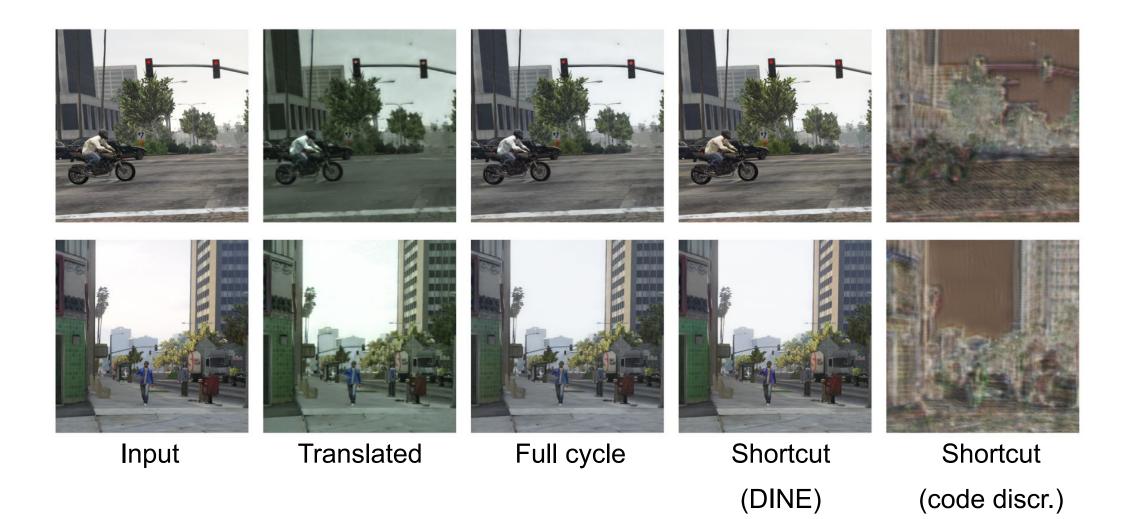
Model	Backbone	Parameters	mloU
Source supervision	Source supervision ResNet-9		0.117
FCNs in the Wild	VGG-16	50.5 M	0.271
Adapt-SegNet	Deeplab-v2 VGG16	29.6 M	0.350
Adapt-SegNet	Deeplab-v2 ResNet-101	44.5 M	0.424
CyCADA	VGG16-FCN8s	134.4 M	0.354
CyCADA	DRN-26	20.6 M	0.395
AdvEnt	ResNet-101	44.5M	0.438
AdvEnt	ResNet-9	11.4 M	0.108
CyCADA	ResNet-9	11.4 M	0.117
Adapt-SegNet	ResNet-9	11.4 M	0.125
DINE (shared enc.)	ResNet-9	11.4 M	0.137
DINE (normal)	ResNet-9	11.4 M	0.201

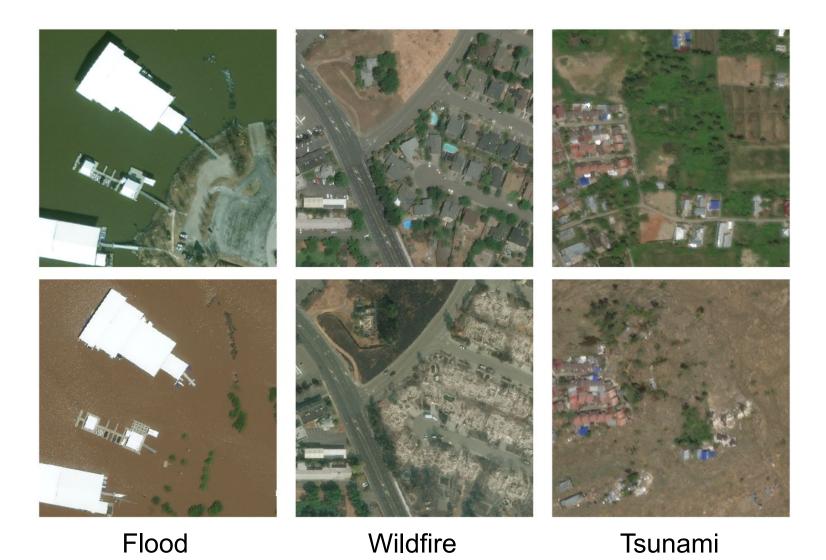
This structure allows us to visually verify domain alignment.

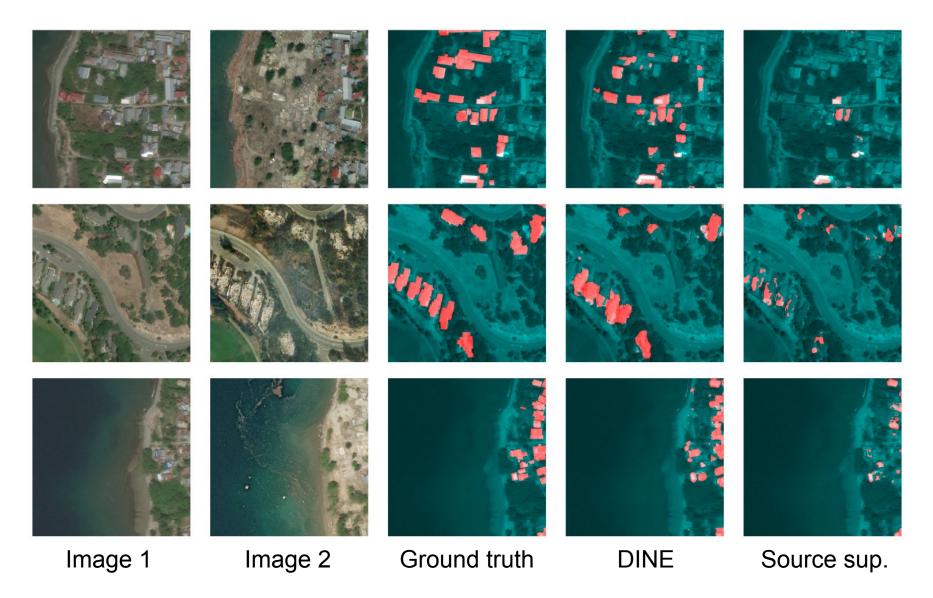


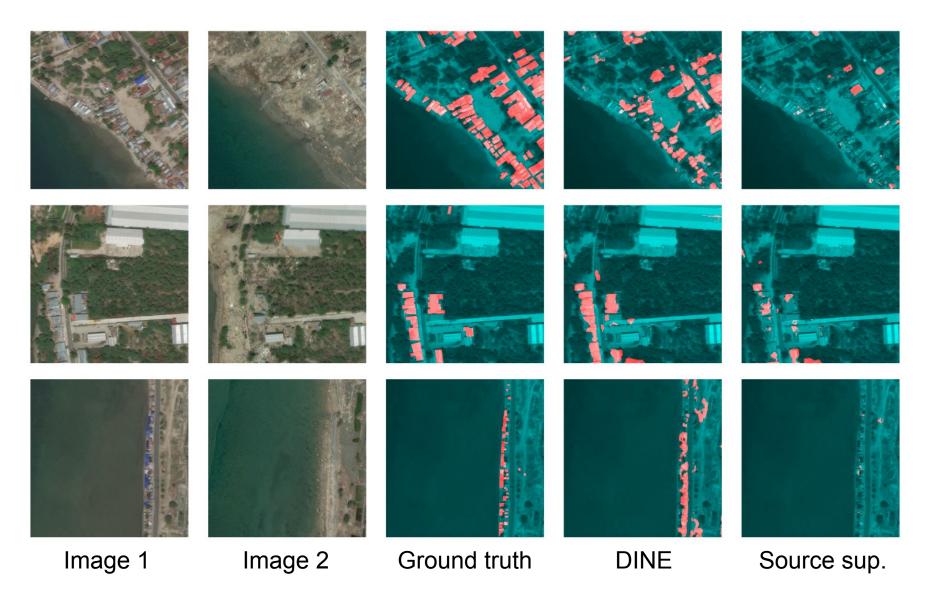
This structure allows us to visually verify domain alignment.

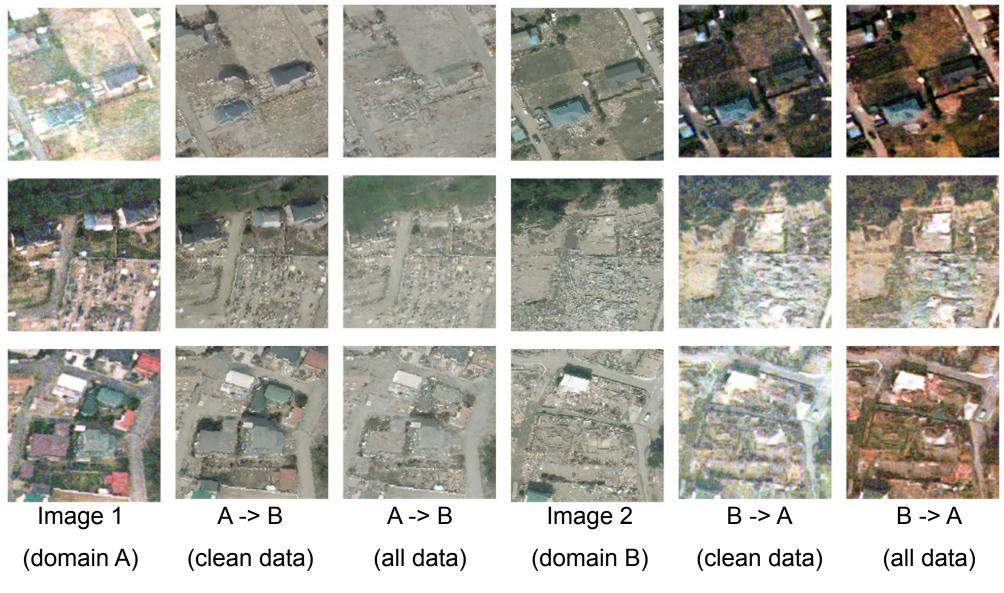












Conclusion

- Cycle-consistent adversarial learning was used to find a common representation space
 using unpaired data from different domains
- Method was tested for classification, semantic segmentation, and semantic cosegmentation (change detection)
- Notably, this method surpassed target domain supervision in one of our tests
- Method allows for visual verification of domain alignment in representation space
- Using data containing changes for training GANs may lead to bad results due to hallucinations

This work was done at **ONERA** and **Télécom Paris** under the supervision of **Bertrand Le Saux**, **Alexandre Boulch**, and **Yann Gousseau**.

Acknowledgements

Thank you for your attention!

Questions?

