Kernel-based Sensitivity Analysis of set-valued models. Application to pollutant concentration maps SA

Noé Fellmann Céline Helbert & Christophette Blanchet (ECL) Adrien Spagnol & Delphine Sinoquet (IFP Energies Nouvelles)

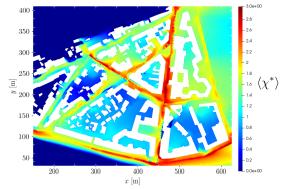
MASCOTNUM 2024

Model of pollutant concentration maps [Pasquier et al. 2023]

Input $oldsymbol{U} = (heta, U_\infty, oldsymbol{q}, eta,
u_{\textit{max}})$ with,

- Wind direction $\theta \sim \mathcal{N}_{[5,10]}(0.7, 0.5^2)$ [rad]
- \bullet Wind speed $\mathit{U}_{\infty} \sim \mathcal{N}_{[-0.35;1.75]}(8,2)~[m/s]$
- Traffic volume $q \sim \mathcal{SN}_{[100;500]}(450,100,-3)$ [vehicle/h]
- Proportion of diesel and petrol engine $eta \sim \mathcal{U}([0,1])$ [-]
- Speed limit $u_{\mathsf{max}} \sim \mathcal{U}([30; 50]) \; [\mathsf{km/h}]$

Output : $(x,y) \mapsto \Phi_{U}(x,y)$ a pollutant concentration map



Pointwise SA on maps	Set-valued models	HSIC-ANOVA	HSIC for sets
Constitution Annal sta	C		

Sensitivity Analysis of map-valued models

Map-valued model :

 $\Phi: \boldsymbol{U} \mapsto \Phi_{\boldsymbol{U}}$

where

$$\Phi_{\boldsymbol{U}}:(x,y)\mapsto \Phi_{\boldsymbol{U}}(x,y)\in\mathbb{R}$$

Goal : Quantify the effect of the inputs \boldsymbol{U} on the spatial output $\Phi_{\boldsymbol{U}}$

Pointwise SA on maps	Set-valued models	HSIC-ANOVA	HSIC for sets
Constitution Angel stars	Constant and searchede		

Sensitivity Analysis of map-valued models

Map-valued model :

 $\Phi: \boldsymbol{U} \mapsto \Phi_{\boldsymbol{U}}$

where

$$\Phi_{\boldsymbol{U}}:(x,y)\mapsto \Phi_{\boldsymbol{U}}(x,y)\in\mathbb{R}$$

Goal : Quantify the effect of the inputs \boldsymbol{U} on the spatial output $\Phi_{\boldsymbol{U}}$

Sensitivity analysis context

$$(U_1,...,U_d) \stackrel{f}{\mapsto} Z = f(U_1,...,U_d)$$

How can the uncertainty of Z be divided and allocated to the uncertainty of the inputs U_i ?

- Sobol indices : $S_i = \frac{\operatorname{Var} \mathbb{E}(Z|U_i)}{\operatorname{Var} Z}$
- Dependence measures : $S_i = ||\mathbb{P}_{(U_i,Z)} \mathbb{P}_{U_i} \otimes \mathbb{P}_Z||$

Screening : $U_1, ..., U_k$ are influential and $U_{k+1}, ...U_d$ are not influential Ranking : $U_1 \prec ... \prec U_d$

Pointwise SA on maps	Set-valued models	HSIC-ANOVA	HSIC for sets
Table of Contents			

Pointwise Sensitivity Analysis of pollutant concentration maps

2 Set-valued models

Sensitivity Analysis with kernel-based indices

4 Kernel-based Sensitivity Analysis for sets

Pointwise SA on maps ●○○	Set-valued models	HSIC-ANOVA	HSIC for sets
Table of Contents			

Pointwise Sensitivity Analysis of pollutant concentration maps

2 Set-valued models

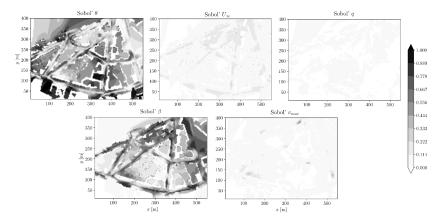
3 Sensitivity Analysis with kernel-based indices

4 Kernel-based Sensitivity Analysis for sets

Pointwise SA on maps ○●○	Set-valued models	HSIC-ANOVA	HSIC for sets
Sobol indices maps [Pas	quier et al. 2023]		

Sobol indices at the position (x, y) :

 $S_i(x,y) = \frac{\operatorname{Var}[\mathbb{E}[\Phi_{\boldsymbol{U}}(x,y)|U_i]]}{\operatorname{Var}[\Phi_{\boldsymbol{U}}(x,y)]}.$



Pointwise SA on maps ○○● Set-valued models

HSIC-ANOVA

HSIC for sets

Aggregated Sobol indices [Pasquier et al. 2023]

Aggregated Sobol' indices (Gamboa, Janon et al. 2013) :

$$S_i^{gen} := \sum_{j=1}^m w_j S_i(x^{(j)}, y^{(j)}) \quad \text{with} \qquad w_j = \frac{\text{Var}[\Phi_{\boldsymbol{U}}(x^{(j)}, y^{(j)})]}{\sum_{k=1}^m \text{Var}[\Phi_{\boldsymbol{U}}(x^{(k)}, y^{(k)})]}$$

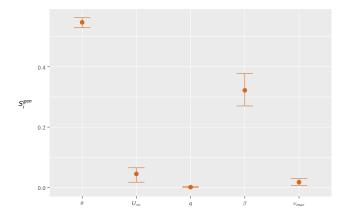


Figure – Estimated aggregated first-order Sobol' indices with 2¹² model evaluations.

Pointwise SA on maps	Set-valued models ●000	HSIC-ANOVA	HSIC for sets
Table of Contents			

Pointwise Sensitivity Analysis of pollutant concentration maps

2 Set-valued models

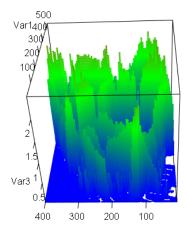
3 Sensitivity Analysis with kernel-based indices

4 Kernel-based Sensitivity Analysis for sets

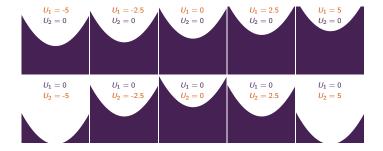
Pointwise SA on map	S	Set-valued models ○●○○			HSIC-ANOVA	HSIC for sets	
_		1.1.					

From map-valued model to set-valued model

$$\begin{array}{ccc} \mathcal{U} & \longrightarrow & \mathcal{L}(\mathcal{X}) \\ \Psi: & \boldsymbol{u} & \mapsto & \boldsymbol{\Gamma}_{\boldsymbol{u}} = \{(x, y, c) \in \mathcal{D} \times [0, C_{max}], \ c \leq \Phi_{\boldsymbol{u}}(x, y)\} \end{array}$$



Pointwise SA on maps	Set-valued models 00●0	HSIC-ANOVA	HSIC for sets
Sensitivity analysis of se	t-valued models?		



How to do sensitivity analysis of set-valued models?

Pointwise SA on maps	Set-valued models 000●	HSIC-ANOVA	HSIC for sets
Sensitivity analysis on	the volume		

How to do sensitivity analysis of set-valued models?

• Conduct sensitivity analysis on the volume : $U \rightarrow \lambda(\Gamma_U)$

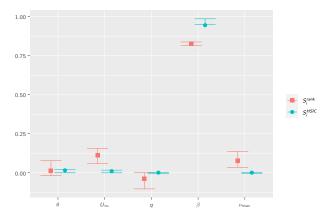


Figure – Estimation of Sobol indices (rank-method) and HSIC-based indices (rbf_anova kernel) of the volume of Γ_U . 1000 model evaluations are used and confidence interval are estimated with 100 bootstrap resamples.

Pointwise SA on maps	Set-valued models 000●	HSIC-ANOVA	HSIC for sets
Sensitivity analysis o	n the volume		

How to do sensitivity analysis of set-valued models?

• Conduct sensitivity analysis on the volume $: U \to \lambda(\Gamma_U)$

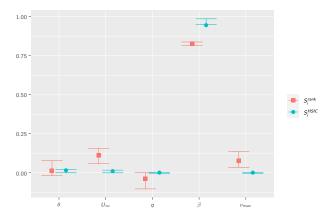


Figure – Estimation of Sobol indices (rank-method) and HSIC-based indices (rbf_anova kernel) of the volume of Γ_U . 1000 model evaluations are used and confidence interval are estimated with 100 bootstrap resamples.

Pointwise SA on maps	Set-valued models	н
000	0000	•

Table of Contents

2 Set-valued models

Sensitivity Analysis with kernel-based indices

4 Kernel-based Sensitivity Analysis for sets

		Set-valued models	HSIC-ANOVA O●OO	HSIC for sets
	1.11			

Distribution embedding into a RKHS

Given a kernel $k_{\mathcal{Z}} : \mathcal{Z} \times \mathcal{Z} \mapsto \mathbb{R}$,

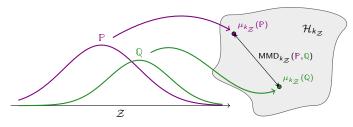


Figure - Kernel mean embedding

•
$$\mu_{k_{\mathcal{Z}}}(\mathbb{P}) = \int_{\mathcal{Z}} k(\cdot, z) d\mathbb{P}(z)$$

• $\mathsf{MMD}_{k_{\mathcal{Z}}}(\mathbb{P}, \mathbb{Q}) = ||\mu_{k_{\mathcal{Z}}}(\mathbb{P}) - \mu_{k_{\mathcal{Z}}}(\mathbb{Q})||_{\mathcal{H}_{k_{\mathcal{Z}}}}$

The MMD is a distance between distribution iif k_Z is a characteristic kernel, i.e. the mean embedding is injective.

Pointwise SA on maps	Set-valued models	HSIC-ANOVA 00●0	HSIC for sets
From MMD to HSIC			

Dependence measure $S_i = ||\mathbb{P}_{(U_i,Z)} - \mathbb{P}_{U_i} \otimes \mathbb{P}_Z||$ to quantify the effect of an input U_i on the entire output distribution.

Hilbert Schmidt Independence Criterion (HSIC), Gretton et al. 2006

With $K_i = k_{\mathcal{U}_i} \otimes k_{\mathcal{Z}}$, the HSIC is given by :

$$\begin{aligned} \mathsf{HSIC}_{\mathcal{K}_i}(U_i, Z) &:= \mathsf{MMD}^2_{\mathcal{K}_i}(\mathbb{P}_{U_i, Z}, \mathbb{P}_{U_i} \otimes \mathbb{P}_Z) \\ &= ||\mu_{\mathcal{K}_i}(\mathbb{P}_{U_i, Z}) - \mu_{\mathcal{K}_{U_i}}(\mathbb{P}_{U_i}) \otimes \mu_{\mathcal{K}_Z}(\mathbb{P}_Z)||^2_{\mathcal{H}_F} \end{aligned}$$

If $k_{\mathcal{U}_i}$ and $k_{\mathcal{Z}}$ are characteristic, then

$$\text{HSIC}_{K_i}(U_i, Z) = 0 \text{ iif } U_i \perp Z$$

Screening is then possible with independence testing.

Pointwise SA on maps	Set-valued models	HSIC-ANOVA 000●	HSIC for sets
HSIC-ANOVA indices [d	laVeiga 2021]		

Assuming that the inputs are independent and that the input kernels are ANOVA,

$$\mathsf{HSIC}(\boldsymbol{U}, \boldsymbol{Z}) = \sum_{\boldsymbol{A} \subseteq \{1, \dots, d\}} \sum_{\boldsymbol{B} \subseteq \boldsymbol{A}} (-1)^{|\boldsymbol{A}| - |\boldsymbol{B}|} \, \mathsf{HSIC}(\boldsymbol{U}_{\boldsymbol{B}}, \boldsymbol{Z}) \, .$$

HSIC-ANOVA indices are then defined as :

$$S_i^{\mathsf{HSIC}} := \frac{\mathsf{HSIC}(U_i, Z)}{\mathsf{HSIC}(U, Z)},$$

$$S_{\mathcal{T}_i}^{\mathsf{HSIC}} := 1 - rac{\mathsf{HSIC}(oldsymbol{U}_{-i}, Z)}{\mathsf{HSIC}(oldsymbol{U}, Z)}$$

and are suited for ranking (and screening).

• Easy to estimate :

$$\mathsf{HSIC}(\boldsymbol{U}_A, Z) = \mathbb{E}\left[(K_A(\boldsymbol{U}_A, \boldsymbol{U}_A') - 1)k_{\mathcal{Z}}(Z, Z')\right].$$

• Only requirement : to have kernels on the inputs and on the output

Pointwise SA on maps	Set-valued models	HSIC-ANOVA	HSIC for sets
Table of Contents			

Pointwise Sensitivity Analysis of pollutant concentration maps

2 Set-valued models

Sensitivity Analysis with kernel-based indices

Pointwise SA on maps	Set-valued models	HSIC-ANOVA	HSIC for sets
HSIC ANOVA indices for	r sets, definition of the	indices	

- $\mathcal{Z} \hspace{0.5cm} \longleftrightarrow \hspace{0.5cm} \mathcal{L}(\mathcal{X})$ the space of Lebesgue measurable subsets of \mathcal{X}
- $Z \quad \longleftrightarrow \quad \Gamma \text{ a random set}$
- $k_{\mathcal{Z}} \longleftrightarrow k_{set}$ a (characteristic) kernel on $\mathscr{L}(\mathcal{X})$

Proposition (Fellmann, Blanchet-Scalliet et al. 2023)

The function k_{set} defined by :

$$k_{set}(\gamma_1,\gamma_2) = \exp\left(-rac{\lambda(\gamma_1\Delta\gamma_2)}{2\sigma^2}
ight)$$

• is a bounded and measurable kernel

• is characteristic.

$$\mathsf{HSIC}_{k_i \otimes k_{set}}(U_i, \Gamma) = ||\mu_{k_i \otimes k_{set}}(\mathbb{P}_{(U_i, \Gamma)}) - \mu_{k_i \otimes k_{set}}(\mathbb{P}_{U_i} \otimes \mathbb{P}_{\Gamma})||^2_{\mathcal{H}_{k_i \otimes k_{set}}}$$

MASCOTNUM 2024

Kernel-based Sensitivity Analysis of set-valued models

Pointwise SA on maps	Set-valued models	HSIC-ANOVA	HSIC for sets
	с.,		

HSIC ANOVA indices for sets, estimation

$$\mathsf{HSIC}(\boldsymbol{U}_A, \boldsymbol{\Gamma}) = \mathbb{E}\left[(K_A(\boldsymbol{U}_A, \boldsymbol{U}_A') - 1)k_{set}(\boldsymbol{\Gamma}, \boldsymbol{\Gamma}')\right].$$

The indices can be estimated using U-statistics :

$$\widehat{\widehat{\mathsf{H}_{set}}}\left(U_{i},\mathsf{\Gamma}\right) = \frac{2}{n(n-1)}\sum_{j$$

Input kernels :

- the Sobolev kernel of order 1, $k_{sob}(x, y) = 1 + (x - \frac{1}{2})(y - \frac{1}{2}) + \frac{1}{2}[(x - y)^2 - |x - y| + \frac{1}{6}]$
- the Gaussian kernel, $k_{rbf}(x, y) = e^{-\frac{1}{2} \left(\frac{x-y}{\sigma}\right)^2}$ with $\sigma > 0$,
- the Laplace kernel, $k_{exp}(x, y) = e^{-\frac{|x-y|}{h}}$ with h > 0,
- the Matérn 3/2, $k_{3/2}(x,y) = \left(1 + \sqrt{3} \frac{|x-y|}{h}\right) e^{-\sqrt{3} \frac{|x-y|}{h}}$ with h > 0,

• the Matérn 5/2,
$$k_{5/2}(x,y) = \left(1 + \sqrt{5} \frac{|x-y|}{h} + \frac{5}{3} \frac{|x-y|}{h^2}\right) e^{-\sqrt{5} \frac{|x-y|}{h}}$$
 with $h > 0$.

Pointwise SA on maps	Set-valued models 0000	HSIC-ANOVA	HSIC for sets

HSIC ANOVA indices for sets, results

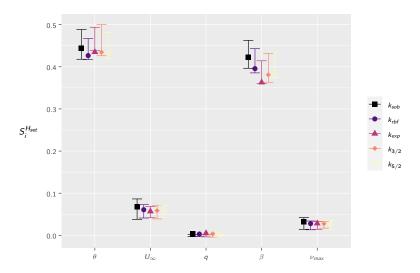


Figure – Estimation of $S_i^{H_{set}}$ for five input kernels, 1000 model evaluations. Confidence intervals are obtained by bootstrap with 100 resamples

Pointwise	SA	on	maps
000			

HSIC-ANOVA

HSIC for sets

16 / 21

Comparison with other indices

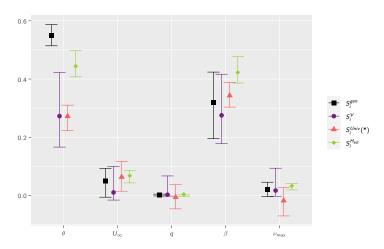


Figure – Comparison of the four indices with a total budget of n = 1000 model evaluations. 100 bootstrap sample are used to estimate confidence intervals [Fellmann, Pasquier et al. 2023]

^{*} Gamboa, Klein et al. 2021

Pointwise	SA	on	maps
000			

Comparison with other indices

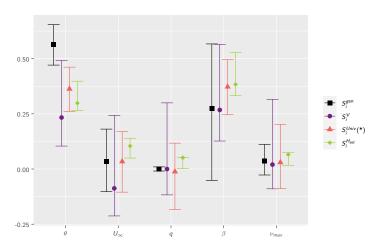


Figure – Comparison of the four indices with a total budget of n = 100 model evaluations. 100 bootstrap sample are used to estimate confidence intervals [Fellmann, Pasquier et al. 2023]

^{*} Gamboa, Klein et al. 2021

Pointwise	SA	on	maps
000			

Conclusion

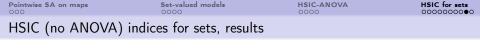
- HSIC-ANOVA indices are
 - ✓ cheap to estimate
 - \checkmark suited for screening
 - \checkmark suited for ranking
 - X sometimes hard to interpret (interactions)
 - \checkmark very permissive in the type of the output (and of the inputs?)
- The presented methodology for map-valued outputs but can be used for any set-valued outputs.
- Current work : SA of the excursion sets of a robust optimization problem

Pointwise	SA	on	maps
000			

Conclusion

- HSIC-ANOVA indices are
 - ✓ cheap to estimate
 - \checkmark suited for screening
 - \checkmark suited for ranking
 - X sometimes hard to interpret (interactions)
 - \checkmark very permissive in the type of the output (and of the inputs?)
- The presented methodology for map-valued outputs but can be used for any set-valued outputs.
- Current work : SA of the excursion sets of a robust optimization problem
- Thanks!

daVeiga, Sébastien (jan. 2021). "Kernel-based ANOVA decomposition and Shapley effects - Application to global sensitivity analysis". working paper or preprint. url : https://hal.archives-ouvertes.fr/hal-03108628.
Fellmann, Noé, Christophette Blanchet-Scalliet et al. (2023). Kernel-based sensitivity analysis for (excursion) sets. arXiv : 2305.09268 [math.ST].
Fellmann, Noé, Mathis Pasquier et al. (2023). "Sensitivity analysis for sets : application to pollutant concentration maps". In : arXiv preprint.
Gamboa, Fabrice, Alexandre Janon et al. (2013). Sensitivity analysis for multidimensional and functional outputs. arXiv : 1311.1797 [stat.AP].
Gamboa, Fabrice, Thierry Klein et al. (août 2021). "Sensitivity analysis in general metric spaces". In : <u>Reliability Engineering and System Safety</u> . doi : 10.1016/j.ress.2021.107611. url : https://hal.archives-ouvertes.fr/hal-02044223.
Gretton, Arthur et al. (2006). "A Kernel Method for the Two-Sample-Problem". In : Advances in Neural Information Processing Systems. T. 19. MIT Press. url : https://proceedings.neurips.cc/paper/2006/hash/ e9fb2eda3d9c55a0d89c98d6c54b5b3e-Abstract.html.
Pasquier, Mathis et al. (2023). "A Lattice-Boltzmann-based modelling chain for traffic-related atmospheric pollutant dispersion at the local urban scale". In : Building and Environment 242, p. 110562.



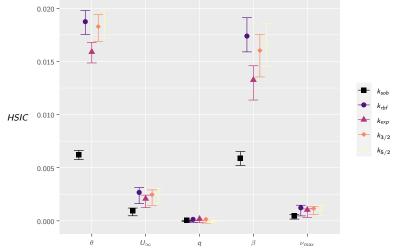


Figure – Estimation of HSIC for five input kernels, 1000 model evaluations. Confidence intervals are obtained by bootstrap with 100 resamples

Pointwise SA on maps	Set-valued models	HSIC-ANOVA	HSIC for sets
	с I		

HSIC ANOVA indices for sets, results

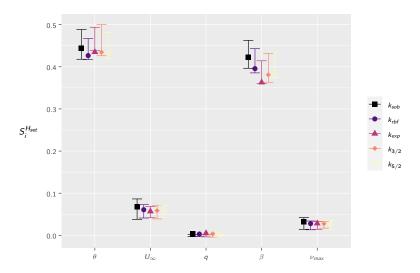


Figure – Estimation of $S_i^{\text{H}_{set}}$ for five input kernels, 1000 model evaluations. Confidence intervals are obtained by bootstrap with 100 resamples