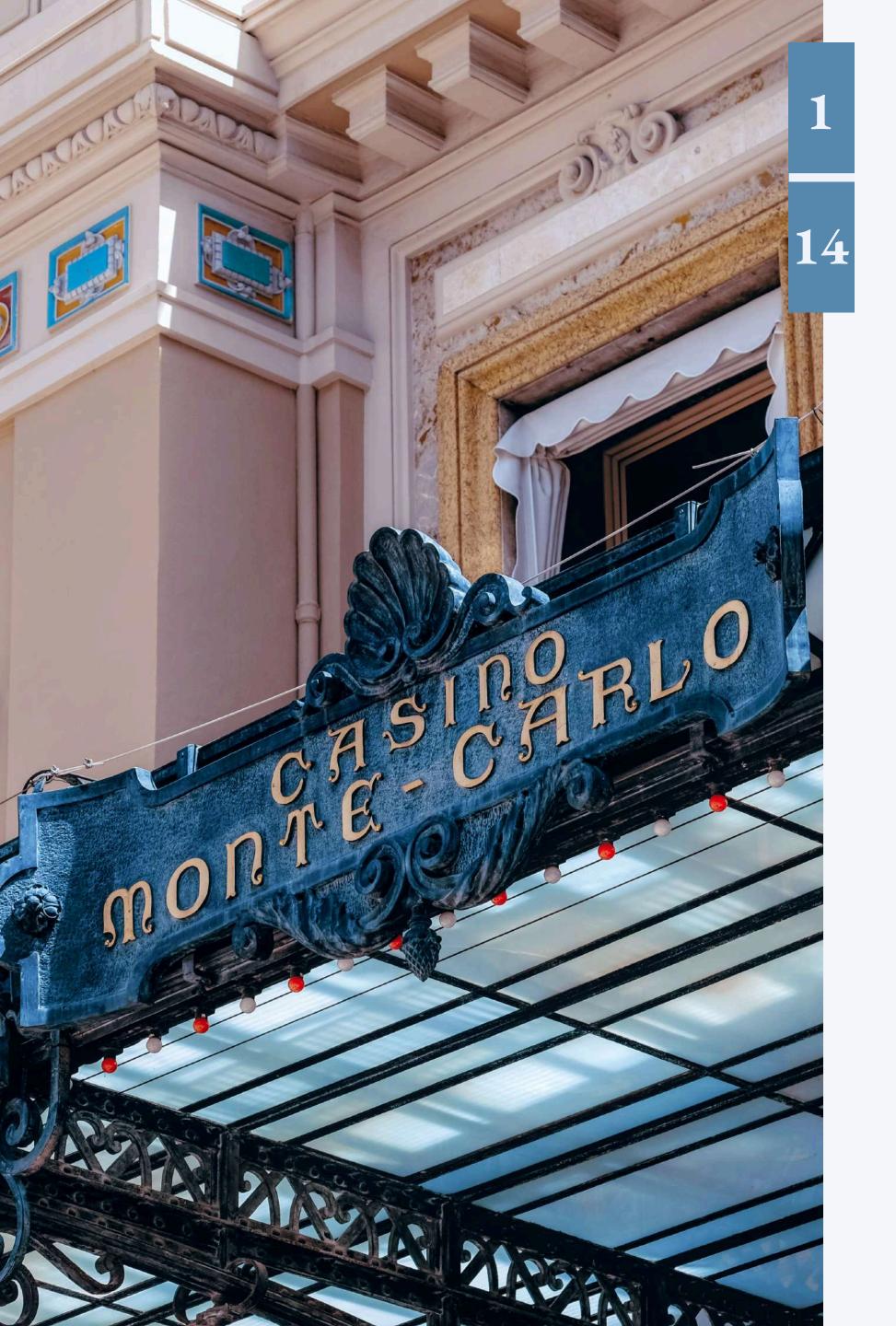


GRAPH-INFORMED IMPORTANCE SAMPLING APPLICATION IN DYNAMIC RARE EVENT SIMULATION

<u>Guillaume Chennetier</u>^{1,2} · Hassane Chraibi¹ · Anne Dutfoy¹ · Josselin Garnier²

¹ EDF Lab Paris-Saclay, Boulevard Gaspard Monge, 91120 Palaiseau, France. ² CMAP, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.



Monte Carlo method

Quantity

Classical Monte Carlo Generating i.i.d. sample $\mathbf{X}_1, \ldots, \mathbf{X}_n \sim \mathbf{p}$

-> High relative variance when ${f p}$ puts its mass where $|\phi|$ is small

of Interest
$$\mathbf{\Phi} := \mathbb{E}_{\mathbf{X} \sim \mathbf{p}} \left[\phi(\mathbf{X}) \right]$$

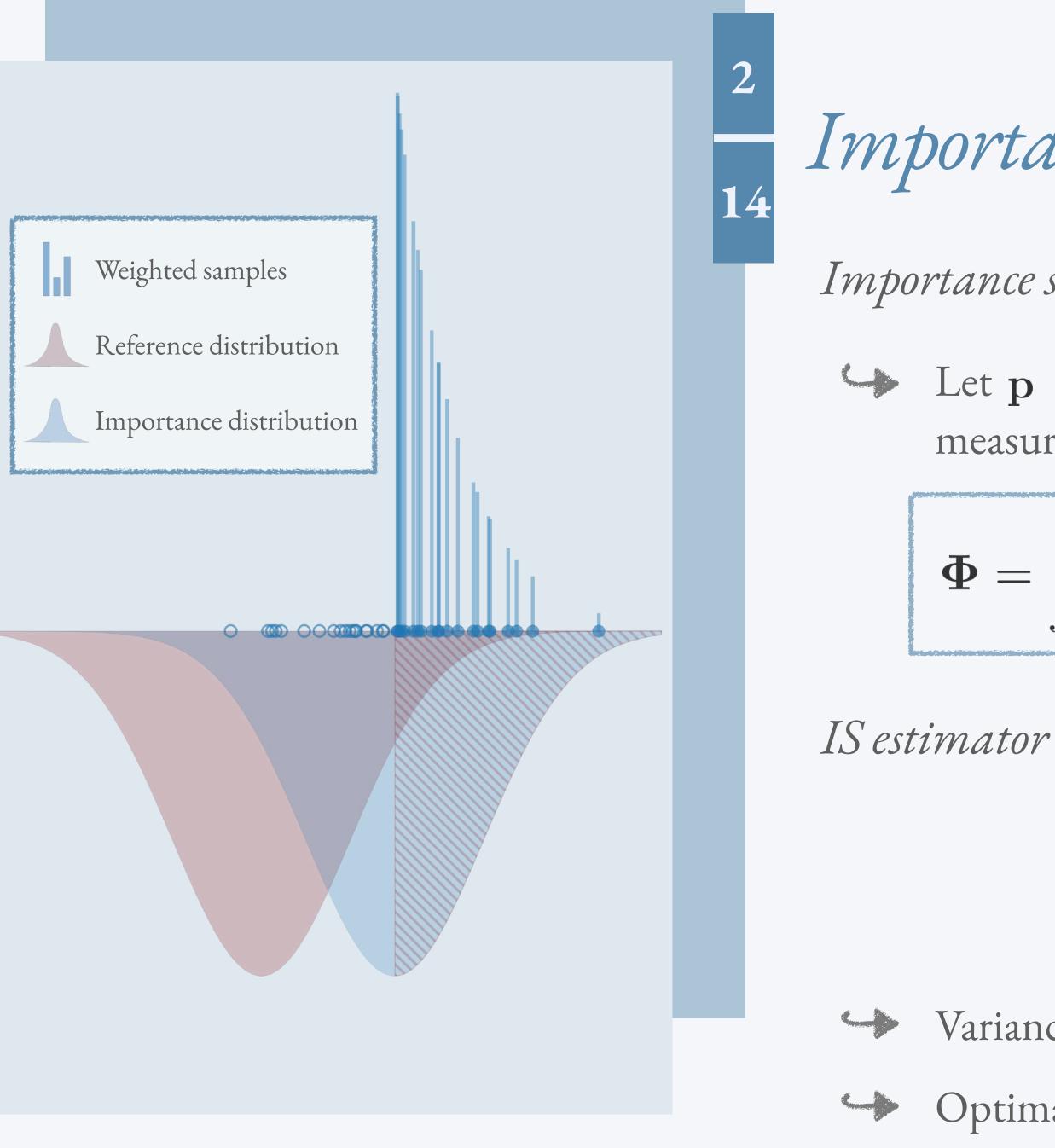
No access to direct observations of X

Nominal distribution **p** is numerically samplable

$$\widehat{\mathbf{\Phi}}_n^{\mathsf{CMC}} := rac{1}{n} \sum_{k=1}^n \phi(\mathbf{X}_k)$$

Are event case: $\phi(\mathbf{X}) = 1_{\mathbf{X} \in \mathbf{F}}$

IMPORTANCE SAMPLING



Importance sampling for variance reduction

Importance sampling trick Using an alternative distribution g

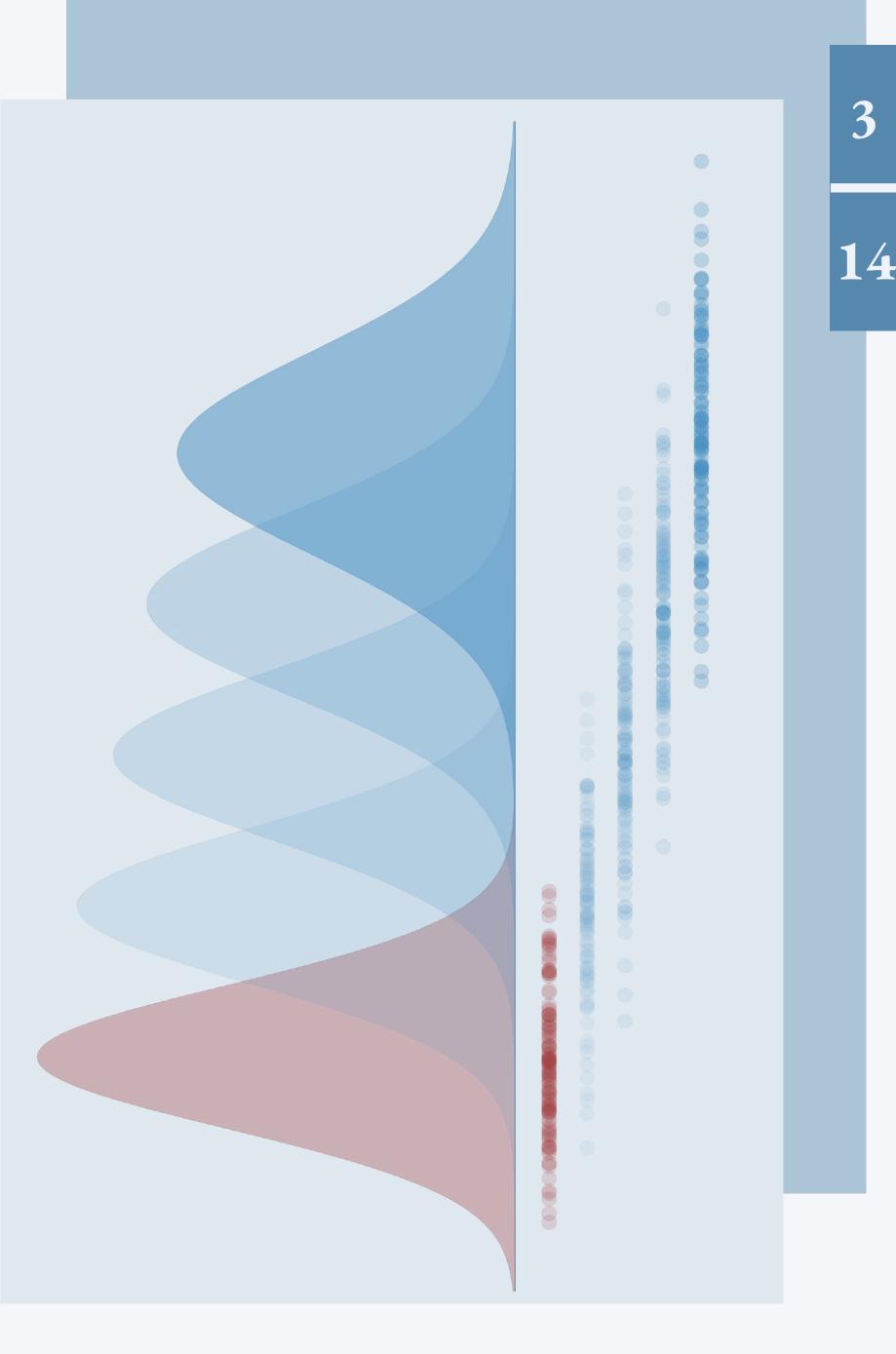
 \frown Let **p** and **g** be probability densities function with respect to a measure μ on \mathcal{X} such that $\phi(\mathbf{x})\mathbf{p}(\mathbf{x}) \neq 0 \Rightarrow \mathbf{g}(\mathbf{x}) \neq 0$

$$= \int_{\mathcal{X}} \phi(\mathbf{x}) \frac{\mathbf{p}(\mathbf{x})}{\mathbf{g}(\mathbf{x})} \mathbf{g}(\mathbf{x}) \mu(\mathrm{d}\mathbf{x}) = \mathbb{E}_{\mathbf{X}\sim\mathbf{g}} \left[\phi(\mathbf{X}) \frac{\mathbf{p}(\mathbf{X})}{\mathbf{g}(\mathbf{X})} \right]$$

Generating i.i.d. sample $\mathbf{X}_1, \ldots, \mathbf{X}_n \sim \mathbf{g}$

$$\widehat{\mathbf{\Phi}}_n^{\mathrm{IS}} := \frac{1}{n} \sum_{k=1}^n \phi(X_k) \frac{\mathbf{p}(X_k)}{\mathbf{g}(X_k)}$$

Variance relies on the choice of \mathbf{g} Optimal but untractable IS p.d.f. $\mathbf{g}^* : \mathbf{x} \propto |\phi(\mathbf{x})| imes \mathbf{p}(\mathbf{x})$



Finding the best proposal in a family $(\mathbf{g}_{\theta})_{\theta \in \Theta}$ Cross entropy procedure



Final estimator

Adaptive importance sampling

 $\arg\min \mathcal{D}_{\mathsf{KL}}(\mathbf{g}^* \| \mathbf{g}_{\theta}) = \arg\max \mathbb{E}_{\mathbf{X} \sim \mathbf{p}} \left[|\phi(\mathbf{X})| \log \mathbf{g}_{\theta}(\mathbf{X}) \right]$ $\bar{\theta} \in \Theta$ $\theta \in \Theta$

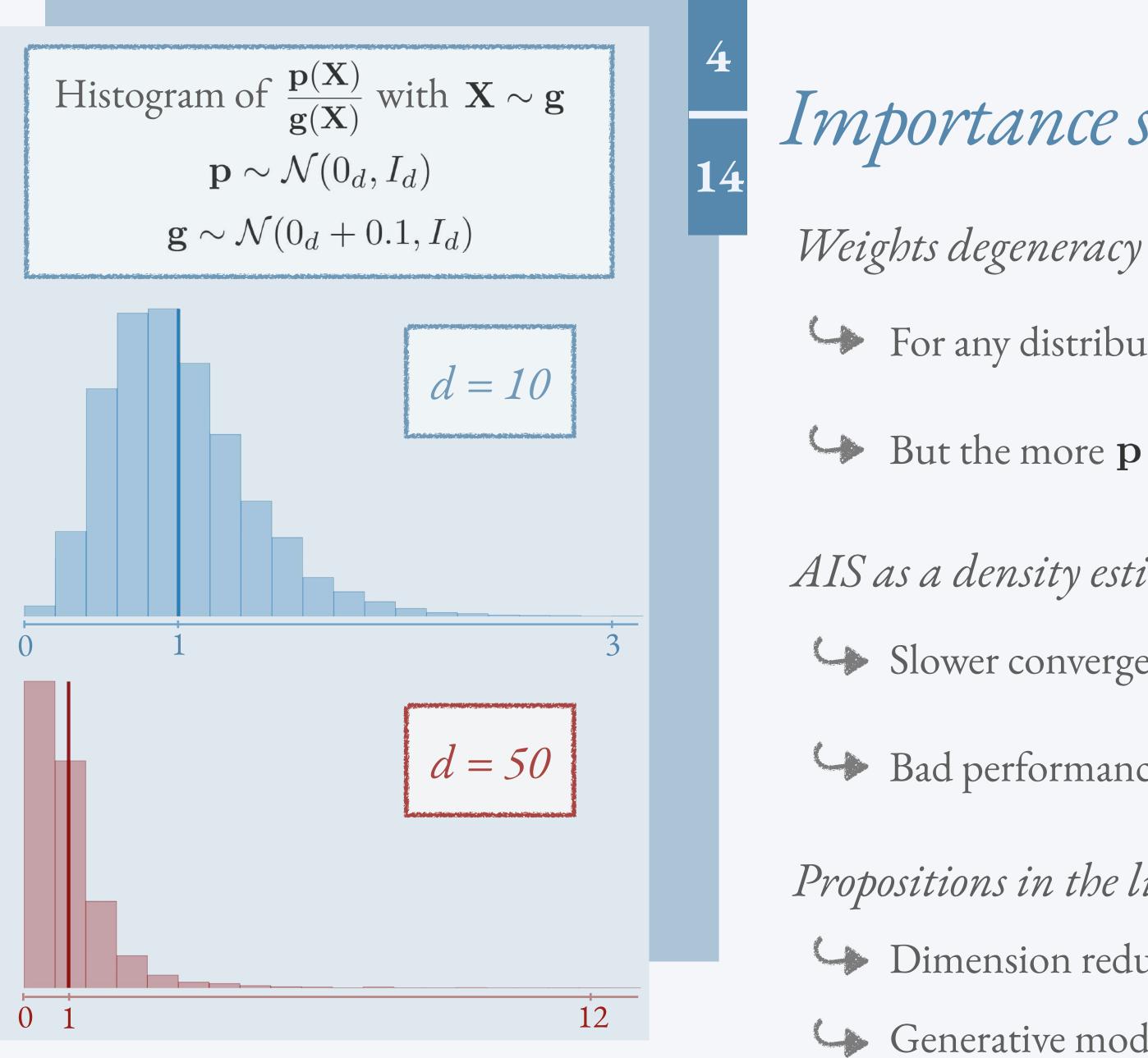
Sequential recycling At iteration $t = 1, \ldots, T$

Simulation step $\mathbf{X}_{t,1}, \ldots, \mathbf{X}_{t,n_t} \sim \mathbf{g}_{\theta^{(t)}}$

Optimization step

$$\theta^{(t+1)} \in \underset{\theta \in \Theta}{\operatorname{arg\,max}} \sum_{\ell=1}^{t} \sum_{k=1}^{n_{\ell}} \frac{|\phi(\mathbf{X}_{\ell,k})| \mathbf{p}(\mathbf{X}_{\ell,k})}{\mathbf{g}_{\theta^{(\ell)}}(\mathbf{X}_{\ell,k})} \log \mathbf{g}_{\theta}(\mathbf{X}_{\ell,k})$$

$$\widehat{\Phi}^{\text{AIS}} = \frac{1}{T} \sum_{\ell=1}^{t} \frac{1}{n_t} \sum_{k=1}^{n_\ell} \frac{\phi(\mathbf{X}_{\ell,k}) \mathbf{p}(\mathbf{X}_{\ell,k})}{\mathbf{g}_{\theta^{(\ell)}}(\mathbf{X}_{\ell,k})}$$



Importance sampling in high dimension

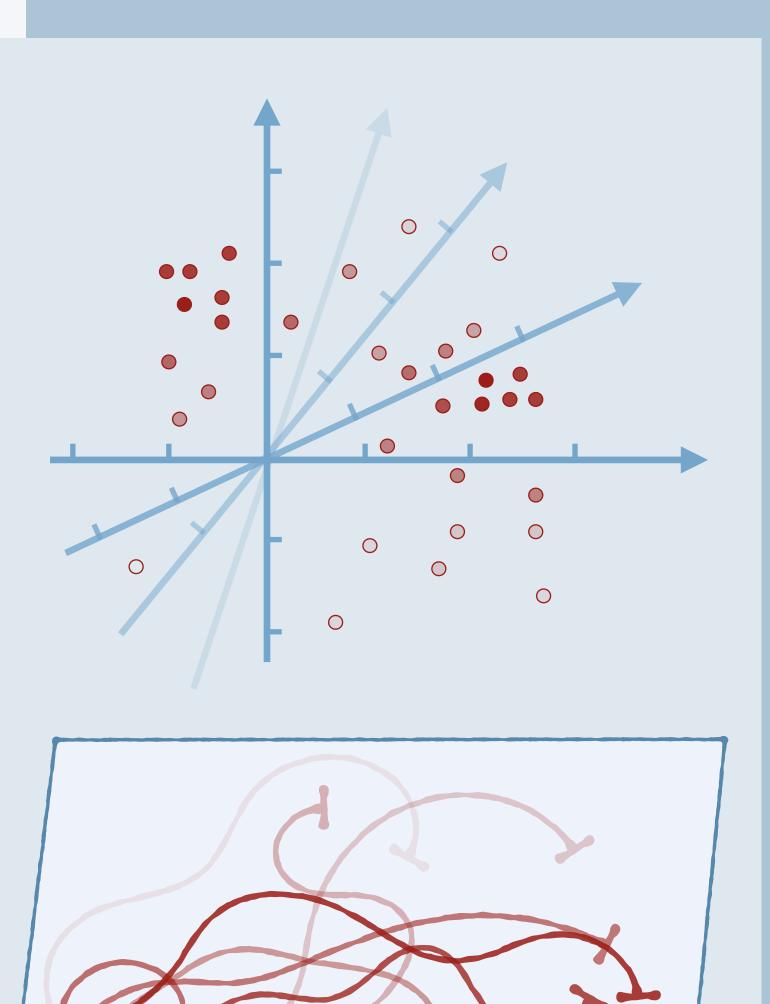
For any distribution \mathbf{g} , we have $\mathbb{E}_{\mathbf{X} \sim \mathbf{g}} \left| \frac{\mathbf{p}(\mathbf{X})}{\mathbf{g}(\mathbf{X})} \right| = 1$ But the more **p** and **g** differ, the more often $\frac{\mathbf{p}(\mathbf{X})}{\mathbf{g}(\mathbf{X})}$ is close to 0

AIS as a density estimation problem

- Slower convergence with complex and large distribution families
- Bad performance with simple and small distribution families

Propositions in the literature

Dimension reduction with projection in well-chosen subspaces Generative models with good properties in high dimension (Julien's talk)



High dimensional spaces can contain Simple Poisson process example

Grant Then

Stochastic process, entropy and dimension

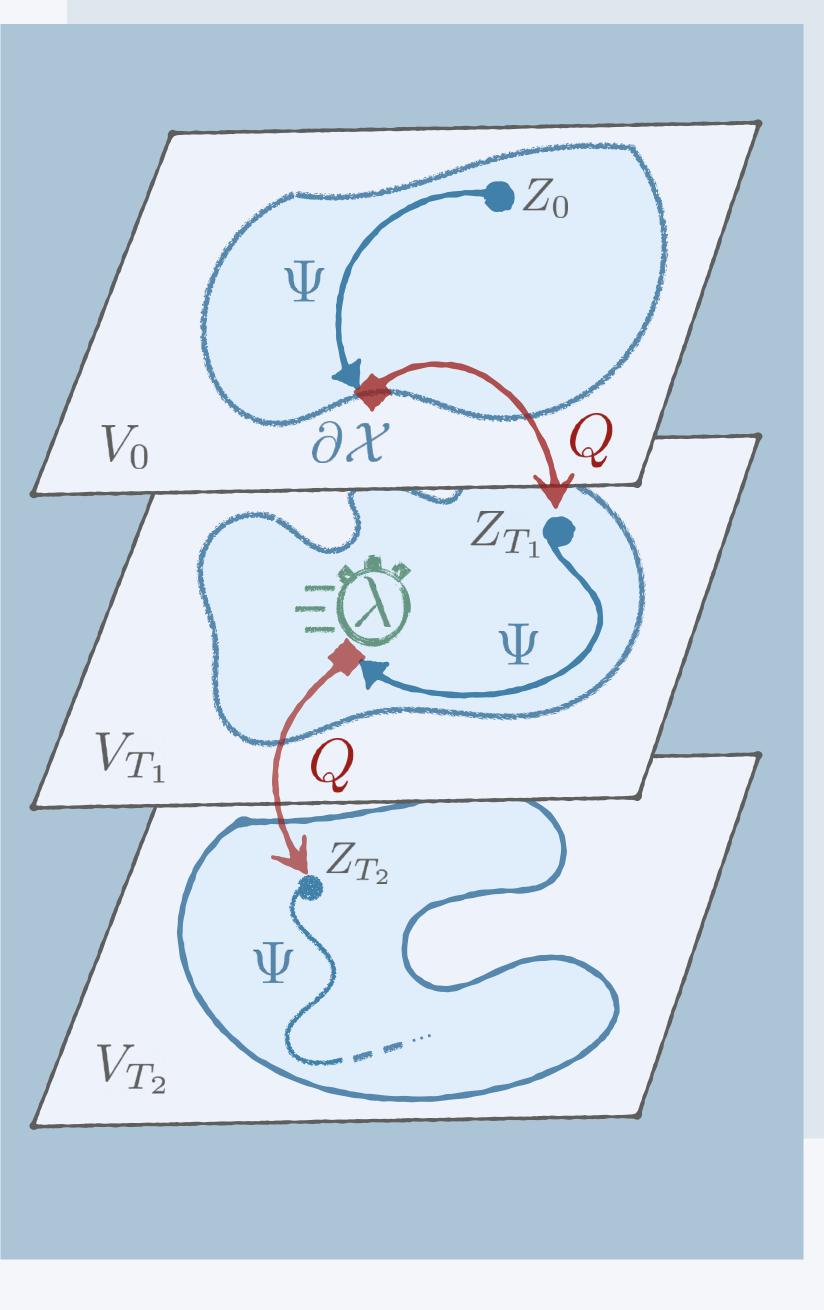
- \checkmark Vectors with a large number of coordinates $\mathbf{X} \in \mathbb{R}^d$
- But also trajectories of a stochastic process $\mathbf{X} = (X_t)_{t \in [0, s_{\max}]}$ No obvious way to measure the dimension of a space of trajectories
- Large entropy means large space to explore $H(\mathbf{X}) = \mathbb{E}_{\mathbf{X} \sim \mathbf{p}} \left[-\log \mathbf{p}(\mathbf{X}) \right]$ is large when $\mathbb{E}_{\mathbf{X} \sim \mathbf{p}} \left[\mathbf{p}(\mathbf{X}) \right]$ is small Since $\int_{U} \mathbf{p}(\mathbf{x}) \mu(d\mathbf{x}) = 1$, it means that we integrate on a large space

 \frown Let X be a trajectory of a simple Poisson process of intensity 1

$$H(\mathbf{X}) = H(\mathcal{N}(0_d, I_d)) \text{ with } d = \frac{2 \times s_{\max}}{1 + \log(2\pi)}$$

PART II

PIECEWISE DETERMINISTIC MARKOV PROCESSES



6 14

Class of all non-diffusive Markov processes PDMP Mark H Davis 1984

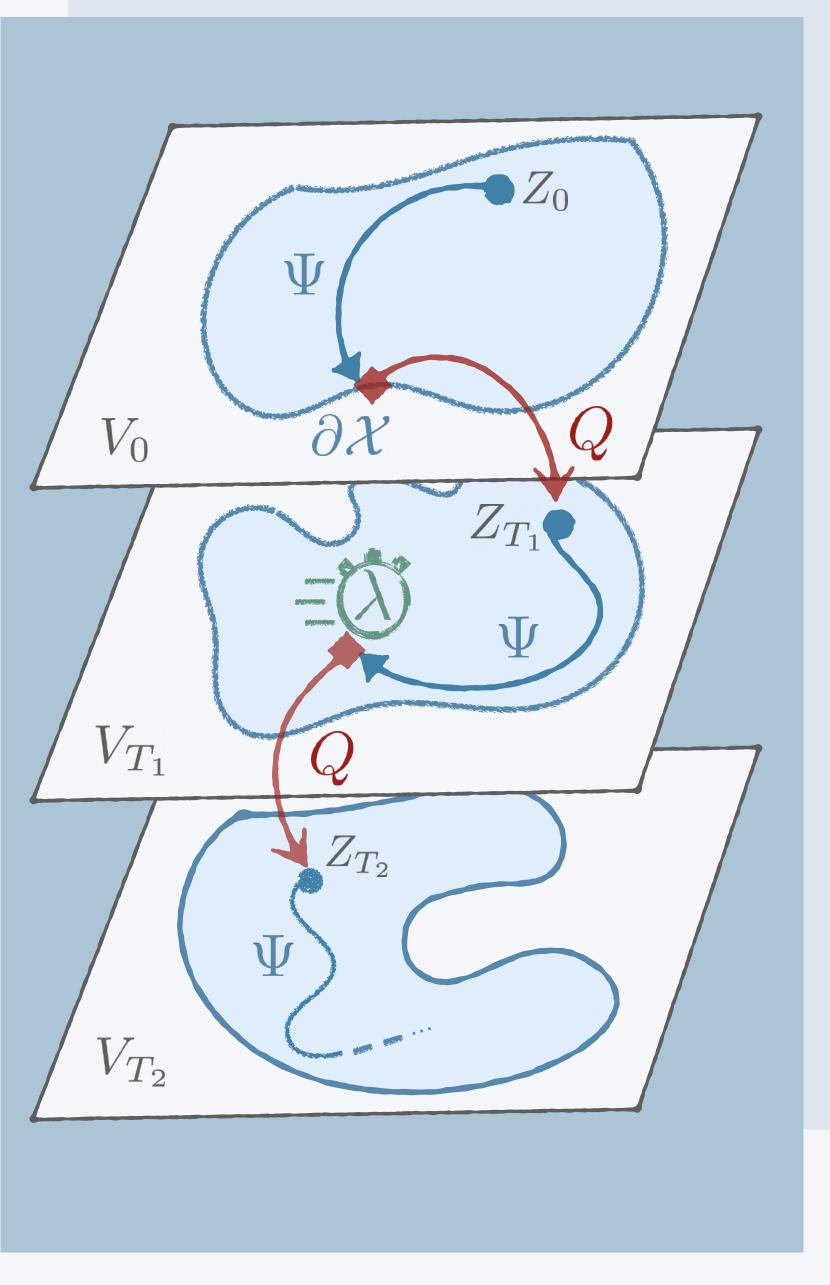
Flow Intensity Kernel

Piecewise Deterministic Markov Processes

Hybrid process $X_t = (Z_t, V_t) \in \mathcal{Z} \times \mathcal{V} = \mathcal{X}$ $Z_t \in \mathcal{Z}$ is continuous and called « position » $V_t \in \mathcal{V}$ is discrete and called « regime »

Local characteristics of the PDMP

 Ψ Deterministic dynamics between two jumps Gives the distribution of the random jump times Gives the distribution of the post-jump locations



	7
14	

Positio

Regim

Flow

Bound

Rando

Intensa kernel

Modeling dynamic industrial systems

sity and L	Given by components jump rates, which may depend on physical variables
om jumps	Random failures and repairs of the components
daries	Physical constraints and control mechanisms when thresholds are reached
	ODEs given by physical laws and parameterized by the status of the components
<i>NC</i>	Status (e.g. ON, OFF) of the system components
ON	Physical quantities (e.g. temperature, pressure)

<u>B. de Saporta et al. Numerical methods for simulation and optimization of piecewise deterministic Markov processes: application to reliability</u>

Reliability assessment

Aim

 $\mathbf{F} \subset \mathcal{X}$ s_{\max} $\mathcal{T}_{\mathbf{F}}$ \mathbf{X} \mathbf{p} $\mathcal{P}_{\mathbf{F}}$

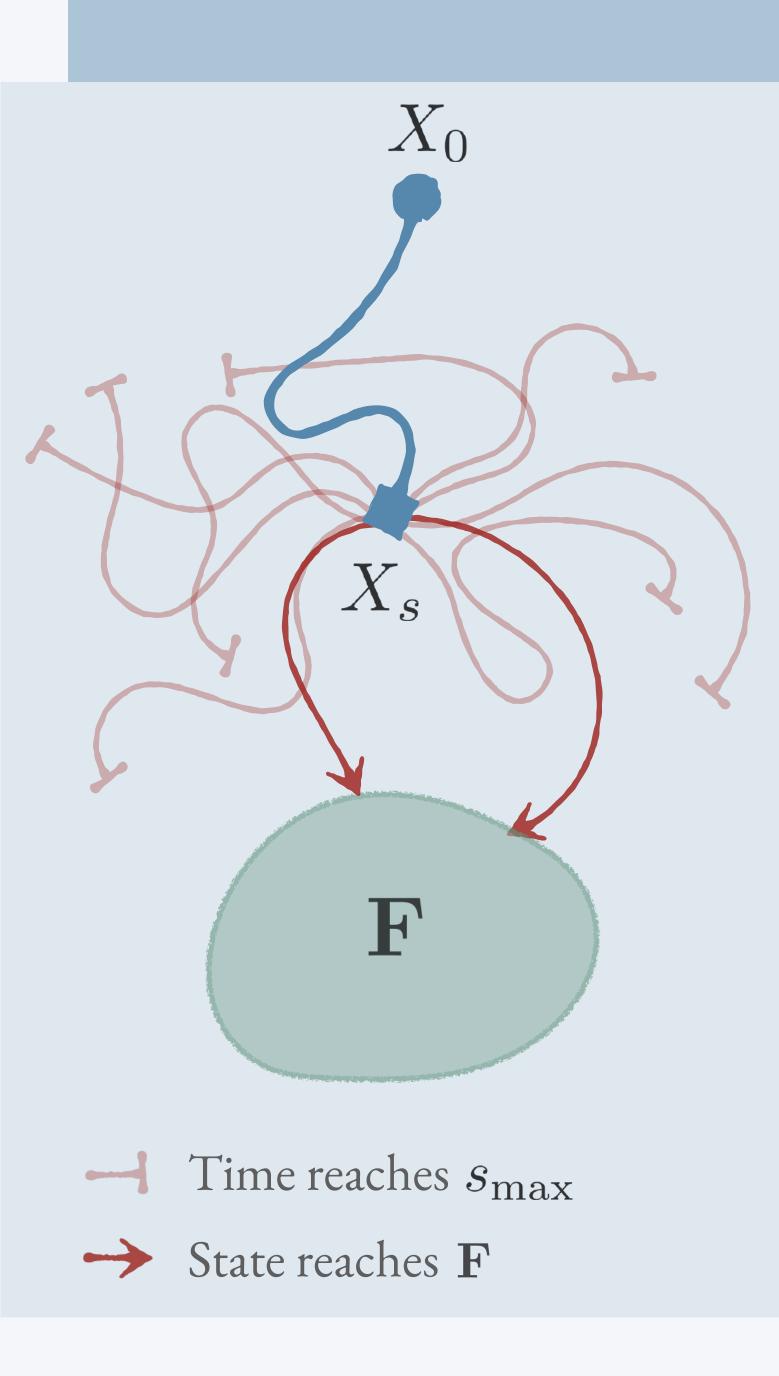
Estimating the probability of critical failure of the system

 $\mathcal{P}_{\mathbf{F}} := \mathbb{P}_{\mathbf{p}} \left(\mathbf{X} \in \mathcal{T}_{\mathbf{F}} \right)$

Notations

Critical failure domain

Maximal duration of a PDMP trajectory Set of faulty trajectories $\{(X_t)_{t \in [0, s_{\max}]} \mid \exists t : X_t \in \mathbf{F}\}$ Complete PDMP trajectory $(X_t)_{t \in [0, s_{\max}]}$ Reference distribution of the PDMP trajectory Probability to reach \mathbf{F} before time s_{\max}



Optimal importance sampling of PDMP A PDMP distribution is characterized by its intensity and kernel. Optimal choice relies on the knowledge of the committor function Thomas Galtier's Phd Thesis 2021 Committor and edge committor functions

9

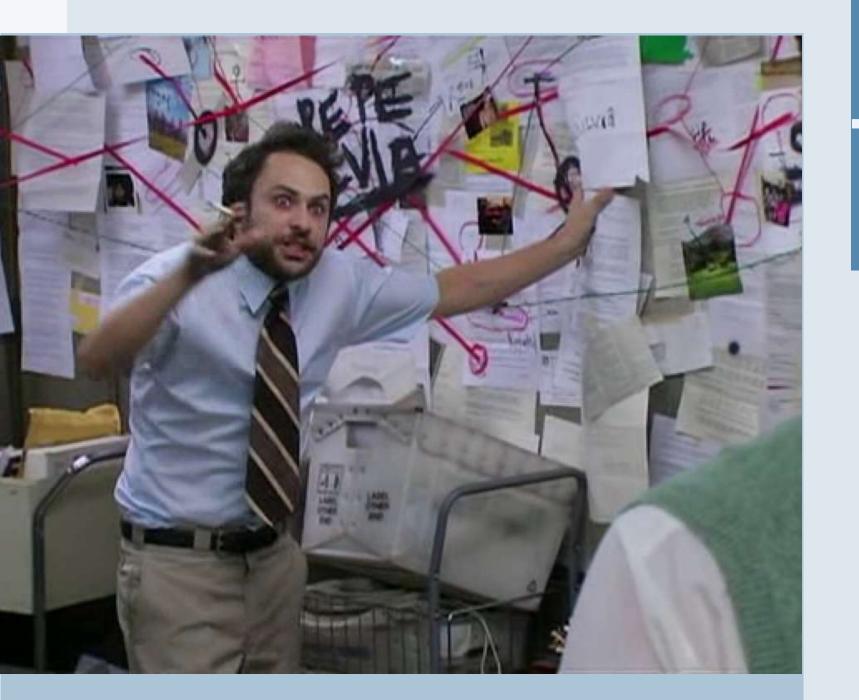
14

$$\xi^*(x,s) = \mathbb{P}_{\mathbf{p}} \left(\mathbf{X} \in \mathcal{T}_{\mathbf{F}} \mid X_s = x \right)$$

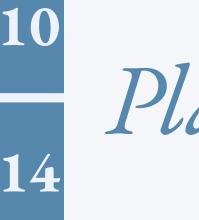
$$\xi^{*-}(x^-,s) = \mathbb{E}_{X_s \sim Q(\cdot \mid x^-)} \left[\xi^*(X_s,s) \right]$$

Optimal jump intensity and jump kernel

$$\lambda^{*}(x,s) = \lambda(x) \times \frac{\xi^{*-}(x,s)}{\xi^{*}(x,s)}$$
$$Q^{*}(x,s \mid x^{-}) = Q(x \mid x^{-}) \times \frac{\xi^{*}(x,s)}{\xi^{*-}(x^{-},s)}$$



We simply wish to perform informed adaptive importance sampling of piecewise deterministic Markov processes for rare event simulation in reliability assessment.



Methodology

1. Approximating the committor

> 2. Importance Determine the family $(\mathbf{g}_{\theta})_{\theta \in \Theta}$ by replacing ξ^* by ξ_{θ} in the previous optimality expressions distributions

3. Cross entropy Both select a good importance distribution \mathbf{g}_{θ} and estimate the probability of failure $\mathcal{P}_{\mathbf{F}}$ procedure

4. Gaussian confidence intervals

Plan of attack

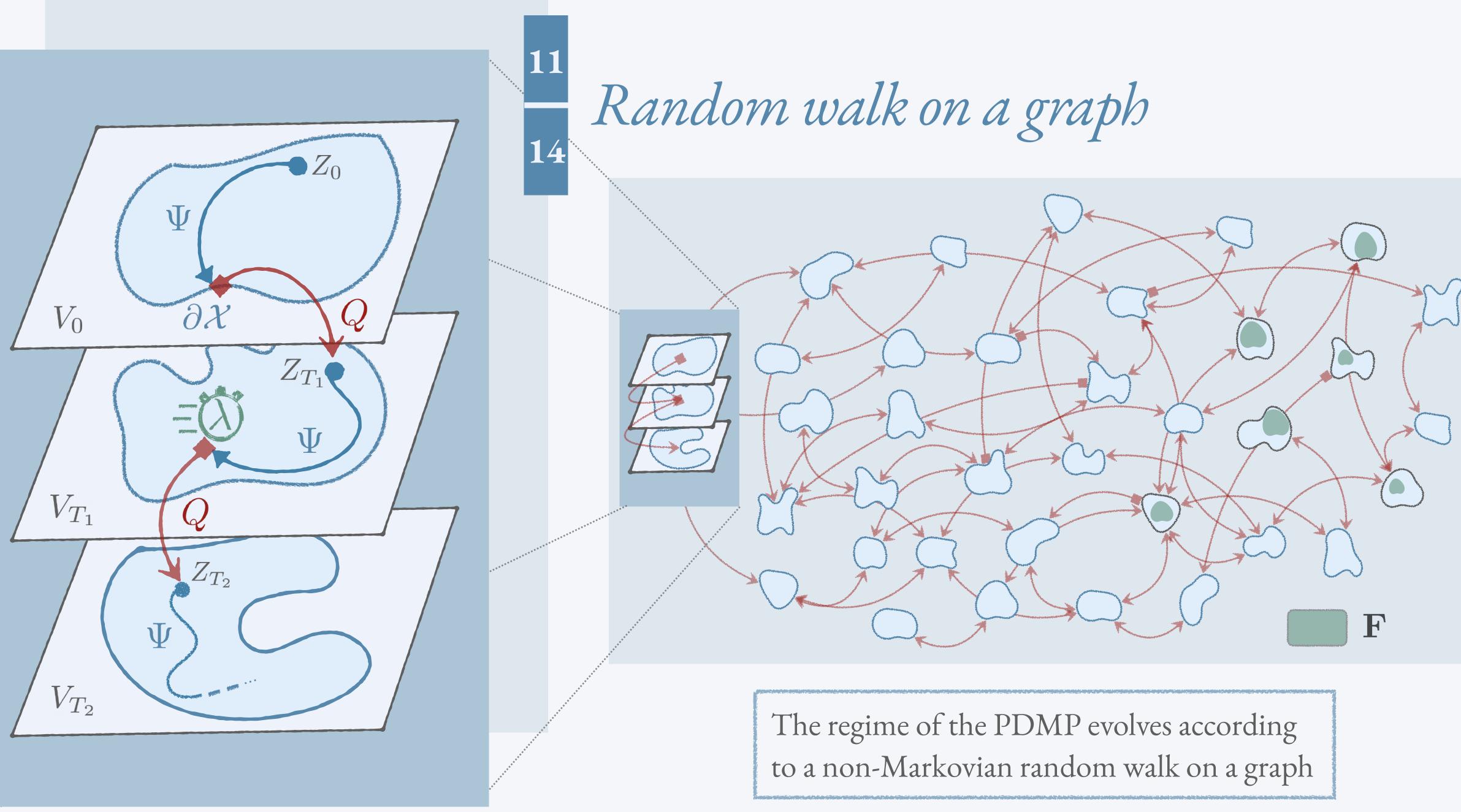
Chennetier et al. (2024)

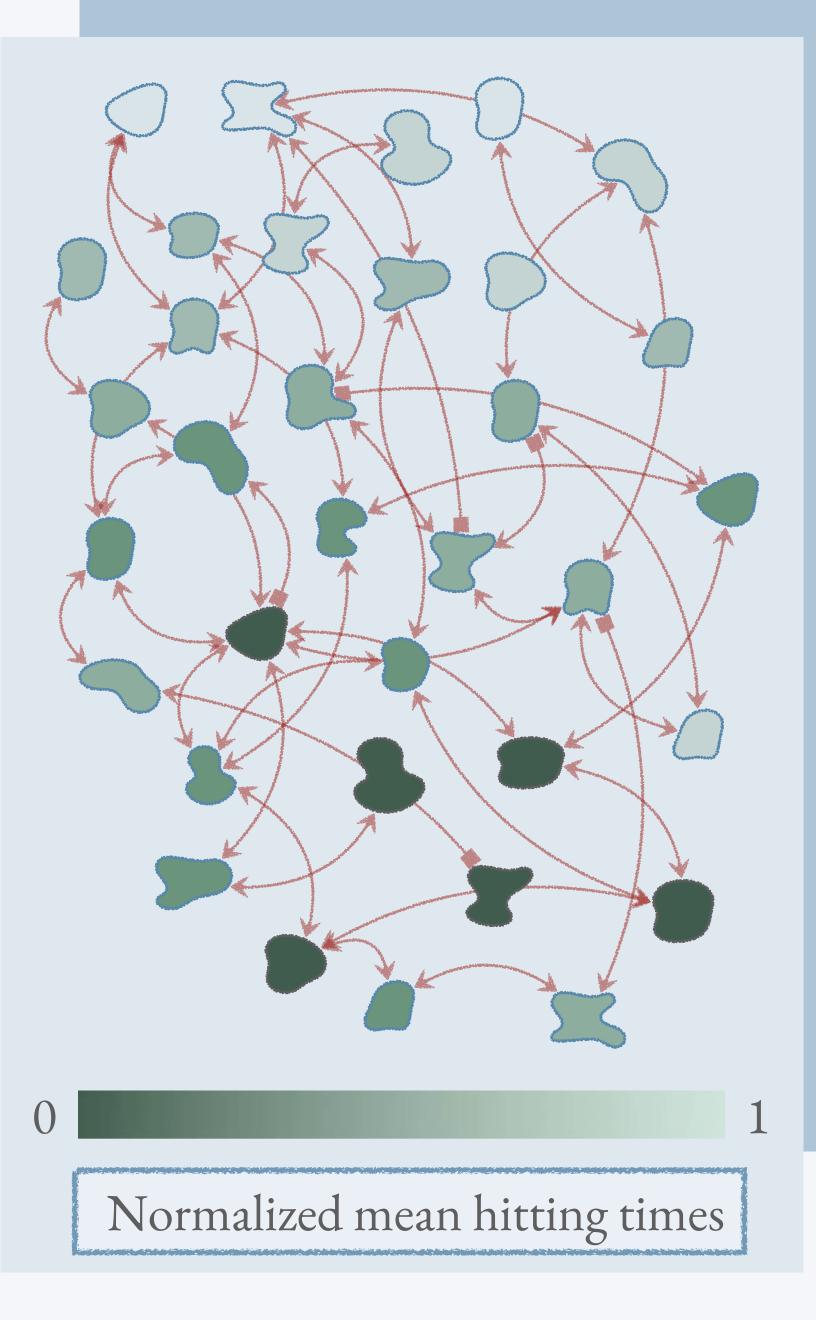
Choosing a parametric family $(\xi_{\theta})_{\theta \in \Theta}$ of approximations of the committor function ξ^*

We proved convergence and asymptotic normality of the estimator with recycling scheme under simple conditions on the PDMP and on $(\xi_{\theta})_{\theta \in \Theta}$

PART III

GRAPH-BASED APPROXIMATION





12 14

Failure regimes

Idea

Mean hit

Dynkin's consequen

Committe approxim

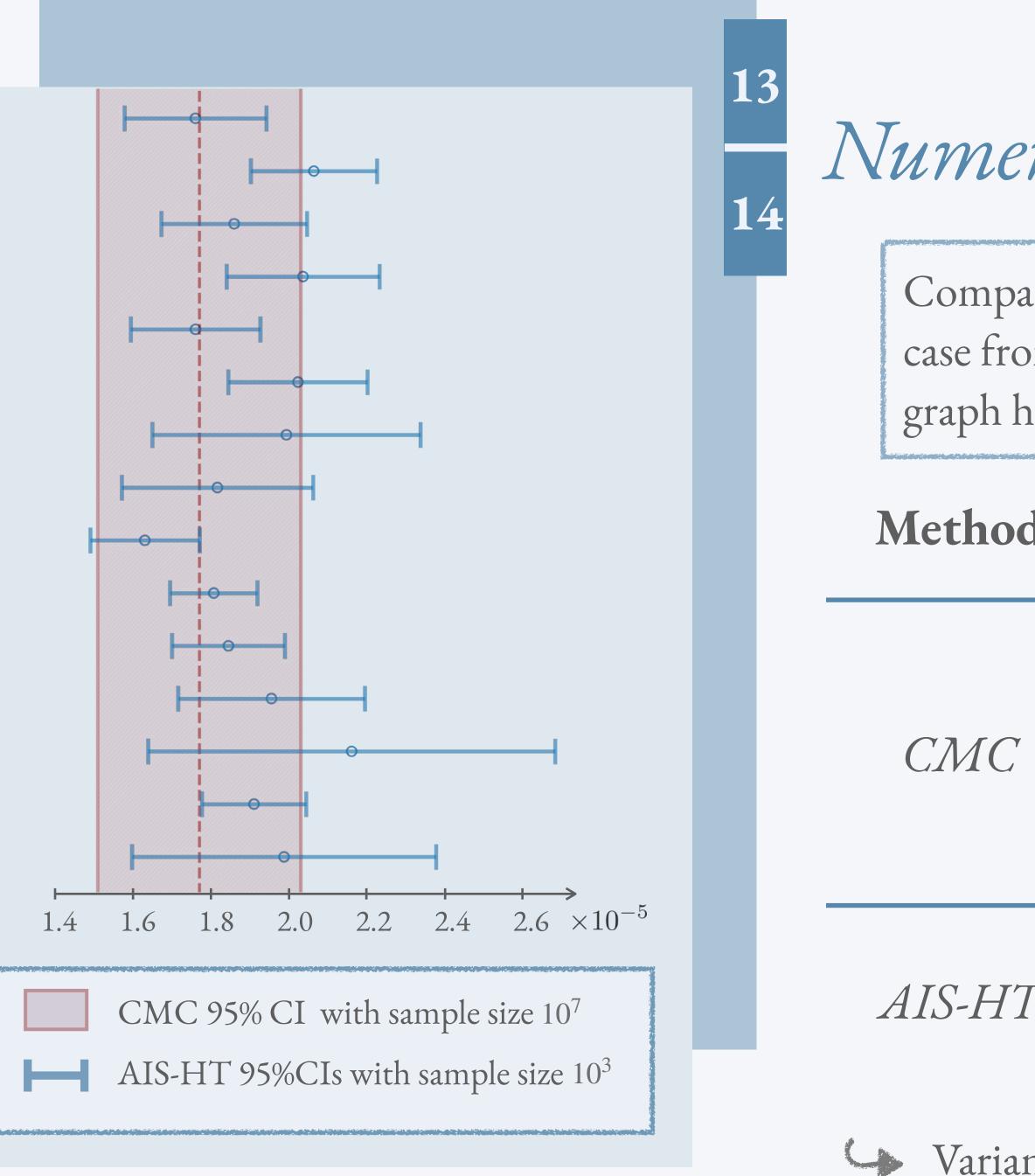
Mean hitting times

$$\mathcal{V}_{\mathbf{F}} := \{ v \in \mathcal{V} \mid \exists z \in \mathcal{Z} : x = (z, v) \in \mathcal{I} \}$$

Computation of mean hitting times of $\mathcal{V}_{\mathbf{F}}$ for a Markovian time-homogeneous random walk $(Y_t)_t$ with generator A on \mathcal{V}

$$\tau_{v} = \inf\{t \leq 0 : Y_{t} \in \mathcal{V}_{\mathbf{F}} \mid Y_{0} = v\}$$

$$h_{v} = \mathbb{E}_{(Y_{t})_{t} \sim A} [\tau_{v}]$$
formula
$$\begin{cases} \sum_{v' \in \mathcal{V}} A[v, v']h_{v'} = -1 & \text{if } v \notin \mathcal{V}_{\mathbf{F}} \\ h_{v} = 0 & \text{if } v \in \mathcal{V}_{\mathbf{F}} \end{cases}$$
for function
$$\xi_{\theta}(v) = \exp\left[-\sum_{i=1}^{d_{\Theta}} \theta_{i} \times (h_{v})^{i}\right]$$



Numerical results

Comparison between classical Monte Carlo on an industrial test case from nuclear industry (spent fuel pool). The corresponding graph has 32,768 vertices.

d	N	$\widehat{\mathcal{P}}_{\mathbf{F}} \times 10^5$	C.o.v	95% CI × 1(
1	10 ⁵	2	223.60	[0;4.77]
,	10 ⁶	1.3	277.35	[0.59;2.01]
	107	1.77	237.68	[1.51;2.03]
T	10 ³	1.86	1.62	[1.67;2.04]
	104	2.01	0.88	[1.98;2.05]

Variance reduction factor about 10,000



THANK YOU

Bibliography

G. Chennetier, H. Chraibi, A. Dutfoy and J. Garnier (2024), Adaptive importance sampling based on fault tree analysis for piecewise deterministic Markov process. SIAM/ASA Journal of Uncertainty Quantification, 12(1), 128-156.

M. H. A. Davis (1984), Piecewise-Deterministic Markov processes: A general class of non-diffusion stochastic models. J. R. Stat. Soc. B *46:353-388*.

B. de Saporta, F. Dufour and H. Zhang (2015), Numerical methods for simulation and optimization of piecewise deterministic Markov processes: application to reliability. Mathematics and statistics series Wiley-ISTE.

T. Galtier (2019), Accelerated Monte-Carlo methods for Piecewise Deterministic Markov Processes for a faster reliability assessment of power generation systems within the PyCATSHOO toolbox. *PhD thesis*.

