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MASCOT-NUM 2024, Hyères,
April 3rd, 2024

1 / 23



Table of Contents

The quantile set inversion problem

Bayesian strategies for QSI

Estimation of small quantile sets

Numerical experiments

Conclusion



2/23

The QSI problem Bayesian strategies for QSI Estimation of small quantile sets Numerical experiments Conclusion

Consider an expensive-to-evaluate numerical simulator, with inputs:

▶ x ∈ X (deterministic design choices).

▶ s ∈ S (stochastic factors).

Deterministic inputs x

Stochastic inputs s

Simulator Outputs z

For simplicity we assume a deterministic simulator f : X× S 7→ Rq.
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Given:

▶ C ⊂ Rq is a critical/failure region.

▶ α ∈ (0, 1) a threshold.

▶ PS a known distribution on S.

We focus on the quantile set inversion (QSI) problem:

Estimate the set of all x ∈ X such that the system is robust to
uncertainties, i.e

P (f (x ,S) ∈ C ) ≤ α, S ∼ PS ,

by only using a small number N of evaluation points

{(X1,S1), ... , (XN ,SN)}.
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Estimate the quantile set:

Γ(f ) = {x ∈ X : P (f (x ,S) ∈ C ) ≤ α} ,

Example of function and associated quantile set, with C = (−∞, 7.5] and
α = 5%.
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Figure: Representation of the function (middle), the density of PS (left) and
associated quantile set (right).
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The QSI problem is related to the estimation of the excursion set

γ(f ) = {(x , s) ∈ X× S : f (x , s) /∈ C}
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Figure: Example function. The black line delimits the set γ(f ).

Knowing γ(f ) =⇒ knowing Γ(f ).

Indeed, Γ(f ) = {x ∈ X : P((x ,S) ∈ γ(f )) > 1 − α}.
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Bayesian approach: Consider ξ ∼ GP(µ, k) a prior on f . We denote:

▶ Pn the distribution of ξ given {(Xi ,Si , f (Xi ,Si )), i ≤ n}.
▶ En the expectation w.r.t. Pn.

▶ pn(x , s) = Pn(ξ(x , s) /∈ C ) the cond. probability of (x , s) ∈ γ(ξ),
with γ(ξ) the random excursion set associated to ξ.

Several Bayesian methods focus on estimating γ(f ). For example:

▶ Maximal uncertainty sampling methods:

▶ Maximum misclassification probability [Bryan et al. (2005)]:

(Xn+1,Sn+1) ∈ argmax
(x,s)∈X×S

min(pn(x , s), 1 − pn(x , s))

▶ [Ranjan et al. (2008); Echard et al. (2011), ... ]
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▶ Stepwise uncertainty reduction (SUR) methods:

▶ For instance [Bect et al. (2012); Chevalier et al. (2014)]:

(Xn+1, Sn+1) ∈ argmin
(x,s)∈X×S

En(Hn+1 | (Xn+1,Sn+1) = (x , s))

with Hn =
∫
X×Smin(pn(x , s), 1 − pn(x , s))dxds.

▶ [Picheny et al. (2010); Marques et al. (2018), ... ]
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Figure: Examples of designs (red dots) obtained after n = 30 steps with the
maximum misclassification and the ’joint-SUR’ criteria.
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To estimate Γ(f ), one only needs to focus on ’interesting parts’ of γ(f ).

We denote:

▶ Γ(ξ) the random quantile set associated to ξ.

▶ πn(x) = Pn(x ∈ Γ(ξ)),

▶ Qn =
∫
X
min(πn(x), 1 − πn(x)) dx .

QSI-SUR sampling criterion [Ait Abdelmalek-Lomenech et al. (2023)]:

(Xn+1,Sn+1) ∈ argmin
(x,s)∈X×S

En(Qn+1 | (Xn+1,Sn+1) = (x , s)),
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The implementation proposed in [Ait Abdelmalek-Lomenech et al. (2023)]

produces good results on moderately difficult examples.
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The QSI-SUR criterion is based on∫
X

min(πn(x), 1 − πn(x))dx .

▶ In practice, both the integral involved and the optimization of the
criterion are discretized.

▶ Necessity of a collection of points x ∈ X such that their probability
of misclassification is non-null.

Main issue: If Γ(f ) is ’small’ relatively to X, difficulty to sample
relevant points in the set X.
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Idea: Multilevel splitting/subset simulation [Kahn and Harris (1951); Au

and Beck (2001)] to efficiently sample points in X.

▶ Sequentially estimate a sequence of decreasing quantile sets

Γ0(f ) ⊃ Γ1(f ) ⊃ ... ⊃ ΓK (f ) = Γ(f ),

using a QSI-SUR criterion.

▶ Such sets can be defined by setting

Γk(f ) = {x ∈ X : P(f (x ,S) ∈ Ck) ≤ αk},

with αk ≥ αk+1 and Ck ⊂ Ck+1.
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We now assume C = (−∞,T ].

We propose a SMC-based algorithm inspired by BSS [Li (2012); Bect

et al. (2017)]

It alternates two distinct phases:

▶ Estimation phase
▶ Define a new intermediary quantile set to estimate.
▶ Sample points (Xn,Sn) using a QSI-SUR criterion.

▶ Move phase
▶ Concentrate the particles towards the previously estimated set.
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Let qn,k a density targeting Γk(f ) = {x ∈ X : P(f (x ,S) ∈ Ck) ≤ αk} at
step n.

Estimation phase:

▶ Set Ck+1 and αk+1 such that

ESS

(
qn,k+1

qn,k
(x)

)
≊ 30%.

▶ Sample points

(Xn,Sn) ∈ argmin Jn(x , s),

with Jn a QSI-SUR criterion
targeting Γk+1(f ).
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Figure: Temporary quantile set (blue
line), final quantile set (green line),
particles (blue dots). - n = 0.
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Let qn,k a density targeting Γk(f ) = {x ∈ X : P(f (x ,S) ∈ Ck) ≤ αk} at
step n.

Move phase:

When stopping condition is met:

▶ Residual resampling.

▶ Move particles to Γk+1(f )
using MHRW with target
density qn,k+1.

▶ Adapt walk’s variance to
target acceptation rate 25%.
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Figure: Temporary quantile set (blue
line), final quantile set (green line),
particles (blue dots) and projection of
the sequential design (red dots). -
n = 5.
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Choice of the target densities:

Natural idea (in the spirit of [Dubourg et al. (2013); Bect et al. (2017)]):

qn,k(x) ∝ πk
n (x) = Pn(x ∈ Γk(ξ))

▶ Does not admit a closed-form expression.

▶ Expensive to estimate.

Idea: Replace πk
n (x) by 1(x ∈ Γ+n,k). How to define Γ+n,k?

Given x0 ∈ X, µn and σn the posterior mean and standard deviation of ξ
and β ∼ 1, consider the quantile function:

ξ+n (x0, ·) = µn(x0, ·) + Φ−1(β)σn(x0, ·),
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C = (−∞,T ] and ξ(x0, ·) is a high quantile

▶ P(ξ+n (x0,S) ∈ Ck) is an optimistic estimation of the probability
of failure at point x0.
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Figure: Example of quantile function ξ+
n (x0, · ), with a fixed x0.

Setting Γ+n,k = Γk(ξ
+
n ) eliminates x0 if {x0 ∈ Γk(ξ)} is very improbable.

We define the target densities as

qn,k(x) ∝ 1(x ∈ Γk(ξ
+
n ))

NB: The MHRW step becomes a constrained random walk.
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For illustration purposes, we take interest in two examples functions of
the form

fi (x , s) = gi (x1, x2) + s, i = 1, 2.
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Figure: Representation of Γ(f1) (left - green curve) and Γ(f2) (right - green
curve).

Relative size of the quantile sets:
λX(Γ(f1)) = 0.0035 and λX(Γ(f2)) = 0.0039.
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We can first observe that the strategy indeed concentrates the particles
and sample relevant points.
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Figure: Temporary quantile set (blue line), final quantile set (green line),
particles (blue dots), projections of the initial design (black dots) and
sequential design (red dots). - n = 2, 10, 20.
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Figure: Temporary quantile set (blue line), final quantile set (green line),
particles (blue dots), projections of the initial design (black dots) and
sequential design (red dots). - n = 2, 15, 35.
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We compare the accuracy of the estimation obtained by our method
against BSS, which focus on the estimation of the joint excursion set

γ(f ) = {(x , s) ∈ X× S : f (x , s) /∈ C}
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Figure: Median of the proportion of misclassified points vs. number of
evaluations (initial design excluded).
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The results obtained are at least similar to BSS.

In some difficult cases, the necessity of estimating several intermediary
quantile sets before focusing on Γ(f ) leads to slow convergence.
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Figure: Median of the proportion of misclassified points vs. number of
evaluations on two other test functions f3 and f4, with λX(Γ(f3)) = 0.0058
and λX(Γ(f4)) = 0.007 (initial design excluded).
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Conclusion:

▶ The proposed method allows to accurately estimate small quantile
sets.

▶ The target densities chosen, although simple, concentrate efficiently
the particles in X towards regions of interest.

▶ Batch sequential designs can also be obtained by adapting the
criterion.

▶ However, this strategy remains computationally complex.

▶ For now, the QSI-SUR criterion is not adapted to threshold α ∼ 0.
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criterion.

▶ However, this strategy remains computationally complex.

▶ For now, the QSI-SUR criterion is not adapted to threshold α ∼ 0.
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Thank you for your attention!
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Approximated QSI-SUR criterion:

To reduce the cost, we define Jkn (x , s) as the SUR criterion based on

Qk
n =

∫
X

min(πk
n (x), 1 − πk

n (x))dx ,

where πk
n (x) = Pn

(
x ∈ Γk(ξ̃)

)
and, given a subset of simulation points

Θsim ⊂ X× S,

ξ̃(x , s) = En[ξ(x , s) | ξ(Θsim)].

NB: a close idea is exploited in [Azzimonti et al. (2016)].
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Extension to batch designs: (inspired by [Feliot (2017)])

Given a batch size parameter r , for 1 ≤ j ≤ r :

▶ Select (Xn+j ,Sn+j) according to QSI-SUR criterion.

▶ Sample a random realization zj of ξ(Xn+j ,Sn+j) according to
Pn+j−1.

▶ Consider zj as value of f (Xn+j ,Sn+j)) until j = r .

When j = r : evaluate f at {(Xn+j ,Sn+j), 1 ≤ j ≤ b}.

NB: This procedure produces ’approximated’ batchs. The exact batchs

{(Xn+j ,Sn+j), j = 1, .., r} ∈ argmin
(xj ,sj )∈X×S

En(Qn+r | (Xn+j ,Sn+j) = (xj , sj), j = 1, .., r)

being to computationally expensive (see, e.g [Chevalier et al. (2014)]).
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Complementary details on numerical experiments

GP prior ξ trained on an initial design of size 10 ∗ dim(X× S).

Parameters are fitted using reML with:

▶ Constant mean function µ.

▶ Matérn covariance function k, with regularity parameter
ν ∈ {1/2, 3/2, 5/2, ∞}

All experiments are conducted in Matlab using the STK toolbox [Bect

et al. (2022)].
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Function f1:

▶ X = [0, 10] × [0, 15], S = [0, 15].

▶ PS rescaled Beta(7.5, 1.9)

▶ C = [15,+∞), α = 0.05

▶ g1 is the Branin-Hoo function [Branin and Hoo (1972)].

Function f2:

▶ X = [−2, 2]2, S = [−1, 1].

▶ PS Gaussian N (1, 1) truncated on S.

▶ C = [9.5,+∞), α = 0.1

▶ g2 is the Camel Back function [Dixon and Szegö (1978)].
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Function f3:

▶ X = [−1, 1]2, S = [−1, 1]2.

▶ PS uniform on S.

▶ C = (−∞, 1.065], α = 0.5

▶ f3 is the Hartmann4 function [Picheny et al. (2013)].

Function f4:

▶ X = [−2, 2]2, S = [−1, 1]2.

▶ PS uniform on S.

▶ C = (−∞, 1.4], α = 0.1

▶ f4 is a mean of Camel Back functions

f4(x , s) =
1

2
(g2(x1, s1) + g2(x2, s2))
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Bayesian Subset Simulation - general idea:

Given a function f : U 7→ R and a critical region C = (−∞,T ], the BSS
[Bect et al. (2017)] algorithm aims at estimating the excursion set

γ(f ) = {u ∈ U : f (x) /∈ C}.

The algorithm sequentially estimates a sequence of decreasing sets

γ1(f ) ⊃ ... ⊃ γK (f ) = γ(f )

using the ’joint-SUR’ criterion combined with SMC based on the target
densities

qn,k(u) = Pn(u ∈ γk(ξ))
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Heuristic: When does QSI-SUR outperforms methods focusing on γ(f )?

Empirically, it appears that the QSI problem must respect two conditions:

▶ f is not ’too linear’.

▶ Setting

γrestrict(f ) = {(x , s) ∈ X× S : f (x , s) /∈ C and x ∈ Γ(f )},

the ratio λX×S(γrestrict(f ))
λX×S(γ(f ))

is small.
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Complementary results on QSI-SUR (from [Ait Abdelmalek-Lomenech

et al. (2023)]) - 1/2.
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Figure: Median of the proportion of misclassified points vs. number of steps.
(100 runs)
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Complementary results on QSI-SUR (from [Ait Abdelmalek-Lomenech

et al. (2023)]) - 2/2.
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