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Some notations

∎ Consider y = (y(k))1≤k≤N noisy observations of the direct model f :

y(k) = f (x) + ε(k) ∈ R with ε(k) ∼ N (0, σ2
m) iid (1)

∎ The direct model f is too expensive (Monte-Carlo simulation of neutron transport).
∎ We want the posterior distribution p(x ∣y)∝ L(y∣x)p(x) for x ∈ X . The prior is chosen uniform

on a compact.
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Aleatoric and epistemic UQ in inverse problems

Let fs be a GP surrogate with predictive distribution fs(x) ∼ N (fs(x), ks(x)).
Objective: include epistemic and aleatoric uncertainty in the posterior distribution, with a global
covariance Ctot(x) = ks(x)AN + σ

2
mIN .
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(2)

where fs(x) = (fs(x), ..., fs(x))
T

and AN is the matrix of ones of size N.
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An example

Problem statement: how do we choose new design points to enrich the surrogate ?

Posterior distribution sampled with HMC-NUTS with 105 samples
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Some optimal designs

Consider a GP f (n)s with predictive distribution N (mn(x), kn(x)).
∎ D-optimal design: maximize the determinant of the predictive variance

xn+1 ∈ argmaxx∈X ∣kn(x)∣

∎ I-optimal design: minimize the integrated (updated) predictive variance

xn+1 ∈ argminx∈X ∫
X

∣kn+1(x̃ ∣x)∣dx̃
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Back to the inverse problem
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Gaussian processes and Gaussian measures

Let M be the set of Gaussian measures on F = C(X ).
∎ For any ν ∈M, there exists a GP fs ∼ GP (mν(x), kν(x , x ′)) with continuous sample paths

whose probability distribution is ν [Vaart, Zanten, et al. 2008].
∎ The probability distribution P f of any given GP fs is a Gaussian measure on F i.e. P f

∈M.
∎ Let fs be a continuous GP with and probability distribution P f . We define

P f
n = P f

∣(x1, z1, ..., xn, zn) ∈M as the probability of fs given Fn = σ(x1, z1, ..., xn, zn).
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SUR methods

Define a functional H∶MÐ→ R+ and denote by En,x the expectation given Fn. The SUR strategy is:

xn+1 ∈ argmin
x∈X

{En,x [H(P f
n+1)]} (3)

Convergence results can be obtained provided the functional has the supermartingale property
[Bect, Bachoc, and Ginsbourger 2019], i.e. for all x ∈ X :

En,x [H(P f
n+1)] ≤H(P

f
n) (4)
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Constrained D-optimal design

Adapt the D-optimal design strategy to a well-chosen subset B ⊂ X .

xn+1 ∈ argmax
x∈B

kn(x)

Choose B to be close to the MAP x(m)n :

B
(n)
h = {x ∈ X ∣ logpn (x(n)m ∣y) − logpn(x ∣y) ≤ h} . (5)

This defines a constraint set query (CSQ) design:

xn+1 ∈ argmax
x∈B(n)h

kn(x) (6)
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Metric of uncertainty for IPSUR design

Our metric is derived from I-optimal designs:

H(ν) = Epν [kν(x̃)] = ∫
X

kν(x̃)pν(x̃ ∣y)dx̃ (7)

The SUR criteria derived from this posterior-weighted predictive variance is tractable [Lartaud,
Humbert, and Garnier 2024] and the metric can be evaluated with an ergodic Markov chain
(Xl)1≤l≤L. The IPSUR (Inverse Problem SUR) design is:

xn+1 ∈ argmin
x∈X

{En,x [H(P f
n+1)]} (8)
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Convergence (1)

Supermartingale property
The functional D has the supermartingale property En,x [D(P f

n+1)] ≤ D(P
f
n) where:

D(ν) = CνH(ν) (9)

Cν =∫
X

p(x̃)Lν(y∣x̃)dx̃ (10)

Remark: H does not have the supermartingale property.
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Convergence (2)

Convergence of H(P f
n)

Under some regularity conditions, the uncertainty metric Hn =H(P f
n) converges almost-surely to 0.

H(P f
n)

a.s.
ÐÐÐ→
n→+∞

0. (11)

Remark: the result holds for multi-output GP.
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Two-step proof

∎ First, show that Dn = D(P f
n) converges a.s. to 0 using main theorem in [Bect, Bachoc, and

Ginsbourger 2019].
∎ Supermartingale property for D.
∎ Show that the zeros of D and zeros of G are the same where:

G(ν) = sup
x∈X
(D(ν) − Ez [D(ν∣(x , z))]) (12)

∎ Prove that Hn =
Dn
Cn

converges to 0 by showing that Cn ÐÐÐ→
n→+∞

C∞ > 0
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Test case 1
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Test case 2
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Application to neutron correlations
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Conclusion

∎ Sequential design strategies specifically suited for Bayesian inverse problems.
∎ Tractability and guarantee of convergence for the IPSUR design.
∎ Possible extension to tempered posteriors with the same guarantee of convergence:

Hβ(ν) =
1

Cν,β
∫
X

kν(x̃) (Lν(x̃ ∣y))β p(x̃)dx̃ (13)

Cν,β = ∫
X

(Lν(x̃ ∣y))β p(x̃)dx̃ for β ∈ [0,1] (14)
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Thank you for your attention. Any questions ?



Appendix 1: SUR criteria

The SUR criteria is given by xn+1 ∈ argminx∈X J̃n(x) where Jn(x) = Ez(x) [Hn+1(x , z)]:

J̃n(x) =
Cn+1

Cn
Jn(x) = ∫

X
pn(x̃ ∣y)h(x̃ , x)I(x̃ , x)dx̃ .

h(x̃ , x) = kn+1(x̃ , ∣x)
∣Σn(x̃)∣1/2

∣Σn+1(x̃ ∣x)∣1/2
exp [−1

2
(∥y −mn(x̃)∥2Σn+1

− ∥y −mn(x̃)∥2Σn
)]

I(x̃ , x) = 1
√

λn(x , x̃)∥u∥2Σn+1
+ 1

exp

⎡⎢⎢⎢⎢⎣

λn(x , x̃) ⟨y −mn(x̃)∣u⟩2Σn+1

2(λn(x , x̃)∥u∥2Σn+1
+ 1)

⎤⎥⎥⎥⎥⎦

where λn(x , x̃) = kn(x,x̃)2

kn(x)
and u = (1, ...,1)T .

We also introduced mn(x̃) = mn(x)u where mn(x̃), and Σn(x̃) = kn(x)AN + σ2
mIN .
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