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GR APH-INFORMED 
IMPORTANCE SAMPLING 

APPLICATION IN DYNAMIC  
RARE EVENT SIMULATION



Monte Carlo method
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Quantity of Interest

No access to direct observations of

Nominal distribution      is numerically samplable

Classical Monte Carlo Generating i.i.d. sample   

High relative variance when      puts its mass where         is small

Rare event case:   



IMP O RTANCE SAMP L I NG

PART I



Importance sampling trick Using an alternative distribution

Let       and       be  probability densities function with respect to a 
measure      on        such that 

IS estimator   

              Variance relies on the choice of 

Optimal but untractable IS p.d.f. 

Weighted samples

Reference distribution

Importance distribution

Importance sampling for variance reduction 
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Generating i.i.d. sample



Cross entropy procedure Finding the best proposal in a family                    

Sequential recycling At iteration 

              Simulation step

              Optimization step

Final estimator

Adaptive importance sampling
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Weights degeneracy

For any distribution     ,  we have

But the more      and       differ, the more often               is close to 0    

AIS as a density estimation problem

Slower convergence with complex and large distribution families

Bad performance with simple and small distribution families

Propositions in the literature
Dimension reduction with projection in well-chosen subspaces

Generative models with good properties in high dimension (Julien’s talk)

Importance sampling in high dimension
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Stochastic process, entropy and dimension
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High dimensional spaces can contain

Vectors with a large number of coordinates

But also trajectories of a stochastic process

No obvious way to measure the dimension of a space of trajectories

Large entropy means large space to explore
                                                             is large when                                 is small

Since                                     , it means that we integrate on a large space

Simple Poisson process example

Let         be a trajectory of a simple Poisson process of intensity 1

Then                                                     with  



PIECEWISE D E TE RM I NIST I C  
MA RKOV PRO C E SSES

PART I I



Piecewise Deterministic Markov Processes
PDMP Class of all non-diffusive Markov processes

          Mark H Davis 1984  

Hybrid process
is continuous and called « position »
is discrete and called « regime »

Flow Deterministic dynamics between two jumps

Intensity Gives the distribution of the random jump times

Kernel Gives the distribution of the post-jump locations

Local characteristics of the PDMP
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Modeling dynamic industrial systems
Position Physical quantities (e.g. temperature, pressure)

Regime Status (e.g. ON, OFF) of the system components

Flow ODEs given by physical laws and parameterized 
by the status of the components

Boundaries Physical constraints and control mechanisms 
when thresholds are reached

Random jumps Random failures and repairs of the components

Intensity and 
kernel

Given by components jump rates, which may 
depend on physical variables
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B. de Saporta et al. Numerical methods for simulation and optimization of 
piecewise deterministic Markov processes: application to reliability



Reliability assessment
Aim Estimating the probability of critical failure of the system

Critical failure domain

Maximal duration of a PDMP trajectory

Set of faulty trajectories 

Complete PDMP trajectory    

Reference distribution of the PDMP trajectory 

Probability to reach       before time 

Notations
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Optimal importance sampling of PDMP

Time reaches

State reaches
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Committor and edge committor functions

Optimal jump intensity and jump kernel

A PDMP distribution is characterized by its intensity and kernel.
Optimal choice relies on the knowledge of the committor function

Thomas Galtier’s Phd Thesis 2021



Plan of attack 
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Methodology           Chennetier et al. (2024)

1. Approximating 
the committor

Choosing a parametric family                    of 
approximations of the committor function

2. Importance 
distributions

Determine the family                    by replacing         
by         in the previous optimality expressions 

3. Cross entropy 
procedure

Both select a good importance distribution          
and estimate the probability of failure

4. Gaussian 
confidence intervals

We proved convergence and asymptotic normality 
of the estimator with recycling scheme under 
simple conditions on the PDMP and on 

We simply wish to perform 
informed adaptive importance 
sampling of piecewise 
deterministic Markov processes 
for rare event simulation in 
reliability assessment.



GR A P H-B A S ED 
APPROXIMATIO N

PART I I I



Random walk on a graph

The regime of the PDMP evolves according 
to a non-Markovian random walk on a graph 
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Failure regimes

Idea
Computation of mean hitting times of           for a 
Markovian time-homogeneous random walk 
with generator       on    

Mean hitting time

Dynkin’s formula 
consequence

if

if

Committor function 
approximation

Mean hitting times
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Normalized mean hitting times



Numerical results
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Method C.o.v       95% CI 

CMC

2 223.60 [0 ; 4.77]

1.3 277.35 [0.59 ; 2.01 ]

1.77 237.68 [1.51 ; 2.03]

AIS-HT
1.86 1.62 [1.67 ; 2.04]

2.01 0.88 [1.98 ; 2.05]

103

104

107

106

105

Comparison between classical Monte Carlo on an industrial test 
case from nuclear industry (spent fuel pool). The corresponding 
graph has 32,768 vertices.

Variance reduction factor about 10,000

CMC 95% CI  with sample size 

AIS-HT 95%CIs with sample size 

107

103



TH ANK YOU



14

14

M. H. A. Davis (1984), Piecewise-Deterministic Markov processes: A 
general class of non-diffusion stochastic models. J. R. Stat. Soc. B 
46:353-388.

B. de Saporta, F. Dufour and H. Zhang (2015), Numerical methods for 
simulation and optimization of piecewise deterministic Markov 
processes: application to reliability. Mathematics and statistics series 
Wiley-ISTE.

T. Galtier (2019), Accelerated Monte-Carlo methods for Piecewise 
Deterministic Markov Processes for a faster reliability assessment of 
power generation systems within the PyCATSHOO toolbox. PhD thesis.

G. Chennetier, H. Chraibi, A. Dutfoy and J. Garnier (2024), Adaptive 
importance sampling based on fault tree analysis for piecewise 
deterministic Markov process. SIAM/ASA Journal of Uncertainty 
Quantification, 12(1), 128-156.

Bibliography


