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DESIGN OPTIMIZATION
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• Design optimization is used to improve the performances of an engineering design.

Initial model Optimized model Thickness difference

Example: optimization of the Peugeot 3008 to minimize the vehicle weight while satisfying the norms for chock resistance.

Another example : 
optimization of an 
electrical machine

• Formally, we are interested in the optimization of a black-box function:

𝑦 ∶ 𝒙 ∈ 𝒳 ⊂ ℝ𝑑 → 𝑦 𝒙 ∈ ℝ.

→ We want to find the best design:

𝒙∗ = arg min
𝒙∈𝒳

𝑦(𝒙) .
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• We are in the context where the black-box function 𝑦 is expensive to evaluate:

→ Evaluating the function for a single design can take hours. 

We can only afford few observations.

We cannot use the usual optimization methods

which require a large number of these evaluations.

• We dispose of 𝑛 observations 𝒀 = 𝑦 𝒙𝟏 , … , 𝑦 𝒙𝒏
𝑇

at the sample locations 𝑿 = 𝒙𝟏, … , 𝒙𝒏
𝑇 .

→ The ordinary Kriging method approximates 𝑦 as the realization of a Gaussian Process :

𝑌 .  ~ 𝒢𝒫 𝜇, 𝑘𝜎,𝜽 . , . .

• 𝑘𝜎,𝜽 . , . is the covariance function (kernel) with 𝜎2 the variance of the GP and 𝜽 ∈ ℝ𝑑 the covariance length-scales.

• We obtain the Kriging predictors for the mean and predictive variance by conditioning the GP 𝑌 over 𝒟 = (𝑿, 𝒀) :

ො𝑦 𝒙 = 𝐄 𝑌 𝒙 𝒟 = 𝜇 + 𝑘 𝒙, 𝑿 𝑲 𝑿, 𝑿 −1 𝒀 − 𝟏𝜇 ,

Ƹ𝑠2 𝒙 = 𝐕𝐚𝐫 𝑌 𝒙 𝒟 = 𝑘 𝒙, 𝒙 − 𝑘 𝒙, 𝑿 𝑲 𝑿, 𝑿 −1𝑘 𝑿, 𝒙 .

KRIGING
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𝑦 𝑥 ≈  ො𝑦(𝑥)
Build a surrogate model

Expensive true objective 
function

Cheap analytical 
approximation
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COVARIANCE FUNCTION
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Popular choices of 1D stationary covariance are :

• Exponential : 𝑘𝜎,𝜃 𝑥, 𝑥′ = 𝜎2 exp −
𝑥−𝑥′

𝜃
,

• Gaussian : 𝑘𝜎,𝜃 𝑥, 𝑥′ = 𝜎2 exp −
𝑥−𝑥′ 2

2𝜃2 ,

• Matérn 5/2 : 𝑘𝜎,𝜃 𝑥, 𝑥′ = 𝜎2 1 + 5
𝑥−𝑥′

𝜃
+

5 𝑥−𝑥′ 2

3𝜃2 exp − 5
𝑥−𝑥′

𝜃
,

Typically, the hyperparameters are optimized to maximize the log-likelihood of the model:

ℒ 𝜎, 𝜽 = −
1

2
(𝒀 − 𝜇)𝑇𝑲𝜎,𝜽

−1 (𝒀 − 𝜇) −
1

2
log 𝑲𝜎,𝜽 −

𝑛

2
log 2𝜋 .

Denoting 𝑹 the correlation matrix such that 𝑲𝜎,𝜽 = 𝜎2𝑹𝜽, the MLE estimators for 𝜇 and 𝜎2 are:

Ƹ𝜇 =
𝟏𝑇𝑹𝜽

−1𝒀

𝟏𝑇𝑹𝜽
−1𝟏

, ො𝜎𝑀𝐿𝐸
2 =

1

𝑛
(𝒀 − Ƹ𝜇)𝑇𝑹𝜽

−1(𝒀 − Ƹ𝜇).

And we obtain the length-scales by solving the minimization problem :

መ𝜃𝑀𝐿𝐸 = arg min
𝜽

 
𝑛

2
log( ො𝜎𝑀𝐿𝐸

2 ) +
1

2
log 𝑹𝜽 .

The choice of the covariance function is very important to obtain a good prediction.
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BAYESIAN OPTIMIZATION
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In Bayesian optimization, we build the sampling plan sequentially by adding new training points to refine the model based
on an acquisition criterion (see Jones et al., 1998).

→ A popular acquisition criterion is the Expected Improvement (EI).

Estimated function
ො𝑦(𝑥)

Sample points

Probability of 
Improvement

Gaussian Prob. Distr.

𝒩 ො𝑦 𝑥 , Ƹ𝑠2 𝑥

𝑦𝑚𝑖𝑛

• The expected improvement is computed with both the mean
estimate value and the model error estimate:

𝐄 𝐼 𝒙 = 𝐄 𝑦𝑚𝑖𝑛 − 𝑌 𝒙
+

 = 𝑦𝑚𝑖𝑛 − ො𝑦 𝒙 Φ
𝑦𝑚𝑖𝑛 − ො𝑦 𝒙

Ƹ𝑠 𝒙
+ Ƹ𝑠 𝒙 𝜙

𝑦𝑚𝑖𝑛 − ො𝑦 𝒙

Ƹ𝑠 𝒙
.

- Φ and 𝜙 are respectively the cdf and the density of a standard
normal distribution.

- EI balances local search around the optimum and global search
where the model is not very accurate.



EXAMPLE
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Here is an example of the optimization process for a 1D test function using the EGO algorithm.

𝑓 𝑥 = 6𝑥 − 2 2sin(12𝑥 − 4)

We begin with 4 sample points, then we successively add 6
additional sample points.
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ISSUES IN HIGH DIMENSION
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• The main issue is the optimization of the hyperparameters.

There is one length-scale hyperparameter per dimension, and all these hyperparameters need to be optimized.
→ The optimization of the hyperparameters is difficult :

➢ 𝑑-dimensional problem (with 𝑑 > 20 up to ≈ 100 − 150).

➢ The optimization can be costly due to the cost of the cost for the evaluation of the objective (log-likelihood) and
its gradient is in 𝑂 𝑛3 .

➢ When the training data is sparse, the likelihood criterion can lead to a bad estimation of the hyperparameters.

1503/04/2024

𝑑 = 130 𝑑 = 37



ILLUSTRATION ON AN EXAMPLE

03/04/2024

• An illustration of this difficulty: approximating the 50D sphere function:

𝑓𝑠𝑝ℎè𝑟𝑒 𝑥1, … , 𝑥𝑑 = 

𝑖=1

𝑑

𝑥𝑖 − 0.5 2 ,  0 ≤ 𝑥𝑖 ≤ 1.

We fit a Kriging model with MLE hyperparameters using a varying number of training points and compare to a Kriging
model with reference hyperparameters :

- 500 iterations for the hyperparameter optimization
using the DiceKriging package in R.

- The reference hyperparameters are obtained by
doing the optimization with 5000 points.

- The boxplots give the results for 10 different runs.

MASCOT-NUM 2024 - Tanguy APPRIOU 16



ISSUES IN HIGH DIMENSION
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• Several methods have been proposed to solve this issue:

- Reduction of the problem’s dimension by embedding the design space into a lower-dimension space (see for example
Constantine et al., 2015, Bouhlel et al., 2016).

- Additive Kriging where the function is assumed to be a sum of one-dimensional components (see for example
Durrande et al., 2012).

- Penalized version of the likelihood to improve the robustness of the hyperparameter optimization (see for example
RobustGaSP in Gu et al., 2018).

- …

→ We proposed a method to bypass the hyperparameter optimization by combining Kriging sub-models with fixed
length-scales.

This method is both:
- Fast since it avoids the expensive hyperparameter optimization,
- Easily generalizable since it does not assume a particular form of the underlying function.

1703/04/2024
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COMBINATION OF KRIGING SUB-MODELS
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→ We propose a model which is a combination of Kriging models with random length-scales

19

𝑀𝑡𝑜𝑡 𝒙 = 

𝑖=1

𝑝

𝑤𝑖 𝒙 𝑀𝑖(𝒙) ,

 with 𝑀𝑖 𝑥 = 𝜇𝑖 + 𝑘𝜽𝑖
𝒙, 𝑿 𝑲𝜽𝑖

−1(𝒀 − 𝜇𝑖) Kriging model with fixed length−scale vector 𝜽𝑖 .

03/04/2024



COMBINATION OF KRIGING SUB-MODELS

→ We propose a model which is a combination of Kriging models with random length-scales

20

Choice of the 
sub-models

• We want to sample the length-scales in a range of appropriate
values to avoid degenerate cases.

- For too small values: 𝑘𝜃 𝑥𝑖 , 𝑥𝑗 ⟶ 0 for all 𝑖 ≠ 𝑗, and 𝑲𝜃 ⟶ 𝜎2𝑰𝑛.

- For too large values: 𝑘𝜃 𝑥𝑖 , 𝑥𝑗 ⟶ 1, and 𝑲𝜃 ⟶ 𝟏𝑛×𝑛. We sample the length-scales using an 
entropy-based criterion.

𝑀𝑡𝑜𝑡 𝒙 = 

𝑖=1

𝑝

𝑤𝑖 𝒙 𝑀𝑖(𝒙) ,

 with 𝑀𝑖 𝑥 = 𝜇𝑖 + 𝑘𝜽𝑖
𝒙, 𝑿 𝐾𝜽𝑖

−1(𝒀 − 𝜇𝑖) Kriging model with fixed length−scale vector 𝜽𝑖 .

Small 𝜃 Large 𝜃 (+nugget)



CHOICE OF THE SUB-MODEL LENGTH-SCALES
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First, we study the case for a Gaussian correlation where analytical expressions can be obtained.

• Assume that design points are distributed as a random vector 𝑿 = 𝑋 1 , … , 𝑋 𝑑 with i.i.d components with common

variance 𝜎𝑋
2 and kurtosis 𝜅𝑋.

• We note 𝐷2 the random square distance between two independent points 𝑿 and 𝑿’ of the design. For a large enough

dimension:

𝐷2 = 

𝑘=1

𝑑

𝑋𝑘 − 𝑋𝑘
′ 2 ~ 𝒩 2𝑑𝜎𝑋

2, 2𝑑𝜎𝑋
4 𝜅𝑋 + 1 .

• For a Gaussian correlation:

𝑅𝜃 = 𝑒
−

1
2

𝐷2

𝜃2  ~ log 𝒩
−𝜎𝑋

2

𝜃2
𝑑,

𝜎𝑋
4

2𝜃4
𝜅𝑋 + 1 𝑑 .

• We can finally obtain the entropy of the correlation:

𝐻 𝑅𝜃 = 𝐄 − log 𝑓𝑅𝜃
𝑅𝜃 = −

𝜎𝑋
2

𝜃2 𝑑 +
1

2
ln

𝜎𝑋
4

2𝜃4 𝑑 𝜅𝑋 + 1 2𝜋 +
1

2
.



CHOICE OF THE SUB-MODEL LENGTH-SCALES
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𝐻 𝑅𝜃 = 𝐄 − log 𝑓𝑅𝜃
𝑅𝜃 = −

𝜎𝑋
2

𝜃2 𝑑 +
1

2
ln

𝜎𝑋
4

2𝜃4 𝑑 𝜅𝑋 + 1 2𝜋 +
1

2
.

How to use the knowledge about this entropy ?

• When sampling the length-scales, we want to favor 𝜃 corresponding to high entropy

values, which result in a high variability in the correlation.

Entropy of a Gaussian correlation in
50D for a uniform design (𝜎𝑋

2 = 1/12
and 𝜅𝑋 = 9/5).

• Finally, we will sample the length-scales using a positive transformation of the 
entropy:

𝑓 𝜃 ∝ exp 𝐻 𝑅𝜃 .



COMBINATION OF KRIGING SUB-MODELS

MASCOT-NUM 2024 - Tanguy APPRIOU

→ We propose a model which is a combination of Kriging models with random length-scales

23

Choice of the 
sub-models

03/04/2024

𝑀𝑡𝑜𝑡 𝒙 = 

𝑖=1

𝑝

𝑤𝑖 𝒙 𝑀𝑖(𝒙) ,
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→ We propose a model which is a combination of Kriging models with random length-scales

24

Choice of the 
sub-models

Choice of the 
weights

• One method uses constant weights obtained by minimizing the LOOCV error of the combination (see Viana et al., 2009) :

𝑒𝐿𝑂𝑂𝐶𝑉 𝑀𝑡𝑜𝑡 =
1

𝑛


𝑘=1

𝑛


𝑖=1

𝑝

𝑤𝑖𝑀𝑖−𝑘 𝒙𝑘 − 𝑦 𝒙𝑘

2

= 𝒘𝑇𝑪𝒘.

→ The components of the matrix 𝑪 are : 𝑐𝑖𝑗 =
1

𝑁
𝑒𝑖

𝑇𝑒𝑗 , with 𝑒𝑖
𝑘

= 𝑲𝜽𝑖

−1𝒀
𝑘

/ 𝑲𝜽𝑖

−1

𝑘,𝑘
, 𝑘 = 1, … , 𝑛.

The weights are then obtained by :

𝒘𝐿𝑂𝑂𝐶𝑉 = arg min
𝑤

𝒘𝑇𝑪𝒘 , subject to 𝟏𝑇𝒘 = 1 ⟹ 𝒘𝐿𝑂𝑂𝐶𝑉 =
𝟏𝑇𝑪−1

𝟏𝑇𝑪−1𝟏
 .

(See Appriou et al., 2022 for more details and comparison with other methods).
03/04/2024
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→ We propose a model which is a combination of Kriging models with random length-scales

25

Choice of the 
sub-models

Choice of the 
weights

Variance of the 
combination

• Kriging models naturally provides a measure of the model error. For a Kriging model with 𝑌 .  ~ 𝒢𝒫 𝜇, 𝑘𝜎,𝜽 . , . :

𝐄 𝑀 𝑥 − 𝑌 𝑥
2

= 𝐕𝐚𝐫 𝑌 𝒙 𝑌(𝑋) = 𝑘 𝒙, 𝒙 − 𝑘 𝒙, 𝑿 𝑲 𝑿, 𝑿 −1𝑘 𝑿, 𝒙

→ This prediction error is essential when performing Bayesian optimization.

We can obtain the prediction error for every individual sub-model, but the covariance structure between the sub-models is

unknown.

→ We cannot directly access the prediction error of the combination.

03/04/2024
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𝑝
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• To obtain the variance of the combination, we add the hypothesis that the underlying Gaussian Process 𝒀𝒕𝒐𝒕 is a

combination (with different weights) of independent Gaussian Processes:

𝑌𝑡𝑜𝑡 = 𝜎𝑡𝑜𝑡
2 

𝑖=1

𝑝

𝛼𝑖𝑌𝑖 , with 𝑌𝑖  ~ 𝒢𝒫 𝜇𝑖 , 𝑟𝜽𝒊
. , . , 

𝑖=1

𝑝

𝛼𝑖 = 1, 

Thus, the covariance of this GP is:

𝑘𝑡𝑜𝑡 . , . = 𝜎𝑡𝑜𝑡
2 

𝑖=1

𝑝

𝛼𝑖
2𝑟𝜽𝑖

(. , . ) .

VARIANCE OF THE COMBINATION
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and 𝜎𝑡𝑜𝑡
2 the variance of the GP.

𝑀1

• To simplify the upcoming expressions, we will also assume that the sub-models (and the associated GPs) are combined
following a binary tree structure:

𝑀𝑡𝑜𝑡

𝑀2

𝑀12

𝑀3 𝑀4

𝑀34

𝑤1 𝑤2

𝑤12 𝑤34

𝑤3 𝑤4

𝑌1

𝑌𝑡𝑜𝑡

𝑌2

𝑌12

𝑌3 𝑌4

𝑌34

𝛼1 𝛼2

𝛼12 𝛼34

𝛼3 𝛼4

03/04/2024



• The weights 𝛼 in the combination of GPs are chosen to minimize the expected mean-square error of the combined model

with respect to 𝑌𝑡𝑜𝑡 = 𝛼𝑌1 + 1 − 𝛼 𝑌2 :

𝛼∗ = arg min
𝛼

𝐄 𝐄 𝑤𝑀1 𝒙 + 1 − 𝑤 𝑀2 𝒙  − 𝛼𝑌1 𝒙 + 1 − 𝛼 𝑌2 𝒙
2

 | 𝑌1, 𝑌2 .

By approximation the global MSE using the LOOCV error, we obtain:

𝛼∗ =
𝑎1(𝑤)

𝑎1(𝑤) + 𝑎2(𝑤)
, with: ൞

𝑎1(𝑤) = 𝑤2𝐄 𝑒𝐿𝑂𝑂𝐶𝑉 𝑀1 |𝑌2 + 1 − 𝑤2 𝐄 𝑒𝐿𝑂𝑂𝐶𝑉 𝑀2 |𝑌2 ,

𝑎2 𝑤 = 1 − 𝑤 2𝐄 𝑒𝐿𝑂𝑂𝐶𝑉 𝑀2 |𝑌1 + 1 − 1 − 𝑤 2 𝐄 𝑒𝐿𝑂𝑂𝐶𝑉 𝑀1 |𝑌1 .

Finally, the variance of the combination is obtained as:

Ƹ𝑠2 𝒙 = 𝐕𝐚𝐫 𝑌𝑡𝑜𝑡 𝒙 𝒟 = 𝑘𝑡𝑜𝑡 𝒙, 𝒙 − 𝑘𝑡𝑜𝑡 𝒙, 𝑿 𝑲𝑡𝑜𝑡 𝑿, 𝑿 −1𝑘𝑡𝑜𝑡 𝑿, 𝒙 .

VARIANCE OF THE COMBINATION
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Relation to other methods:

• Relation to additive models: as we use an additive structure for obtaining the variance, why not use it for the prediction as

well ?
෩𝑀 𝑥 = 𝐄 𝑌𝑡𝑜𝑡 𝒙 𝒟 = 𝜇𝑡𝑜𝑡 + 𝑘𝑡𝑜𝑡 𝒙, 𝑿 𝑲𝑡𝑜𝑡 𝑿, 𝑿 −1 𝒀 − 𝜇𝑡𝑜𝑡 .

→ 𝑲𝑡𝑜𝑡 𝑿, 𝑿 −1 is the inverse of a sum of matrices and there is no direct formula for the inverse of a sum of matrices.

Estimating the weights will involve a large number of matrix inversions and an inner optimization which we aim to

avoid with our method.

• Relation to mixture models: a mixture of GPs will give the same mean prediction as the linear combination, and we can

directly obtain the variance of the mixture.

→ There is a relation between the MSE of both models:

𝐄 𝑀𝑚𝑖𝑥 𝑥 − 𝑌𝑚𝑖𝑥 𝑥
2

= 𝐄 𝑀𝑡𝑜𝑡 𝑥 − 𝑌𝑡𝑜𝑡 𝑥
2

, when 𝑘𝑡𝑜𝑡 . , . = 

𝑖=1

𝑝

𝑤𝑖𝑘𝜃𝑖
(. , . ) .

→ By tuning the weights 𝜶, we achieve better calibrated confidence intervals than a mixture model.

RELATION TO OTHER METHODS
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1) Context

• Design optimization

• Gaussian Process regression

• Bayesian Optimization

2) Issues in high-dimension

3) Combination of Kriging models with random length-scales

• Sampling the random length-scales

• Weights of the combination

• Variance of the combination

4) Numerical results

OUTLINE
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We test the combination for high-dimensional Bayesian optimization and compare it to ordinary Kriging models using MLE:

• Number of initial samples : 2 × 𝑑,

• Number of iterations : 10 × 𝑑,

• MLE optimization of the hyperparameters at each iteration:

- R package DiceKriging (L-BFGS-B, 300 max iterations),

• Number of sub-models : 𝑝 = 16,

• Optimization of the EI with the package DiceOptim along with TREGO trust regions (see Diouane et al., 2023),

• 10 optimization runs with different initializations.

NUMERICAL RESULTS

03/04/2024 MASCOT-NUM 2024 - Tanguy APPRIOU 30



NUMERICAL RESULTS – TEST FUNCTIONS

MASCOT-NUM 2024 - Tanguy APPRIOU

In this section, we consider two test functions (with varying dimensions) for the optimization:

• The sphere function:

→ Deceptively difficult to model with Gaussian Processes with few observations.

→ Easy to optimize (convex function).

3103/04/2024

• GP trajectory:

𝑓𝐺𝑃 .  ~ 𝐺𝑃 𝟎, 𝑘𝜃 . , . ,

Where 𝑘𝜃 is an isotropic Matérn 5/2 correlation with length-scale 𝜃 =
𝑑

12
.

→ Harder to optimize (multimodal) and more representative of true functions.

→ Case where the Kriging hypothesis is verified.

𝑓𝑠𝑝ℎè𝑟𝑒 𝑥1, … , 𝑥𝑑 = 

𝑖=1

𝑑

𝑥𝑖 − 0,5 2 ,  0 ≤ 𝑥𝑖 ≤ 1.



• Design of an electrical machine:

- 37 design variables:

Position and size of air holes and magnets, radius of the machine.

Full problem:

- 2 objectives:

Consumption and cost of the machine.

- 10 constraints:

Related to the dynamics of the vehicle and to the dynamics of the machine.

→ Here we test the method only for single objective optimization.

→ We only optimize the first constraint (maximum speed of the car).

NUMERICAL RESULTS – TEST FUNCTIONS
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NUMERICAL RESULTS – SPHERE FUNCTION
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• Sphere function

33

→ The combination converges faster at the beginning of the optimization (few points) because the models are more
accurate.
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NUMERICAL RESULTS – GP TRAJECTORY
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• GP trajectories

34

→ The combination still converges faster.
→ For the multi-modal GP trajectories, the combination converges to a better optimum.
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NUMERICAL RESULTS – ELECTRICAL MACHINE
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• Electrical machine

35

→ Similar results to the optimization of GP trajectories.
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PERSPECTIVES
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• The combination of Kriging models shows promising results on the test functions and outperforms the ordinary Kriging
especially at the start of the optimization.

• A benchmark against other high-dimensional optimization methods such that additive models or dimension reduction
techniques still need to be conducted.

• The method was tested on an industrial test cases only for single objective optimization. Tests on multi-objective
problems with constraints can be conducted by adapting the acquisition strategy (for example EHVI).

For more details, see our preprint: https://hal.science/hal-04477236
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Thank you for your attention !

Contact :

Tanguy APPRIOU
tanguy.appriou@stellantis.com
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APPENDICE – EMPIRICAL ENTROPY
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In practice, for any correlation function 𝑅𝜃 and any design plan 𝑿.

1. For a given length-scale 𝜃. We sample 𝑁 values of the correlation for the design 

plan 𝑿: 𝑟𝜃
1

, … 𝑟𝜃
𝑁

.

2. We make a kernel estimation መ𝑓𝑅𝜃
of the density of 𝑅𝜃 based on these samples.

3. We compute the empirical entropy:

𝐻 𝑅𝜃 = −
1

𝑛


𝑖=1

𝑛

ln መ𝑓𝑅𝜃
𝑟𝜃

𝑖
.

4. We define a grid of possible values for the length-scales 𝜃𝑔𝑟𝑖𝑑
ℓ

, ℓ = 1, … , 𝑞, and 

we sample with probability:

𝑃 𝜃𝑔𝑟𝑖𝑑
ℓ

∝ exp 𝐻 𝑅𝜃 .

→ We sample 𝑑 length-scale values (one for each dimension) for each of the sub-models.



• Finally, the last step is to calibrate the amplitude of the variance using the amplitude hyperparameter 𝜎𝑡𝑜𝑡
2 .

For LOO strategies, typically this is done by observing that the normalized LOO errors should be normally distributed if the

model is well-specified:
𝑒𝐿𝑂𝑂

𝜎𝑡𝑜𝑡
2 𝑉𝑎𝑟𝐿𝑂𝑂

 ~𝒩 0,1 .

→ Thus, by setting the empirical variance of the normalized residuals to 1:

However, this definition tends to give too large amplitudes due to the presence of many outliers in the LOO error.

To have an expression for the amplitude more robust to outliers and which overall give prediction interval that are better

calibrated, we fit the empirical inter-quartile distance of the LOO error to that of a Gaussian distribution:

𝐼𝑄
𝑒𝐿𝑂𝑂

𝜎𝑡𝑜𝑡 𝑉𝑎𝑟𝐿𝑂𝑂

= 𝐼𝑄𝑛𝑜𝑟𝑚  ⟺ 𝜎𝑡𝑜𝑡 =

𝐼𝑄
𝑒𝐿𝑂𝑂

𝑉𝑎𝑟𝐿𝑂𝑂

𝐼𝑄𝑛𝑜𝑟𝑚
=

𝑞0,75
𝑒𝐿𝑂𝑂

𝑉𝑎𝑟𝐿𝑂𝑂

− 𝑞0,25
𝑒𝐿𝑂𝑂

𝑉𝑎𝑟𝐿𝑂𝑂

𝐼𝑄𝑛𝑜𝑟𝑚
.

APPENDICE - VARIANCE OF THE COMBINATION
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𝜎𝑡𝑜𝑡
2 =

1

𝑛


𝑖=1

𝑛
𝑒𝐿𝑂𝑂𝑖

2

𝑉𝑎𝑟𝐿𝑂𝑂𝑖

.



APPENDICE – RESULTS FOR SPHERE FUNCTION
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2D illustration of an EGO optimization for Ordinary Kriging and the Combination
(4 initial points and 20 iterations):

→ The Ordinary Kriging needs many iterations to achieve a reasonable precision.

→ The 2D example shows how ordinary Kriging still finds the global minimum with good precision despite a poor global
accuracy of the surrogate model.
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