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Abstract

Importance sampling (IS) is a well-known uncertainty quantification method, classically used as
a variance-reduction technique for Monte Carlo integration including rare event estimation [6],
or for generating points from a target probability distribution known up to a constant [5]. The
common denominator of every importance sampling procedure is that they all require to estimate a
target probability distribution with weighted samples, and obviously, the accuracy of the algorithm
depends on the quality of the estimation of the distribution. Moreover, we also need to be able to
not only sample from the built auxiliary distribution, but also to have access to its PDF values.

A first way to perform this density estimation is to use non-parametric models, such as kernel
smoothing. These models are flexible, but despite some improvements they strongly suffer from
the curse of dimensionality since the size of the required sample to have a good approximation
of the target distribution exponentially grows with the dimension. Another solution is to use
parametric families of distributions, such as the Gaussian or Gaussian mixture ones, which are
more robust in medium-high dimension. However, they sometimes require some prior knowledge
on the target distribution, and their lack of flexibility and the huge number of parameters to
estimate can negatively impact the quality of the estimation when the dimension is high.

In order to combine both flexibility and robustness faced to the dimension, we propose to use as the
auxiliary sampling distribution a distribution parameterised by a variational autoencoder [4], whose
main principle has been introduced in the last decade. Variational autoencoders are deep generative
models for approximating high-dimensional complex distributions of observed data and generating
new samples. The specific feature of a variational autoencoder compared to other density estima-
tion methods is that it performs a dimensionality reduction into a lower dimensional latent space
in order to facilitate the estimation. Moreover, in opposition to other dimensionality reduction
techniques such as principal component analysis or autoencoders, variational autoencoders have
good generation properties and give explicitly the approximating distribution, allowing to perform
Monte Carlo simulations. This tool is now popular in the machine learning community but not so
much in uncertainty quantification.

In the present communication [3], we extend the existing framework of variational autoencoders to
the case of weighted samples by introducing a new objective function. The resulting IS auxiliary
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distribution is close to an infinite mixture of Gaussian distributions. Then, its flexibility makes
it as expressive as a non-parametric model, and despite the very high number of parameters to
estimate, it is much more efficient in high dimension than the classical Gaussian or Gaussian
mixture families. Moreover, in order to add even more flexibility to the model and to be able
to learn multimodal distributions, we consider a learnable prior distribution for the variational
autoencoder latent variables. We also introduce a new pre-training procedure for the variational
autoencoder to find good starting weights of the neural networks to prevent as much as possible
the posterior collapse phenomenon to happen.

At last, we explicit how the resulting distribution can be combined with importance sampling.
Indeed, the existing procedure [7] to compute the PDF values of the resulting distribution of a
variational autoencoder leads to a biased and non-convergent importance sampling estimator. In
order to keep an unbiased and consistent estimator, we introduce a new way to compute the PDF
values. Then, we show how to integrate the whole suggested procedure into existing reliability
algorithms, such as the cross-entropy algorithm, for rare event estimation. Finally, we illustrate
the practical interests of the previous efforts on two multimodal rare-event-estimation problems.
The code to reproduce the numerical experiments is publicly available at: https://github.com/
Julien6431/Importance-Sampling-VAE.git.
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