Evolution of parallel and cluster
computing

Daniel Hagimont
daniel.hagimont@irit.fr

Toulouse Polytechnic National Institute

mailto:daniel.hagimont@irit.fr

s 128 bits address spaces a
revolution 7

Architectural Support for Single Address Space
Operating Systems, E. Koldinger, J. Chase, S. Eggers,
ASPLOS 1992

Consider that 40 bits can address a terabyte, two
orders of magnitude beyond the primary and
secondary storage capacity of all but the largest
systems today, and that a 64-bit address space,
consumed at a rate of 100 megabytes per second,
would last five thousand years.

128 bits - 100 terabytes/sec —» 10" years

History of multi-processor
systems

Multi-processor SMP machines
Multi-processor NUMA machines
Multi-core processors

Clusters of machines

@ SS|

@ DSM

@ SASOS

More recent evolutions
@ Disaggregation

@ Multi-kernel

@ Specific runtimes

Tendances

Multi-processor SMP machines

SMP Architectures

@ Unigue RAM shared by multiple processors
@ Uniform Memory Access (UMA)
@ |n the 1990's (single-core processors at that time)

¢+ Sequent Balance 8000 (1984), IBM RS5/6000 (1990), Sun
SPARCserver 1000 (1989), DEC 7000 (Alpha, 1989)

@ Two ways to architecture these SMP
¢ Rack mode: with a fast interconnect
 Initially, and later for scalability
¢ On motherboard: mutliple sockets, with interconnect

* Later, more compact machines (Intel Xeon, 1998), (AMD
Athlon, 2001)

@ OS (generally Unix) adapted for SMP support

Multi-processor NUMA machines

NUMA Architectures

@ Each processor has a local RAM, but can access other
processor's RAM (at a higher cost)

@ Non Uniform Memory Access (NUMA)
@ Because in SMP/UMA, interconnect and memory are bottlenecks

@ In the 1990's: Sequent NUMA-Q (Intel, 1992), SGI Origin 2000
(1996)

@ |n the 2000's: support from Intel Xeon (2001) and AMD Opteron
(2003)

@ Today's:
¢ Intel Xeon family with QPI interconnect
¢ AMD EPYC familly with Infinity Fabric

@ OS (generally Unix/Linux) adapted for NUMA support

Multi-core processors

Multi-core architectures
@ |n the 2000's

@

@

Dual-core: IBM Power4 (2001), Sun UltraSPARC IV (2003), Intel
Pentium D (2005) , AMD Athlon 64 x2 (2005), Intel Core 2 Duo (2006)

Quad-core: AMD Phenom X4 (2007), Intel Core i7 with
hyperthreading (2008)

@ From 2010 (for datacenters)

@
@
@
@

@

Intel Xeon Nehalem: 8 cores (2009)

AMD EPYC 7001: 32 cores (2017)

Intel Xeon Haswell: 18 cores (2014)

AMD EPYC 9004: 96 cores (2023)

Intel Xeon Sapphire Rapids: 56 cores (2023)

@ OS were already supporting multiple processors (because of
SMP), except cache affinity

Clusters of machines

@ Machines interconnected with a LAN

@ |n the 1990's

¢ Clusters for High Availability or load balancing

* Main applications: Web Servers (e.g. Apache HTTP Server) and databases
(e.g; Oracle Parallel Server)

* VAXCluster (DEC, 1990), Microsoft Cluster Server (1996)
¢ HPC clusters

* Main applications: scientific, simulations

* Mainly based on MPI

* Beowulf cluster (Lawrence Berkeley National Laboratory, 1994)
¢ Only a set of machines exploited by specific applications

Clusters: DSM and SSI

Distributed Shared Memory (DSM) Systems

@ Reproducing Unix shared memory (between processes, but
cluster-wide)

Attempts to manage a Single System Image (5SI)
@ Very early (from 1980)
@ Mosix (1982), Kerrighed (1998)

@ Manage process migration, maintaining sockets or shared
memory segments consistency

@ Processes are transparently scheduled on several machines, but
this is not like a SMP or (rather) NUMA machine, no distributed
process

Providing a DSM exploited by applications
@ A specific programming model for parallel applications
@ Many consistency models were studied

@ |vy (Yale, 1989), Clouds (Georgia Tech), Munin (Utah, 1990),
TreadMarks (Rice, 1991), Midway (UW, 1995)

@ Neither a SMP, NUMA nor SSI, an alternative to message passéng

Clusters: SASOS

Single Address Space Operating Systems (SASQOS)
@ All allocated virtual addresses are unique cluster-wide
|ndependent from protection domains

@ Unique addresses can be exchanges between processes in the
cluster or stored on disk (persistent object names)

@ Advantage: no need for any name translation (!!!)
¢ e.g., pointer swizzling
¢ e.g., passing a linked list as parameter of a RPC

@ Opal (University of Whasingtion, 1992)

Remarks

@ This was motivated by the advent of 64 bit processors
(consumed at a rate of 100 Mb/s, a 64-bit address space would
last for 5000 years)

@ Somewhere, other DSM are relying on a SAS within the DSM

Clusters: issues with SAS

SAS relies on large virtual addresses
SAS is for naming and binding (only)

@ Same object names everywhere

@ Memory is potentially shared (depending on protection domains)

¢ Not page-level only : false sharing (regarding consistency and
protection)

¢ Copy and consistency protocols

Problem of large object names (virtual addresses)

@ Increasing object names' size
¢ Increases size in memory and storage

@ Schemes with relative names were proposed in the 1990's

¢ In storage
* Relative names within a local space (shorter, e.qg. 32 bits)
* Fowarders when pointing to an object outside the local space
(space name + relative name)
* Reducing size in storage

¢ Mneme (Amherst, 1990)
10

Disaggregated architectures

Disaggregated architectures

@ Hardware resources (such as processors, memory, storage, and
networking) are physically separated

@ High speed interconnect
@ Can be scaled, managed, and allocated independently

@ Rather than being integrated into a single monolithic system
(motherboard)

@ This is already the case with SAN/NAS (storage)
Intel Rack Scale Architecture - 2015
#4 Compute Express Link (CXL) - 2019

@ Open standard interconnect for high-speed CPU-to-device and
CPU-to-memory connections

@ Supported by Intel and AMD and adopted by Amazon, Google
#4 What about the OS ?

@ Here, the rack becomes a single SMP with a SSI

@ LegoOS proposed Splitkernel (2018) 11

BarrelFish (ETH Zurich, 2009)

@ Today's OS (on centralized machines) rely on consistent shared
memory (of the operating system, between cores)

Rather rely on message passing between multiple kernels (one
per core)

r

¢ Less complexity when hardware is heterogeneous
¢ Messages scale better compared to shared memory

Implement an OS as a distributed system, a set of cooperating
kernels

4 Can be applied to NUMA or disaggregated
architectures

-

12

Specific runtimes

Instead of cluster integration at the OS level (SSI)

" |

User-level application specific runtimes for managing clusters

@ Only clusters composed of independent machines
Exemples

-

-
-
" |

MPI

Hadoop/Spark

Kubernetes

NB: a DSM system is such a example (not SSI)

13

Synthesis/Questions

Tendances

@ Generalisation of NUMA multi-core servers

@ Disagregated architectures

@ Both for scalability and flexibility

@ Specific runtimes for very large scale systems

Questions

@ Do we need a SSI for scaled multiprocessors ?
¢ NUMA: instead of adapting Linux, implementing a multi-kernel ?
¢ Diaggregated architectures: is split-kernel a kind of multi-kernel ?
@ Do we need a SSI for very large scale infrastructures ?
¢ Not really, provided by specific runtimes

@ Do we need SASOS ?
¢ Can be used at the OS level (but not exploited up to now)
¢ Could be valuable in specific runtimes

@ |s shared memory the right paradigm ?
¢ For implementing the OS: multi-kernel says no

¢ For developping applications: depends 14

