
128-bit RISC-V proposal: implications on
HPC applications, data-center working
sets, and object-oriented computing

Osman S. Ünsal

The First 128 bit RISC-V European Workshop,
Hipeac 2025, Barcelona

RISC-V 128-bit addressing/data: how about applications?

• HPC applications: Beyond double precision
• Object-oriented computing: Tracking billions of objects/methods
• Data-center use cases: Huge working sets

2

HPC: Beyond Double Precision

● All INT compute is exact, all FP computation is approximate

● Usually multiply does not commute for FP

● You are applying approximate computing every time you
declare a real*4 vs real*8

● Consider A/B versus A*(1.0/B)

3

Is Double Precision too approximate?

• Depending on the application, yes

• Variable Precision Core in EPI
Guthmuller et al. Xvpfloat IEEE TC 2024

• 128 address/data space would help

4

RISC-V 128-bit addressing/data: how about applications?

• HPC applications: Beyond double precision
• Object-oriented computing: Tracking billions of objects/methods
• Data-center use cases: Huge working sets

5

Object-oriented computing: Tracking billions of objects/methods

• 128-bit addressing could provide the capability of a naming
space for each unique object/method

• Melding memory and object addressing space facilitates
security – easy to detect leaks

• To be addressed later by Steve Wallach

6

Motivation: Object Oriented Computer Architecture (OOCA)
Markovic et al NDCA-2: New Directions in Computer Architecture 2011

 What is OOCA ?
 Direct path from Object Oriented Programming Model to hardware, hardware design is

object aware
 Special hardware for special object maintaining object oriented interface

 Why OOCA ?
 Object Oriented Languages

Show high locality:
Current hardware is not exploiting what programmer has expressed or its purpose!

Protection
Memory notion is different (objects) -Between objects there is only communication through methods
Object addressing namespace is embedded in the 128 bit address space
Entry points to an object are well-defined with public methods and properties (messages)

7

ISA Extensions

 ISA extensions consists of three basic instructions:
 Call – creates new Context or triggers execution of hardware

implemented instructions like add, sub etc.
 Send – sends the reference of an Object to another Object or

Context
 Select – fetches the reference to an Object encapsulated inside the

other Object (class attribute e.g. getVal)

8

OOCA Objects

 OOCA has several types of objects:
 Execution objects:

• Context – object for user defined functions, has its own
memory space

 Data objects:
• Basic objects – objects that manage and store multiple versions

of basic data types eg. Int, float, char etc.
• Complex objects – objects for user defined types like classes

and structures

9

OOCA Execution Model

• Asynchronous execution model
 Method are executed asynchronously

• Input/output parameters are sent asynchronously.
• Methods are executing in its own context

• Distributed execution model
 OO Model is supported by hardware abstract layer

• Objects are easy distributed around a complex network

10

OOCA Architectre

 Several Object can be mapped to the
same OP

 OP is minimum execution unit that
implements virtual hardware layer

 Each OP is internally flexible. It can
support different hardware
implementations.

 Many possible cores can manage OP
internal requirements (flexible and
compatible):

(out-of-order processor, In-order processor (embedded), Multiprocessor, Vector processor,
Processor + FPGA (Reconfigurable Architectures), Data flow processor)

11

OOCA Results

• DDG (Dynamic Dependency Graph) methodology Austin et al.
1992

• DDG containing only true data dependencies to give upper
bound on the available parallelism

• We compare the level of available parallelism extracted form
sequential quicksort algorithm that our ideal model can achieve
over ideal OoO

• For ideal OoO we use Pin Tool to generate traces

• For ideal OOM we use our functional level simulator

12

OOCA Results

13

OOCA Advantages

 Data locality
 Objects are smaller areas of locality (smaller working sets, better for

internal data management)

 Data reuse (previous method calls may have created temporal
structures that can be reused on future execution - depends on garbage
collection)

 Execution locality
 Better Control Predictors (local & global predictors)

 Method prefetching
 Statically : Compiler knows what other methods could be called inside one

method

 Dynamically: predictor can help to improve static strategies

14

OOCA Advantages

 Execution recycling & reusing
 It can use objects and methods created for previous execution:
 Object allocation (memory and other internal objects)
 Code allocation (faster code prefetching)

 Result and local reuse (Haskell like)

15

RISC-V 128-bit addressing/data: how about applications?

• HPC applications: Beyond double precision
• Object-oriented computing: Tracking billions of objects/methods
• Data-center use cases: Huge working sets

16

Redundant Memory Mappings
(ISCA2015)

Summary

• Problem: Virtual memory overheads are high (up to 41%)
• Proposal: Redundant Memory Mappings

– Propose compact representation called range translation
– Range Translation – arbitrarily large contiguous mapping
– Effectively cache, manage and facilitate range translations
– Retain flexibility of 4KB paging

• Result:
– Reduces overheads of virtual memory to less than 1%

18

Outline

Motivation
Virtual Memory Refresher + Key Technology Trends
Goals + Key Observation

Design: Redundant Memory Mappings
Results
Conclusion

19

Virtual Memory Refresher

20

TLB
(Translation Lookaside Buffer)

Pr
oc

es
s

1
Pr

oc
es

s
2

Virtual Address Space

Physical Memory

Page Table

Challenge:
How to reduce costly

page walks?

Two Technology Trends

21*Inflation-adjusted 2011 USD, from: jcmit.com

0

0

0

1

10

100

1,000

10,000

1980 1985 1990 1995 2000 2005 2010 2015

M
em

or
y

si
ze

Years

Memory capacity for $10,000*

M
B

G
B

TB

1

10

100

1

10

100

1

10

TLB reach is limited

L1 DTLB
entries

ProcessorYear

72Pent. III1999
64Pent. 42001
96Nehalem2008

100IvyBridge2012
100Broadwell2015

Key Observation

22

Virtual
Memory

Physical
Memory

Key Observation

23

Virtual
Memory

1. Large contiguous regions of virtual memory
2. Limited in number: only a few handful

Contiguity in physical memory: good for 128 bit address space

Physical
Memory

Code Heap Stack Shared Lib.

Compact Representation: Range Translation

24

Virtual
Memory

Physical
Memory

BASE1 LIMIT1

OFFSET1
Range

Translation 1

Range Translation: is a mapping between contiguous virtual pages
mapped to contiguous physical pages with uniform protection

Redundant Memory Mappings

25

Virtual
Memory

Physical
Memory

Range
Translation 1

Range
Translation 2

Range Translation 3

Range
Translation 4

Range
Translation 5

Map most of process’s virtual address space redundantly with
modest number of range translations in addition to page mappings

Outline

Motivation
Design: Redundant Memory Mappings
A. Caching Range Translations
B. Managing Range Translations
C. Facilitating Range Translations

Results
Conclusion

26

A. Caching Range Translations

27

V47 …………. V12

P47 …………. P12

L1 DTLBL1 DTLB

L2 DTLB Range TLB

Page Table WalkerEnhanced Page Table Walker

A. Caching Range Translations

28

Hit

V47 …………. V12

P47 …………. P12

L1 DTLBL1 DTLB

Range TLB

Enhanced Page Table Walker

L2 DTLB

A. Caching Range Translations

29

Miss

V47 …………. V12

P47 …………. P12

L1 DTLBL1 DTLB

Range TLB

Enhanced Page Table Walker

L2 DTLBHit

Refill

A. Caching Range Translations

30

Miss

V47 …………. V12

P47 …………. P12

L1 DTLBL1 DTLB

Range TLB

Enhanced Page Table Walker

L2 DTLB Hit

Refill

A. Caching Range Translations

31

Miss

V47 …………. V12

P47 …………. P12

L1 DTLBL1 DTLB

Range TLBL2 DTLB Hit

Refill
Entry 1

BASE 1BASE 1 LIMIT 1LIMIT 1≤≤ >>

Entry N
BASE NBASE N LIMIT NLIMIT N≤≤ >>

OFFSET 1 Protection 1

OFFSET N Protection N

L1 TLB Entry Generator Logic:
(Virtual Address + OFFSET) Protection

A. Caching Range Translations

32

Miss

V47 …………. V12

P47 …………. P12

L1 DTLBL1 DTLB

Range TLB

Enhanced Page Table Walker

L2 DTLBMiss Miss

B. Managing Range Translations

• Stores all the range translations in a OS managed structure
• Per-process like page-table

33

Range Table

CR-RT
RTC RTD RTF RTG

RTA RTB RTE

B. Managing Range Translations
Redundancy to the rescue

One bit in page table entry denotes that page is part of a range

34

Page Table Walk

1

Insert into L1 TLB

2

Application resumes
memory access

3

Range Table Walk
(Background)

Insert into Range TLB

Part of a range

CR-RT
RTC RTD RTF RTG

RTA RTB RTE

CR-3

C. Facilitating Range Translations

35

Virtual
Memory

Physical
Memory

Does not facilitate physical page contiguity for range creation

Demand Paging

C. Facilitating Range Translations

36

Virtual
Memory

Physical
Memory

Allocate physical pages when virtual memory is allocated
Increases range sizes Reduces number of ranges

Eager Paging

Outline

Motivation
Design: Redundant Memory Mappings
Results
Methodology
Performance Results
Virtual Contiguity

Conclusion

37

Methodology

• Measure cost on page walks on real hardware
– Intel 12-core Sandy-bridge with 96GB memory
– 64-entry L1 TLB + 512-entry L2 TLB 4-way associative for 4KB pages
– 32-entry L1 TLB 4-way associative for 2MB pages

• Prototype Eager Paging and Emulator in Linux v3.15.5
– BadgerTrap for online analysis of TLB misses and emulate Range TLB

• Linear model to predict performance
• Workloads

– Big-memory workloads, SPEC 2006, BioBench, PARSEC

38

Comparisons

• 4KB: Baseline using 4KB paging
• THP: Transparent Huge Pages using 2MB paging [Transparent Huge Pages]

• CTLB: Clustered TLB with cluster of 8 4KB entries [HPCA’14]

• DS: Direct Segments [ISCA’13 and MICRO’14]

• RMM: Redundant Memory Mappings [ISCA’15]

39

Performance Results

40

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

cactusADM canneal graph500 mcf tigr

Ex
ec

ut
io

n
Ti

m
e

O
ve

rh
ea

d

Measured using
performance counters

Modeled based
on emulator

5/14 workloads
Rest in paper

Assumptions:
CTLB: 512 entry fully-associative
RMM: 32 entry fully-associative

Both in parallel with L2

Performance Results

41

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

cactusADM canneal graph500 mcf tigr

Ex
ec

ut
io

n
Ti

m
e

O
ve

rh
ea

d

Overheads of using 4KB pages are very high

Performance Results

42

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

cactusADM canneal graph500 mcf tigr

Ex
ec

ut
io

n
Ti

m
e

O
ve

rh
ea

d

Clustered TLB works well, but limited by 8x reach

Performance Results

43

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

cactusADM canneal graph500 mcf tigr

Ex
ec

ut
io

n
Ti

m
e

O
ve

rh
ea

d

2MB page helps with 512x reach: Overheads not very low

Performance Results

44

0.
00

%

0.
00

%

0.
06

%

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

cactusADM canneal graph500 mcf tigr

Ex
ec

ut
io

n
Ti

m
e

O
ve

rh
ea

d

Direct Segment perfect for some but not all workloads

Performance Results

45

0.
00

%

0.
25

%

0.
40

%

0.
00

%

0.
14

%

0.
06

%

0.
26

%

1.
06

%

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

4K
B

CT
LB

TH
P D
S

RM
M

cactusADM canneal graph500 mcf tigr

Ex
ec

ut
io

n
Ti

m
e

O
ve

rh
ea

d

RMM achieves low overheads robustly across all workloads

Why low overheads? Virtual Contiguity
Ideal RMM rangesPaging

Benchmark #of ranges to cover more
than 99% of memory

of ranges4KB + 2MB
THP

491121365 + 333cactusADM
47710016 + 359canneal
3868983 + 35725graph500
1551737 + 839mcf
31628299 + 235tigr

46

1000s of TLB entries requiredOnly 10s-100s of ranges per applicationOnly few ranges for 99% coverage

Summary

• Problem: Virtual memory overheads are high
• Proposal: Redundant Memory Mappings

– Propose compact representation called range translation
– Range Translation – arbitrarily large contiguous mapping
– Effectively cache, manage and facilitate range translations
– Retain flexibility of 4KB paging

• Result:
– Reduces overheads of virtual memory to less than 1%

47

Thank you

osman.unsal@bsc.es

48

Results

• DDG (Dynamic Dependency Graph) methodology Austin et al.
1992

• DDG containing only true data dependencies to give upper
bound on the available parallelism

• We compare the level of available parallelism extracted form
sequential quicksort algorithm that our ideal model can achieve
over ideal OoO

• For ideal OoO we use Pin Tool to generate traces

• For ideal OOM we use our functional level simulator

49

Results

50

