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Some notations

= Considery = (y®)s<n noisy observations of the direct model f:
y* = 1(x) +e" e R with e ~ N (0,03,) iid (1)

= The direct model f is too expensive (Monte-Carlo simulation of neutron transport).

= We want the posterior distribution p(x|y) o< L(y|x)p(x) for x € X. The prior is chosen uniform
on a compact.
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Aleatoric and epistemic UQ in inverse problems

Let fs be a GP surrogate with predictive distribution fs(x) ~ N(fs(x), ks(x)).
Objective: include epistemic and aleatoric uncertainty in the posterior distribution, with a global
covariance Ciot (X) = ks(X) Ay + 02 Zn.
plxly) o i exp [ (- 00 Cun () (v -0
A —Is O — Is
V (2m)N|Crot (X)) 2

\2
o<(a,2n+Nks(X)1/2exp[—1 M ]

2\ ke(x)+ 22

-
where fs(x) = (fs(x), . fs(x)) and Ay is the matrix of ones of size N.
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An example

Problem statement: how do we choose new design points to enrich the surrogate ?
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Posterior distribution sampled with HMC-NUTS with 10° samples
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Some optimal designs \\

Consider a GP 7" with predictive distribution A" (my(x), ka(x)).
= D-optimal design: maximize the determinant of the predictive variance

Xp+1 € argmax, v |Kn(X)|

= |-optimal design: minimize the integrated (updated) predictive variance

Xni1 eargminxex‘/XMnn (X]x)|dx
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Back to the inverse problem

l-optimal designs
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Gaussian processes and Gaussian measures

Let M be the set of Gaussian measures on F = C(X).

= For any v € M, there exists a GP f; ~ GP (m, (x), k.(x, x")) with continuous sample paths
whose probability distribution is v [Vaart, Zanten, et al. 2008].

= The probability distribution P’ of any given GP f; is a Gaussian measure on F i.e. P’ ¢ M.

= Let f; be a continuous GP with and probability distribution P’. We define
P! = P'|(x1, 21, ..., Xn, Z1) € M as the probability of f; given F, = (X1, 21, ..., Xn, Zn)-
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SUR methods

Define a functional H:M — R, and denote by E, x the expectation given F,. The SUR strategy is:

Xni1 € argmin {En,x [H(P,’;H )}} 3)

XeX

Convergence results can be obtained provided the functional has the supermartingale property
[Bect, Bachoc, and Ginsbourger 2019], i.e. for all x € X:

Enx [H(Ph1) ] < H(P) (4)

a Sequential design for Bayesian inverse problems - P. Lartaud Mascot-Num 2024 - 03/04/2024 11

AN



Outline

A first approach

@ Sequential design for Bayesian inverse problems - P. Lartaud

Mascot-Num 2024 - 03/04/2024



Constrained D-optimal design

Adapt the D-optimal design strategy to a well-chosen subset B c X.

Xp+1 € argmax Kn(X)
xeB

Choose B to be close to the MAP x{™:

BI(I") = {X € X|log pn (X,%")|y) — log pa(x]y) < h} .

This defines a constraint set query (CSQ) design:

Xni1 € ArgMaXx, (n kn(x)
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Metric of uncertainty for IPSUR design

Our metric is derived from /-optimal designs:
H(v) = Ep, [k ()] = [ ko (Xp.(%ly)d5 )
The SUR criteria derived from this posterior-weighted predictive variance is tractable [Lartaud,

Humbert, and Garnier 2024] and the metric can be evaluated with an ergodic Markov chain
(X)1<1<- The IPSUR (Inverse Problem SUR) design is:

Xni1 € argmin {En,x [H(P,’;H )]} (8)

XeX
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Convergence (1) W \\

Supermartingale property
The functional D has the supermartingale property E, x [D(P},1)] < D(P}) where:

D(v) =C,H(v) 9)
C. - [ P(RIL.(yIxX)d5 (10)

Remark: H does not have the supermartingale property.
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Convergence (2)

Convergence of H(P!)

Under some regularity conditions, the uncertainty metric H, = H(P,f,) converges almost-surely to 0.

H(Pp) == 0. (11)

Remark: the result holds for multi-outout GP.
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Two-step proof

= First, show that D, = D(P,ﬁ) converges a.s. to 0 using main theorem in [Bect, Bachoc, and
Ginsbourger 2019].

®m Supermartingale property for D.
® Show that the zeros of D and zeros of G are the same where:

G(v) = sup (D(v) - E- [D(v|(x,2))]) (12)

= Prove that H, = % converges to 0 by showing that C, —— C.. >0
n n—+oo
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Test case 1 ———
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Test case 2

IP-SUR design
CSQ design
4+ Naive design
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Application to neutron correlations
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Conclusion

= Sequential design strategies specifically suited for Bayesian inverse problems.
= Tractability and guarantee of convergence for the IPSUR design.
= Possible extension to tempered posteriors with the same guarantee of convergence:

Ho(v) = 5= [ k(30 (Lu(3Y))” P(%) % (19)

Cu,gz.[X(LV()”(|y))Bp()"()d)"(forﬂe[0,1] (14)
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Appendix 1: SUR criteria

The SUR criteria is given by x,,1 € argmin,y Jp(x) where Jn(x) = Ez(x) [Hns1(X, 2)]:

IO = Cgf;‘w) = [ pa(RIY)A(E X) (%, X) .

Zn (3|72 1 N N
W@(P [*5 (H)’*"“n()‘)uz,7+1 - ||V*mn(x)||>:,,)]

1 An(X, %) (y - mn(R)W)%
exp =
VAR uE, 20n(x,2)ulg, | +1)
kn(x,%)?

Zn+1
_ T
% () andu=(1,...,1)".
We also introduced mn (X) = mp(x)u where mp(%), and (%) = kn(x) Ay + 02, Zn.

h()~(,X) = kn+1 (;(7 |X)

1(X,x) =

where An(x,X) =
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