
128-bit RISC-V proposal: implications on 
HPC applications, data-center working 
sets, and object-oriented computing 

Osman S. Ünsal

The First 128 bit RISC-V European Workshop, 
Hipeac 2025, Barcelona



RISC-V 128-bit addressing/data: how about applications? 

• HPC applications: Beyond double precision
• Object-oriented computing: Tracking billions of objects/methods
• Data-center use cases: Huge working sets 
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HPC: Beyond Double Precision

● All INT compute is exact, all FP computation is approximate

● Usually multiply does not commute for FP

● You are applying approximate computing every time you 
declare a real*4 vs real*8

● Consider A/B versus A*(1.0/B)
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Is Double Precision too approximate?

• Depending on the application, yes

• Variable Precision Core in EPI
Guthmuller et al. Xvpfloat IEEE TC 2024

• 128 address/data space would help
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RISC-V 128-bit addressing/data: how about applications? 

• HPC applications: Beyond double precision
• Object-oriented computing: Tracking billions of objects/methods
• Data-center use cases: Huge working sets 
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Object-oriented computing: Tracking billions of objects/methods

• 128-bit addressing could provide the capability of a naming 
space for each unique object/method

• Melding memory and object addressing space facilitates 
security – easy to detect leaks

• To be addressed later by Steve Wallach
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Motivation: Object Oriented Computer Architecture (OOCA)
Markovic et al NDCA-2: New Directions in Computer Architecture 2011

 What is OOCA ?
 Direct path from Object Oriented Programming Model to hardware, hardware design is 

object aware
 Special hardware for special object maintaining object oriented interface 

 Why OOCA ?
 Object Oriented Languages 

Show high locality:
Current hardware is not exploiting what programmer has expressed or its purpose!

Protection
Memory notion is different (objects) -Between objects there is only communication through methods
Object addressing namespace is embedded in the 128 bit address space
Entry points to an object are well-defined with public methods and properties (messages)
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ISA Extensions

 ISA extensions consists of three basic instructions:
 Call – creates new Context or triggers execution of hardware 

implemented instructions like add, sub etc.
 Send – sends the reference of an Object to another Object or 

Context
 Select – fetches the reference to an Object encapsulated inside the 

other Object (class attribute e.g. getVal)
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OOCA Objects

 OOCA has several types of objects:
 Execution objects:

• Context – object for user defined functions, has its own 
memory space

 Data objects:
• Basic objects – objects that manage and store multiple versions 

of basic data types eg. Int, float, char etc.
• Complex objects – objects for user defined types like classes 

and structures
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OOCA Execution Model

• Asynchronous execution model
 Method are executed asynchronously

• Input/output parameters are sent asynchronously.
• Methods are executing in its own context

• Distributed execution model
 OO Model is supported by hardware abstract layer

• Objects are easy distributed around a complex network
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OOCA Architectre

 Several Object can be mapped to the 
same OP

 OP is minimum execution unit that 
implements virtual hardware layer

 Each OP is internally flexible. It can 
support different hardware 
implementations.

 Many possible cores can manage OP 
internal requirements (flexible and 
compatible):

(out-of-order processor, In-order processor (embedded), Multiprocessor, Vector processor, 
Processor + FPGA (Reconfigurable Architectures ), Data flow processor)
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OOCA Results

• DDG (Dynamic Dependency Graph) methodology Austin et al. 
1992

• DDG containing only true data dependencies to give upper 
bound on the available parallelism

• We compare the level of available parallelism extracted form 
sequential quicksort algorithm that our ideal model can achieve 
over ideal OoO

• For ideal OoO we use Pin Tool to generate traces

• For ideal OOM we use our functional level simulator
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OOCA Results
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OOCA Advantages

 Data locality
 Objects are smaller areas of locality (smaller working sets, better for 

internal data management)

 Data reuse (previous method calls may have created temporal 
structures that can be reused on future execution - depends on garbage 
collection)

 Execution locality
 Better Control Predictors (local & global predictors)

 Method prefetching
 Statically : Compiler knows what other methods could be called inside one 

method

 Dynamically: predictor can help to improve static strategies
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OOCA Advantages

 Execution recycling & reusing
 It can use objects and methods created for previous execution:
 Object allocation (memory and other internal objects)
 Code allocation (faster code prefetching)

 Result and local reuse (Haskell like)
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RISC-V 128-bit addressing/data: how about applications? 

• HPC applications: Beyond double precision
• Object-oriented computing: Tracking billions of objects/methods
• Data-center use cases: Huge working sets 
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Redundant Memory Mappings 
(ISCA2015) 



Summary

• Problem: Virtual memory overheads are high (up to 41%)
• Proposal: Redundant Memory Mappings

– Propose compact representation called range translation
– Range Translation – arbitrarily large contiguous mapping
– Effectively cache, manage and facilitate range translations
– Retain flexibility of 4KB paging

• Result:
– Reduces overheads of virtual memory to less than 1%
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Outline

Motivation 
Virtual Memory Refresher + Key Technology Trends
Goals + Key Observation

Design: Redundant Memory Mappings
Results
Conclusion

19



Virtual Memory Refresher
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Two Technology Trends

21*Inflation-adjusted 2011 USD, from: jcmit.com
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Key Observation
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Key Observation
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Virtual 
Memory

1. Large contiguous regions of virtual memory
2. Limited in number: only a few handful

Contiguity in physical memory: good for 128 bit address space

Physical 
Memory

Code Heap Stack Shared Lib.



Compact Representation: Range Translation
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Redundant Memory Mappings
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Outline

Motivation
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A. Caching Range Translations
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Results
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A. Caching Range Translations
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A. Caching Range Translations
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A. Caching Range Translations
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A. Caching Range Translations
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A. Caching Range Translations
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A. Caching Range Translations
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B. Managing Range Translations

• Stores all the range translations in a OS managed structure
• Per-process like page-table
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B. Managing Range Translations
Redundancy to the rescue

One bit in page table entry denotes that page is part of a range
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C. Facilitating Range Translations
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C. Facilitating Range Translations
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Allocate physical pages when virtual memory is allocated
Increases range sizes  Reduces number of ranges

Eager Paging



Outline

Motivation
Design: Redundant Memory Mappings
Results 
Methodology
Performance Results
Virtual Contiguity

Conclusion
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Methodology

• Measure cost on page walks on real hardware
– Intel 12-core Sandy-bridge with 96GB memory
– 64-entry L1 TLB + 512-entry L2 TLB 4-way associative for 4KB pages
– 32-entry L1 TLB 4-way associative for 2MB pages

• Prototype Eager Paging and Emulator in Linux v3.15.5
– BadgerTrap for online analysis of TLB misses  and emulate Range TLB

• Linear model to predict performance
• Workloads

– Big-memory workloads, SPEC 2006, BioBench, PARSEC
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Comparisons

• 4KB: Baseline using 4KB paging
• THP: Transparent Huge Pages using 2MB paging [Transparent Huge Pages]

• CTLB: Clustered TLB with cluster of 8 4KB entries [HPCA’14]

• DS: Direct Segments [ISCA’13 and MICRO’14]

• RMM: Redundant Memory Mappings [ISCA’15]
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Performance Results
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Performance Results
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Performance Results
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Performance Results
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Performance Results
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Performance Results
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Why low overheads? Virtual Contiguity
Ideal RMM rangesPaging

Benchmark #of ranges to cover more 
than 99% of memory

# of ranges4KB + 2MB
THP

491121365   + 333cactusADM
47710016 + 359canneal
3868983   + 35725graph500
1551737   + 839mcf
31628299 + 235tigr
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1000s of TLB entries requiredOnly 10s-100s of ranges per applicationOnly few ranges for 99% coverage



Summary

• Problem: Virtual memory overheads are high
• Proposal: Redundant Memory Mappings

– Propose compact representation called range translation
– Range Translation – arbitrarily large contiguous mapping
– Effectively cache, manage and facilitate range translations
– Retain flexibility of 4KB paging

• Result:
– Reduces overheads of virtual memory to less than 1%
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Results

• DDG (Dynamic Dependency Graph) methodology Austin et al. 
1992

• DDG containing only true data dependencies to give upper 
bound on the available parallelism

• We compare the level of available parallelism extracted form 
sequential quicksort algorithm that our ideal model can achieve 
over ideal OoO

• For ideal OoO we use Pin Tool to generate traces

• For ideal OOM we use our functional level simulator
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Results
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