

### Predicting seismic wave propagation with a Fourier Neural Operator surrogate model

Fanny Lehmann<sup>1,2</sup> Filippo Gatti<sup>2</sup>, Michaël Bertin<sup>1</sup>, Didier Clouteau<sup>2</sup>

1. CEA, DAM, DIF, F-91297, Arpajon, France

2. Université Paris-Saclay, ENS Paris-Saclay, CentraleSupélec, CNRS, LMPS - Laboratoire de Mécanique Paris-Saclay, 91190 Gif-sur-Yvette, France



#### Context

**Numerical simulations** are essential to assess the impacts of earthquakes, especially to complement recorded data in regions with low to moderate seismicity.

They face several challenges:

- 3D simulations are required
- properties of the propagation domain are complex
- simulation parameters are **uncertain**: geological properties, source position, source characteristics

 $\rightarrow$  High computational costs prevent uncertainty quantification analyses



10km x 10km x 10km,  $f_{max}$ =5Hz Simulation time = 8s  $\rightarrow$  22.7h equiv. CPU

#### **Objective:**

Design a **surrogate model** that predicts ground motion depending on the geological properties and source characteristics.





#### Workflow:

- 1. Create a training database  $(a_i, s_i, u_i)_i$  with SEM3D numerical simulations.
- 2. Train a deep learning model to predict  $u_i$  from  $(a_i, s_i)$

### **Training data (input): geologies**





random fluctuations





Number of layers:  $N_L \sim \mathcal{U}(\{2, 3, \dots, 7\})$ Layer thickness:  $h_1, \dots, h_{N_L} \sim \mathcal{U}([0.3, 9.3])$ s.t.  $h_1 + \dots h_{N_L} = 9.6km$ Layer value:  $a_\ell \sim \mathcal{U}([1785; 3214 \text{ m/s}])$ 

Data

Log-normal random field with a von Karman correlation Coef. of variation  $\sigma_{\ell} \sim |\mathcal{N}(0.2, 0.1)|$ Correlation length  $\ell_{\ell}^{x} \sim \mathcal{U}(\{1.5, 3, 4.5, 6 \, km\})$  $\ell_{\ell}^{y} \sim \mathcal{U}(\{1.5, 3, 4.5, 6 \, km\})$  $\ell_{\ell}^{z} \sim \mathcal{U}(\{1.5, 3, 4.5, 6 \, km\})$ 

Size: 9.6km x 9.6km x 9.6km Matrix: 32 x 32 x 32 voxels





# **Training data (input): sources**



Data

Approximate a fault by • the hypocenter position  $x_s$ Latine Hypercube Sampling (LHS):  $x_s \in [1.2 \ km, 8.4 \ km]$   $y_s \in [1.2 \ km, 8.4 \ km]$  $z_s \in [-9.0 \ km, -0.6 \ km]$ 

• 3 angles of the source orientation  $\theta_s$  LHS:

φ ∈ [0°, 360°] δ ∈ [0°, 90°]λ ∈ [0°, 360°] 





3D elastic wave propagation

Spectral Element code SEM3D 22.7h CPU equiv.



Data



32 x 32 sensors record ground motion at the surface total time = 6.4s with dt=0.02s  $\rightarrow$  3 outputs 32 x 32 x 320

 $N_{train} = 30\ 000\ \text{simulations}$  $\Rightarrow 6.8 \cdot 10^5\ \text{h}\ \text{CPU}$ 

Lehmann et al., ESSD (under review)





Parametric PDE:  $L_a u(\mathbf{x}, t) = f(\mathbf{x}, t)$ 

If  $G_a$  is the Green function solution of  $L_a G_a(\mathbf{x}, \cdot) = \delta_{\mathbf{x}}$ , then

$$u(\mathbf{x}) = \int G_a(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y}$$

t is ignored in the notation but you can replace x by (x, t)

 $G_a$  is modelled as a kernel  $\kappa_{\phi}$  defined by a neural network with parameters  $\phi$  $G_a(x, y) \cong \kappa_{\phi}(x, y, a(x), a(y))$ 

Introduce hidden variables  $v_0, \ldots, v_\ell, \ldots, v_L$  and the iterative process

$$\boldsymbol{v}_{\ell+1}(\boldsymbol{x}) = \sigma \left( W \boldsymbol{v}_{l}(\boldsymbol{x}) + \int \kappa_{\phi} (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{a}(\boldsymbol{x}), \boldsymbol{a}(\boldsymbol{y})) \boldsymbol{v}_{l}(\boldsymbol{y}) d\boldsymbol{y} \right)$$

$$K_{\phi}(\boldsymbol{a}) \boldsymbol{v}_{\ell}$$

LMPS Quantifying uncertainties in seismic wave propagation with a Fourier Neural Operator surrogate model

[Li et al. 2021]

 $u_E$ 

### **Fourier Neural Operators (FNO)**

The mapping  $a \mapsto u$  is learnt iteratively

$$\binom{a(\mathbf{x})}{\mathbf{x}} \stackrel{P}{\to} \mathbf{v_0}(\mathbf{x}) \stackrel{F_1}{\to} \dots \stackrel{F_{\ell}}{\to} \mathbf{v_l}(\mathbf{x}) = \sigma \left( W \mathbf{v_{l-1}}(\mathbf{x}) + K_{\phi}(a) \mathbf{v_{\ell-1}} \right) \stackrel{F_{\ell+1}}{\longrightarrow} \dots \stackrel{F_L}{\to} \mathbf{v_L}(\mathbf{x}) \stackrel{Q}{\to} u(\mathbf{x})$$

- *P* is an uplift layer •
- $F_1, \ldots, F_L$  are Fourier layers •
- *Q* is a projection layer ٠



**Neural Operators extend Neural Networks to functional spaces** 



For an efficient computation of the integral  $K_{\phi}(a)v = \int \kappa_{\phi}(x, y, a(x), a(y))v(y)dy$ , assume that  $\kappa_{\phi}$  is a convolution kernel

$$\kappa_{\phi}(\mathbf{x}, \mathbf{y}, a(\mathbf{x}), a(\mathbf{y})) = \kappa_{\phi}(\mathbf{x} - \mathbf{y})$$
$$\Rightarrow K_{\phi}(a)\mathbf{v} = \mathbf{\kappa}_{\phi} * \mathbf{v}$$

From the convolution theorem

$$K_{\phi}(a)\boldsymbol{v} = FFT^{-1}(FFT(\boldsymbol{\kappa}_{\phi}) \cdot FFT(\boldsymbol{v}))$$

The kernel is learnt directly in Fourier space

$$K_{\phi}(a)\boldsymbol{v} = FFT^{-1}\left(\boldsymbol{R}_{\phi} \cdot FFT(\boldsymbol{v})\right)$$

$$\downarrow$$
weights  $\in \mathbb{C}$  to learn
incide each lever

inside each layer

| Introduction                                                                                      | Data             | Neural Operators                   | Predictions                         | UQ                                                                                                    | Conclusion       |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|------------------|------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|--|--|
| Factorized Fourier layer [Tran et al. 2023]                                                       |                  |                                    |                                     |                                                                                                       |                  |  |  |  |  |  |  |  |
| $K_{\phi}(a)\boldsymbol{v} = FFT^{-1}\left(\boldsymbol{R}_{\phi}\cdot FFT(\boldsymbol{v})\right)$ |                  |                                    |                                     |                                                                                                       |                  |  |  |  |  |  |  |  |
| Dimensio                                                                                          | ns: input a      | hidden                             | variable $v$                        | in Fourier space $\mathbf{R}_{oldsymbol{\phi}}\coloneqq FFTig(oldsymbol{\kappa}_{oldsymbol{\phi}}ig)$ |                  |  |  |  |  |  |  |  |
|                                                                                                   | $S_x \times S_y$ | $\times S_z \qquad S_x \times S_y$ | $J_{\nu} \times S_z \times d_{\nu}$ | $M_x \times M_y \times M_z \times$                                                                    | $d_v \times d_v$ |  |  |  |  |  |  |  |
|                                                                                                   |                  |                                    |                                     |                                                                                                       |                  |  |  |  |  |  |  |  |

 $\rightarrow$  factorize the FFT: each factorized Fourier layer now has  $(M_x + M_y + M_z) \times d_v \times d_v$ 



Predictio

# **Multiple Input FNO (MIFNO)**

We propose a dedicated architecture for inputs with different representations.



Lehmann et al., in preparation

#### Neura

Predictions

#### ctions

# **Training results**

MIFNO with 16 layers (3.4 million parameters) 27,000 training samples 3,000 validation samples 31h training on 4 GPUs





Quantifying uncertainties in seismic wave propagation with a Fourier Neural Operator surrogate model



# **Prediction for varying sources**

![](_page_14_Figure_6.jpeg)

For a given geology, move the source

#### For a given geology, rotate the source

![](_page_14_Figure_9.jpeg)

Source encoding is efficient and accurate

Quantifying uncertainties in seismic wave propagation with a Fourier Neural Operator surrogate model

![](_page_15_Figure_0.jpeg)

- Predictions are remarkably accurate for a geology that is far from the training dataset.
- → Slight time shift and lack of small-scale fluctuations

Lehmann et al., in preparation

Predictions

#### **Generalization to out-of-distribution sources**

![](_page_16_Figure_6.jpeg)

Accuracy is preserved when the source is slightly out of the training domain

Lehmann et al., in preparation

#### **Generalization to higher resolution**

E-W velocity field

![](_page_17_Figure_7.jpeg)

The MIFNO can be applied to any higher resolution.

The original FNO is resolution invariant under conditions on the frequency content of solutions [Bartolucci 2023].

High-resolution MIFNO can improve some features but inconsistencies remain

A surrogate model of seismic wave propagation using Fourier Neural Operators

UQ

Conclusi

# Le Teil earthquake

![](_page_18_Figure_7.jpeg)

Design a specific (smaller) database:

- 4000 geologies built from the regional geology
- sources located along the fault plane
- source orientations from seismological inversion

![](_page_18_Figure_12.jpeg)

![](_page_18_Figure_13.jpeg)

UQ

### **Transfer learning for UQ**

- 1) Pretraining with 30 000 generic samples
- 2) Specialize with 100 to 3 000 specific samples
- $\Rightarrow$  we need only 250 samples to achieve excellent phase accuracy and good envelope accuracy

![](_page_19_Figure_10.jpeg)

![](_page_19_Figure_11.jpeg)

UQ

Conc

### **Distribution of intensity measures**

We obtain fast distributions of quantities of interest, e.g. Pseudo-Spectral Acceleration (PSA)

Spread of the predicted distribution matches the simulation.

Extreme values can be obtained with large samples.

Predictions provide security margins.

![](_page_20_Figure_11.jpeg)

Lehmann et al., NeurIPS AI for Science workshop, 2023

#### Conclusion

- The Multiple Input Fourier Neural Operator (MIFNO) predicts accurate ground motion for 3D geologies and various sources.
- Transfer learning is very beneficial to specialize the MIFNO to a given context.
- ✓ PSA distributions are coherent with simulations and can extend the range of extreme values
- $\rightarrow$  Constrain the predictions with observations.
- -> Improve the high-resolution accuracy and extend the spatial domain.

![](_page_21_Figure_12.jpeg)

![](_page_21_Picture_13.jpeg)

![](_page_22_Picture_4.jpeg)

#### References

Bartolucci, F., E. de Bézenac, B. Raonić, R. Molinaro, S. Mishra, et R. Alaifari. « Are Neural Operators Really Neural Operators? Frame Theory Meets Operator Learning ». arXiv, 31 mai 2023. <u>http://arxiv.org/abs/2305.19913</u>.

Kristeková, M., J. Kristek, et P. Moczo. « Time-Frequency Misfit and Goodness-of-Fit Criteria for Quantitative Comparison of Time Signals ». *Geophysical Journal International* 178, nº 2 (août 2009): 813-25. <u>https://doi.org/10.1111/j.1365-</u> 246X.2009.04177.x.

Lehmann, F., F. Gatti, M. Bertin, et D. Clouteau. « Synthetic ground motions in heterogeneous geologies: the HEMEW-3D dataset for scientific machine learning ». *Earth System Science Data Discussions* 2024 (2024): 1-26. <u>https://doi.org/10.5194/essd-2023-470</u>.

Lehmann, F., F. Gatti, M. Bertin, et D. Clouteau. « 3D elastic wave propagation with a Factorized Fourier Neural Operator (F-FNO) ». *Computer Methods in Applied Mechanics and Engineering* 420 (15 février 2024): 116718. <u>https://doi.org/10.1016/j.cma.2023.116718</u>.

———. « Seismic hazard analysis with a Factorized Fourier Neural Operator (F-FNO) surrogate model enhanced by transfer learning ». In *NeurIPS 2023 AI for science workshop*, 2023. <u>https://openreview.net/forum?id=xiNRyrBAjt</u>.

Li, Z., N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, et A. Anandkumar. « Neural Operator: Graph Kernel Network for Partial Differential Equations ». arXiv, 6 mars 2020. <u>http://arxiv.org/abs/2003.03485</u>.

Li, Z., N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, et A. Anandkumar. « Fourier Neural Operator for Parametric Partial Differential Equations ». In *International Conference on Learning Representations*, 2021. https://doi.org/10.48550/arXiv.2010.08895.

Tran, A., A. Mathews, L. Xie, et C. Soon Ong. « Factorized fourier neural operators ». In *The eleventh international conference on learning representations*, 2023. <u>https://openreview.net/forum?id=tmliMPl4IPa</u>.

![](_page_22_Picture_14.jpeg)

Introduction

Conclusion

### Influence of geological heterogeneities

Is the MIFNO able to predict accurate ground shaking?  $\rightarrow$  Peak Ground Velocity estimation (PGV)

- The MIFNO predicts accurate PGV when geologies are not very heterogeneous (coef. var. < 10%)</p>
- X The MIFNO tends to underestimate PGV when geologies are very heterogeneous
  - You cannot always loose: some PGV will be overestimated

![](_page_23_Figure_10.jpeg)

Lehmann et al., NeurIPS AI4Science workshop, 2023

#### Influence of geological heterogeneities

![](_page_24_Figure_6.jpeg)

![](_page_24_Figure_7.jpeg)

![](_page_25_Figure_0.jpeg)

Lehmann et al., in preparation

#### Le Teil transfer learning

| Le ren database with a random source along the radie plane |             |                     |                     |                      |             |             |  |  |  |  |
|------------------------------------------------------------|-------------|---------------------|---------------------|----------------------|-------------|-------------|--|--|--|--|
| # samples                                                  | rRMSE       | rFFT <sub>low</sub> | rFFT <sub>mid</sub> | rFFT <sub>high</sub> | EG          | PG          |  |  |  |  |
| N <sub>train</sub> =3000                                   | 0.40 ; 0.73 | -0.49 ; -0.02       | -0.60 ; -0.06       | -0.67 ; -0.09        | 6.60 ; 8.43 | 8.25 ; 9.31 |  |  |  |  |
| N <sub>TL</sub> =0                                         | 0.64 ; 0.98 | -0.44 ; 0.33        | -0.64 ; 0.06        | -0.68 ; -0.05        | 5.98 ; 7.69 | 6.30 ; 8.44 |  |  |  |  |
| N <sub>TL</sub> =100                                       | 0.41 ; 0.78 | -0.44 ; 0.08        | -0.56 ; 0.00        | -0.66 ; -0.05        | 6.51 ; 8.32 | 8.17 ; 9.25 |  |  |  |  |
| N <sub>TL</sub> =250                                       | 0.38 ; 0.75 | -0.41 ; 0.09        | -0.52 ; 0.03        | -0.61 ; -0.01        | 6.70 ; 8.47 | 8.38 ; 9.35 |  |  |  |  |
| N <sub>TL</sub> =500                                       | 0.37 ; 0.74 | -0.38 ; 0.11        | -0.49 ; 0.06        | -0.58 ; 0.02         | 6.87 ; 8.57 | 8.51 ; 9.41 |  |  |  |  |
| N <sub>TL</sub> =1000                                      | 0.35 ; 0.69 | -0.42 ; 0.03        | -0.52 ; -0.02       | -0.59 ; -0.04        | 6.92 ; 8.62 | 8.62 ; 9.46 |  |  |  |  |
| N <sub>TL</sub> =2000                                      | 0.33 ; 0.68 | -0.38 ; 0.05        | -0.47 ; 0.01        | -0.54 ; -0.01        | 7.10 ; 8.72 | 8.72 ; 9.51 |  |  |  |  |
| N <sub>TL</sub> =3000                                      | 0.33 ; 0.68 | -0.34 ; 0.08        | -0.43 ; 0.04        | -0.51 ; 0.02         | 7.20 ; 8.78 | 8.76 ; 9.53 |  |  |  |  |

Le Teil database with a random source along the fault plane

Table 4.2: 1st and 3rd quartiles of the metrics computed on 700 test samples specific to the Le Teil region. (upper row): training with only 3000 specific data. In other experiments, transfer learning was used with 100 to 3000 samples ( $N_{TL}$ = number of transfer learning samples). rRMSE: relative RMSE (0 is best), rFFT<sub>low</sub>: relative frequency bias 0-1Hz (0 is best), rFFT<sub>mid</sub>: relative frequency bias 1-2Hz (0 is best), rFFT<sub>high</sub>: relative frequency bias 2-5Hz (0 is best), EG: enveloppe Goodness-of-Fit (10 is best), PG: phase Goodness-of-Fit (10 is best). For frequency biases, negative values indicate underestimation.

![](_page_27_Picture_5.jpeg)

![](_page_27_Figure_6.jpeg)

Quantifying uncertainties in seismic wave propagation with a Fourier Neural Operator surrogate model