
VIRTUAL MEMORY FOR
POST-MOORE SERVERS

Babak Falsafi

parsa.epfl.ch

$
2
8
0
 B

Market Value 2024

[Goldman Sachs, Fortune]

$
6
7
0
 B

Datacent

er

Cloud

CAGR

17%

CAGR

17%

CLOUD & DATACENTER GROWTH

▪Data → fuel for digital
economy

▪Exponential demand for
digital services

▪Many apps (e.g., AI) with
higher exponential demand

$
5
6
 B

HPC

CAGR

9%

DATACENTERS ARE BACKBONE OF CLOUD

▪100s of 1000 of commodity or home-
brewed servers

▪Centralized to exploit economies of scale

▪Network fabric w/ µ-second connectivity

▪Often limited by
▪ Electricity

▪ Network

▪ Cooling

Boydton DC, 300MW

200m

2km

U
s
e

rs
 &

D
e

v
ic

e
s

Edge Cloud Enterprise Cloud Public Cloud

[src: Peterson, et. al.]

Temporal/Sensitive/Local Data Persistent/Global Data

CLOUDS AT VARIOUS SCALES

SCALE-OUT DATACETNERS

Cost is the primary metric (~50%)

Online services hosted in memory

Divide data up across servers

Design server for low cost, scale out

☞Memory most precious silicon

Memory

Network Disk
CPU

UCIE/HBM CXL/NVLINK

OPPORTUNTY: LD/ST INTERCONNECTS

• Low on-package latency

• Higher per-core bandwidth
• Better per-core bandwidth scalability

• Shared memory with latency/bandwidth trade-offs

MEMORY CAPACITY IS INCREASING

Future servers will have access to PBs of memory capacity

M
em

o
ry

 C
ap

ac
it
y

Technology

GBs

~100 GBs

~10 TBs
PBs

CHALLENGE: VIRTUAL MEMORY

Product Year Cores Cache capacity TLB entries Coverage (4KB)

Intel P4 2000 1 256KB SRAM 64 256KB

Intel KabyLake 2016 4 128MB eDRAM 1536 6MB

Apple M1 2020 8 (4+4) 16MB SRAM 3096 12MB (16KB)

AMD Zen3 2021 64 (8x8) 256MB SRAM 2048 8MB

Intel Sapphire Rapids 2022 56 (14x4) 64GB HBM2 ? ?

8

Memory

LLC

L1

TLB

Platforms today

P

Memory

L1

TLB

Platforms in 90s

Core

P ~10 entries ~1000 entries

~KBs

~MBs

~GBs

~TBs

Core

VIRTUAL MEMORY WITHOUT TLB

Virtual

Physical

Midgard

• Keeps POSIX (VMA) interface to apps

• Linux, MacOS/iOS, Android

• Eliminates page-based translation in $

✓ Unclogs virtual memory for security,

 virtualization, accelerators

Higher overhead

Lower overhead

CPU

Memory

Page-based VM

$

CPU

Memory

Midgard

$

V
M

 O
ve

rh
ea

d
(%

)

4K pageMidgard 2M page

Cache Hierarchy ($) Capacity

midgard.epfl.ch

Welcome to Midgard

http://midgard.epfl.ch/
https://midgard.epfl.ch/

VIRTUAL MEMORY WITHOUT TLB

▪Midgard Roadmap:

▪CPU microarchitecture/OS [ISCA’21’23]

▪Compartmentalization [IEEE S&P’23]

▪Monolith/µservices/serverless

▪ Virtualization/Containerization

▪Accelerator ecosystem/IO

▪….

10

Intel Transformative

Server Architecture

Center

ROADMAP

▪Overview

▪Virtual Memory

▪Midgard

▪128-bit Address Space

▪Summary

VIRTUAL MEMORY
▪Classic programming abstraction

▪ Provides process isolation using private address spaces

▪ Provides memory management without application involvement

▪Ubiquitous in all modern computing devices (servers, desktops, mobile)

12

Essential abstraction for programming and memory management

VIRTUAL MEMORY 101 (OS)

▪Operating System (OS) provides

▪ Virtual address space for applications

▪ Physical address space for memory

▪ Mapping of virtual addresses to physical addresses

13

Virtual Address Space

App 0 App 1

Physical Address Space

VIRTUAL MEMORY 101 (HW)

▪Architectural support is required for

▪ Translating virtual addresses to physical addresses

▪ Performing protection checks

14

Virtual Address Space

Physical Address Space Memory

Core

Translation
Protection check

App 0 App 1

HOW ARE ADDRESS SPACES ORGANIZED?

▪ Virtual address space

▪ Organized using Virtual Memory Areas (VMAs)

▪ Protection is defined at a VMA granularity

15

Heap0 Stack0Shared Code Heap1 Stack1Shared Code

App 0 App 1

VMA

HOW ARE ADDRESS SPACES ORGANIZED?

▪ Physical address space

▪ Organized using fixed-size pages for efficient capacity management

▪ VMAs are divided and mapped to numerous pages

16

Heap0 Stack0Shared Code Heap1 Stack1Shared Code

App 0 App 1

Protection and translation information is replicated for pages

P = Protection infoP P P P P P

VMA

PERFORMANCE REQUIREMENTS

▪Cores directly interact with cache hierarchy

▪ Translation/protection should work at cache latency

▪ VMAs could give us fast translation/protection at a large granularity

▪ But we lost VMAs and divided them into numerous, small pages

▪ Page-based translation/protection

▪ Require lookup of replicated information for each page

▪ Lookups become expensive with larger cache/memory capacity

17

Translation/protection should match cache speed

HARDWARE SUPPORT TODAY

▪ Translation Lookaside Buffer (TLB)

▪ Cache mappings for recently used pages

▪ Accelerate translation and protection checks

▪ TLBs do not scale

▪ Memory capacity has grown from MBs to ~10 TB

▪ Cache hierarchies have grown up to ~10 GB

▪ TLBs only have 1000s of entries i.e. ~10 MB coverage

▪ End of Moore’s law prohibits further silicon scaling

18

TLBs cannot provide the required coverage

Memory

LLC

L1

TLB

Platforms today

10 TB

Core

P

PRIOR WORK

19

Previous proposals help, but do not solve the problem

▪Aim to create contiguity in the physical address space

▪ Huge pages

▪ Direct segments [Basu, ISCA’13]

▪ Memory defragmentation [Yan, ISCA’19]

▪Contiguity helps achieve faster translation/protection [Skarlatos, ISCA’23]

▪ At the price of higher runtime overhead

▪ Virtual hierarchies

▪ In-cache address translation [Wood, ISCA’86]

▪ VBI [Hajinazar, ISCA’20]

MIDGARD ADDRESS SPACE

▪A sparse intermediate address space that retains VMAs

▪ Protection check and contiguous translation at VMA granularity

▪ OS deduplicates shared VMAs, ensuring no synonyms/homonyms

20

Midgard provides an address space for the cache hierarchy

Heap0 Stack1Shared CodeStack0 Heap1

Heap0 Stack0Shared Code Heap1 Stack1Shared Code

Midgard Address Space

P

App 0 App 1

MIDGARD-ADDRESSED CACHE HIERARCHY

▪Cache hierarchy now uses Midgard addresses

▪ Virtual to Midgard translation is fast because of VMAs

▪ Protection is implemented at a VMA granularity

▪ Midgard to Physical translation is only required on cache misses

21

Midgard optimizes the common-case cache accesses

Heap0 Stack1Shared CodeStack0 Heap1

Heap0 Stack0Shared Code Heap1 Stack1Shared Code

P

App 0 App 1

LLC

L1

Core

Memory

VIRTUAL-TO-MIDGARD TRANSLATION

▪ Translation and protection at VMA granularity

▪ Process-private VMA table contains mappings

▪ Each process typically contains ~100 VMAs

▪ E.g., range tables, B-trees

▪ Virtual Lookaside Buffer (VLB)

▪ Cache VMA mappings to benefit from locality

▪ Only ~10 VMAs are frequently accessed

22

Only ~10 VLB entries required per core

LLC

L1

Core

VLBP

Memory

MIDGARD-TO-PHYSICAL TRANSLATION

▪Cache hierarchy filters most of the memory accesses

▪ Translation required only for cache misses

▪ Larger cache hierarchy requires fewer translations

▪ Translations stored in Midgard page table

▪ Shared by all the processes/cores

▪ Spatial lookups (no temporal locality)

▪ Optionally cache in Midgard Lookaside Buffers (MLBs)

23

Page table walk required only on cache misses

LLC

L1

Core

Optional

VLB

Memory

MLB

MIDGARD PAGE TABLE

▪ Page table can be mapped to Midgard to ease the walk

▪ Sparse Midgard address space allows reserving contiguous space for every level

▪ Direct lookup of any entry in the cache hierarchy (like TLBs, MMU caches)

24

Cache hierarchy can directly serve Midgard page table entries

31 2 3 4 1 2 3 4

Layout in Physical Memory Layout in Midgard

MIDGARD PAGE FAULTS

▪Midgard (store) page faults are detected late in the pipeline [Qiu, ISCA’99]

▪ After a store ends up retiring and is in the store buffer

▪ Precise exception handling requires keeping all retired state [Gniady, ISCA’99]

▪ Post-retirement speculation needs a lot of silicon (e.g., 20KB of state)

▪ Imprecise store exceptions [Gupta, ISCA’23]

▪ Microarchitecture + OS co-design to handle late store exceptions

▪ Obviates the need for post-retirement speculation

▪ Formalism to guarantee maintaining memory consistency

25

METHODOLOGY

▪ Trace analysis of memory accesses with QFlex

▪AMAT analysis to quantify VM overhead

▪Workloads: GAP benchmark suite, Graph500

▪ 16 ARM cores

▪ 256GB of dataset

▪ Baseline TLB: 64-entry L1, 1024-entry L2

▪Midgard: 16-entry VLB, no MLB by default

26

POST-MOORE VM PERFORMANCE

27

VM performance degrades as the cache hierarchy capacity

increases

0

5

10

15

20

25

30

35

16GB4GB1GB256MB64MB16MB

A
dd

re
ss

 T
ra

ns
la

ti
o

n
O

ve
rh

ea
d

(%
)

LLC Capacity

Traditional (4K)

K
n

ig
h

ts
 L

an
d

in
g

K
ab

yL
ak

e

A
M

D
 Z

en
2

▪As cache hierarchy capacity

increases, time spent in data

accesses goes down, thus

increasing VM overhead

FUTURE-PROOFING VM WITH MIDGARD

28

Midgard performance improves with the cache hierarchy capacity

0

5

10

15

20

25

30

35

16GB4GB1GB256MB64MB16MB

A
dd

re
ss

 T
ra

ns
la

ti
o

n
O

ve
rh

ea
d

(%
)

LLC Capacity

Midgard Traditional (4K)

K
n

ig
h

ts
 L

an
d

in
g

K
ab

yL
ak

e

A
M

D
 Z

en
2

▪ For 16MB, Midgard has

<5% performance overhead

compared to traditional

▪ Secondary working sets fits

in 32MB and 512MB LLC

CONSERVATIVE COMPARISON TO HUGE PAGES

29

VM performance degrades as the cache hierarchy capacity

increases

▪Overhead of huge page

transition ignored

▪Overhead persists

independent of page size

as cache capacity grows

SRAM to DRAM

Cache transition

ROADMAP

▪Overview

▪Virtual memory

▪Midgard

▪128-bit address spaces

▪Summary

MAP FLASH INTO ADDRESS SPACE [HPCA’23]

▪Host & serve mapped data from SSD

▪Hardware-managed DRAM cache

▪Co-design to eliminate OS overhead

▪ paging

▪ threading

31
Maintains tail latency with only 5% lower throughput

0

20

40

60

80

100

0 0.5 1N
o

rm
al

iz
ed

 9
9

th
%

 la
te

n
cy

Normalized Throughput

DRAM-only AstriFlashCost Latency

DRAM 1x ~100 ns

SCM 1/5x 1-10 μs

SSD 1/30x-1/50x > 50 μs (OS)

WHAT CAN WE DO WITH A
128-BIT ADDRESS SPACE?

▪Many opportunities for intermediate address spaces
▪ Flexibility in placement of VMAs in a 128-bit Midgard space

▪Manage VMAs at rack-scale w/ multiple racks

▪Single-address space systems
▪OS in a single address space [Koldinger, ASPLOS’92]

▪ FaaS at user level w/ hardware support (stay tuned)

▪ Eliminate the OS overhead

▪Map SSDs into the address space (see next)

SUMMARY

Midgard
▪Cloud relies on virtual memory

▪ VM implementations have faltered with memory and cache scaling

▪Midgard accelerates VMA management

▪ POSIX compatible

128-bits
▪Great use-case for intermediate address spaces
▪ Single-address space systems

33

THANK YOU!

For more information, please visit us at

parsa.epfl.ch

	Slide 1: VIRTUAL MEMORY FOR POST-MOORE SERVERS
	Slide 2: CLOUD & DATACENTER GROWTH
	Slide 3: DATACENTERS ARE BACKBONE OF CLOUD
	Slide 4: CLOUDS AT VARIOUS SCALES
	Slide 5: SCALE-OUT DATACETNERS
	Slide 6: OPPORTUNTY: LD/ST INTERCONNECTS
	Slide 7: MEMORY CAPACITY IS INCREASING
	Slide 8: CHALLENGE: VIRTUAL MEMORY
	Slide 9: VIRTUAL MEMORY WITHOUT TLB
	Slide 10: VIRTUAL MEMORY WITHOUT TLB
	Slide 11: ROADMAP
	Slide 12: VIRTUAL MEMORY
	Slide 13: VIRTUAL MEMORY 101 (OS)
	Slide 14: VIRTUAL MEMORY 101 (HW)
	Slide 15: HOW ARE ADDRESS SPACES ORGANIZED?
	Slide 16: HOW ARE ADDRESS SPACES ORGANIZED?
	Slide 17: PERFORMANCE REQUIREMENTS
	Slide 18: HARDWARE SUPPORT TODAY
	Slide 19: PRIOR WORK
	Slide 20: MIDGARD ADDRESS SPACE
	Slide 21: MIDGARD-ADDRESSED CACHE HIERARCHY
	Slide 22: VIRTUAL-TO-MIDGARD TRANSLATION
	Slide 23: MIDGARD-TO-PHYSICAL TRANSLATION
	Slide 24: MIDGARD PAGE TABLE
	Slide 25: MIDGARD PAGE FAULTS
	Slide 26: METHODOLOGY
	Slide 27: POST-MOORE VM PERFORMANCE
	Slide 28: FUTURE-PROOFING VM WITH MIDGARD
	Slide 29: CONSERVATIVE COMPARISON TO HUGE PAGES
	Slide 30: ROADMAP
	Slide 31: MAP FLASH INTO ADDRESS SPACE [HPCA’23]
	Slide 32: WHAT CAN WE DO WITH A 128-BIT ADDRESS SPACE?
	Slide 33: SUMMARY
	Slide 34: THANK YOU!

