High-Dimensional Bayesian Optimization with a Combination of Kriging Models

Tanguy APPRIOU^{(1), (2)}, David GAUDRIE⁽¹⁾, Didier RULLIERE⁽²⁾

(1) STELLANTIS

(2) École des Mines de Saint-Etienne, LIMOS

MASCOT-NUM 2024 April 3rd 2024

OUTLINE

1) Context

- Design optimization
- Kriging
- Bayesian Optimization
- 2) Issues in high-dimension
- 3) Combination of Kriging models with random length-scales
- 4) Numerical results

DESIGN OPTIMIZATION

• Design optimization is used to improve the performances of an engineering design.

Example: optimization of the Peugeot 3008 to minimize the vehicle weight while satisfying the norms for chock resistance.

• Formally, we are interested in the optimization of a black-box function:

 $y: \mathbf{x} \in \mathcal{X} \subset \mathbb{R}^d \to y(\mathbf{x}) \in \mathbb{R}.$

 \rightarrow We want to find the best design:

 $\boldsymbol{x}^* = \arg\min_{\boldsymbol{x}\in\mathcal{X}} y(\boldsymbol{x}).$

KRIGING

- $k_{\sigma,\theta}(.,.)$ is the covariance function (kernel) with σ^2 the variance of the GP and $\theta \in \mathbb{R}^d$ the covariance length-scales.
- We obtain the Kriging predictors for the mean and predictive variance by conditioning the GP Y over $\mathcal{D} = (X, Y)$:

$$\hat{y}(\boldsymbol{x}) = \mathbf{E}(Y(\boldsymbol{x})|\mathcal{D}) = \mu + k(\boldsymbol{x}, \boldsymbol{X})\boldsymbol{K}(\boldsymbol{X}, \boldsymbol{X})^{-1}(\boldsymbol{Y} - \mathbf{1}\mu),$$

$$\hat{s}^2(\mathbf{x}) = \operatorname{Var}(Y(\mathbf{x})|\mathcal{D}) = k(\mathbf{x}, \mathbf{x}) - k(\mathbf{x}, \mathbf{X})K(\mathbf{X}, \mathbf{X})^{-1}k(\mathbf{X}, \mathbf{x}).$$

COVARIANCE FUNCTION

The choice of the covariance function is very important to obtain a good prediction. Popular choices of 1D stationary covariance are :

- Exponential : $k_{\sigma,\theta}(x, x') = \sigma^2 \exp\left(-\frac{|x-x'|}{\theta}\right)$,
- Gaussian : $k_{\sigma,\theta}(x,x') = \sigma^2 \exp\left(-\frac{(x-x')^2}{2\theta^2}\right)$,
- Matérn 5/2 : $k_{\sigma,\theta}(x,x') = \sigma^2 \left(1 + \sqrt{5} \frac{|x-x'|}{\theta} + \frac{5(x-x')^2}{3\theta^2}\right) \exp\left(-\sqrt{5} \frac{|x-x'|}{\theta}\right)$,

Typically, the hyperparameters are optimized to maximize the log-likelihood of the model:

 $\mathcal{L}(\sigma,\boldsymbol{\theta}) = -\frac{1}{2}(\boldsymbol{Y}-\boldsymbol{\mu})^T \boldsymbol{K}_{\sigma,\boldsymbol{\theta}}^{-1}(\boldsymbol{Y}-\boldsymbol{\mu}) - \frac{1}{2}\log|\boldsymbol{K}_{\sigma,\boldsymbol{\theta}}| - \frac{n}{2}\log(2\pi).$

Denoting **R** the correlation matrix such that $K_{\sigma,\theta} = \sigma^2 R_{\theta}$, the MLE estimators for μ and σ^2 are:

$$\hat{\mu} = \frac{\mathbf{1}^T \mathbf{R}_{\theta}^{-1} \mathbf{Y}}{\mathbf{1}^T \mathbf{R}_{\theta}^{-1} \mathbf{1}}, \qquad \hat{\sigma}_{MLE}^2 = \frac{1}{n} (\mathbf{Y} - \hat{\mu})^T \mathbf{R}_{\theta}^{-1} (\mathbf{Y} - \hat{\mu})$$

And we obtain the length-scales by solving the minimization problem :

$$\hat{\theta}_{MLE} = \arg\min_{\theta} \frac{n}{2} \log(\hat{\sigma}_{MLE}^2) + \frac{1}{2} \log(|\mathbf{R}_{\theta}|).$$

BAYESIAN OPTIMIZATION

STELLANTIS

In Bayesian optimization, we build the sampling plan sequentially by adding new training points to refine the model based on an acquisition criterion (see Jones et al., 1998).

 \rightarrow A popular acquisition criterion is the **Expected Improvement** (EI).

• The expected improvement is computed with both the mean estimate value and the model error estimate:

$$\mathbf{E}[I(\mathbf{x})] = \mathbf{E}\left(\left(y_{min} - Y(\mathbf{x})\right)^{+}\right)$$

= $\left(y_{min} - \hat{y}(\mathbf{x})\right) \Phi\left(\frac{y_{min} - \hat{y}(\mathbf{x})}{\hat{s}(\mathbf{x})}\right) + \hat{s}(\mathbf{x})\phi\left(\frac{y_{min} - \hat{y}(\mathbf{x})}{\hat{s}(\mathbf{x})}\right).$

- Φ and ϕ are respectively the cdf and the density of a standard normal distribution.
- El balances local search around the optimum and global search where the model is not very accurate.

Here is an example of the optimization process for a 1D test function using the EGO algorithm.

 $f(x) = (6x - 2)^2 \sin(12x - 4)$

Here is an example of the optimization process for a 1D test function using the EGO algorithm.

 $f(x) = (6x - 2)^2 \sin(12x - 4)$

Here is an example of the optimization process for a 1D test function using the EGO algorithm.

 $f(x) = (6x - 2)^2 \sin(12x - 4)$

Here is an example of the optimization process for a 1D test function using the EGO algorithm.

 $f(x) = (6x - 2)^2 \sin(12x - 4)$

Here is an example of the optimization process for a 1D test function using the EGO algorithm.

 $f(x) = (6x - 2)^2 \sin(12x - 4)$

Here is an example of the optimization process for a 1D test function using the EGO algorithm.

 $f(x) = (6x - 2)^2 \sin(12x - 4)$

Here is an example of the optimization process for a 1D test function using the EGO algorithm.

 $f(x) = (6x - 2)^2 \sin(12x - 4)$

1) Context

- Design optimization
- Gaussian Process regression
- Bayesian Optimization

2) Issues in high-dimension

- 3) Combination of Kriging models with random length-scales
- 4) Numerical results

ISSUES IN HIGH DIMENSION

• The main issue is the **optimization of the hyperparameters**.

There is one length-scale hyperparameter per dimension, and all these hyperparameters need to be optimized. → The optimization of the hyperparameters is difficult :

→ *d*-dimensional problem (with d > 20 up to $\approx 100 - 150$).

STELL

- > The optimization can be costly due to the cost of the cost for the evaluation of the objective (log-likelihood) and its gradient is in $O(n^3)$.
- > When the training data is sparse, the likelihood criterion can lead to a bad estimation of the hyperparameters.

ILLUSTRATION ON AN EXAMPLE

• An illustration of this difficulty: approximating the 50D sphere function:

$$f_{sphère}(x_1, \dots, x_d) = \sqrt{\sum_{i=1}^d (x_i - 0.5)^2}, \quad 0 \le x_i \le 1.$$

We fit a Kriging model with MLE hyperparameters using a varying number of training points and compare to a Kriging model with reference hyperparameters :

- 500 iterations for the hyperparameter optimization using the DiceKriging package in R.
- The reference hyperparameters are obtained by doing the optimization with 5000 points.
- The boxplots give the results for 10 different runs.

ISSUES IN HIGH DIMENSION

- Several methods have been proposed to solve this issue:
- Reduction of the problem's dimension by embedding the design space into a lower-dimension space (see for example Constantine et al., 2015, Bouhlel et al., 2016).
- Additive Kriging where the function is assumed to be a sum of one-dimensional components (see for example Durrande et al., 2012).
- Penalized version of the likelihood to improve the robustness of the hyperparameter optimization (see for example RobustGaSP in Gu et al., 2018).

- ...

 \rightarrow We proposed a method to **bypass the hyperparameter optimization** by combining Kriging sub-models with fixed length-scales.

This method is both:

- Fast since it avoids the expensive hyperparameter optimization,
- **Easily generalizable** since it does not assume a particular form of the underlying function.

OUTLINE

1) Context

- Design optimization
- Gaussian Process regression
- Bayesian Optimization
- 2) Issues in high-dimension

3) Combination of Kriging models with random length-scales

- Sampling the random length-scales
- Weights of the combination
- Variance of the combination

4) Numerical results

18

 \rightarrow We propose a model which is a combination of Kriging models with random length-scales

$$M_{tot}(\boldsymbol{x}) = \sum_{i=1}^{p} w_i(\boldsymbol{x}) M_i(\boldsymbol{x}),$$

with $M_i(x) = \mu_i + k_{\theta_i}(x, X) K_{\theta_i}^{-1}(Y - \mu_i)$ Kriging model with fixed length-scale vector θ_i .

 \rightarrow We propose a model which is a combination of Kriging models with random length-scales

Choice of the sub-models

$$M_{tot}(\boldsymbol{x}) = \sum_{i=1}^{p} w_i(\boldsymbol{x}) M_i(\boldsymbol{x}),$$

with $M_i(x) = \mu_i + k_{\theta_i}(x, X) K_{\theta_i}^{-1}(Y - \mu_i)$ Kriging model with fixed length-scale vector θ_i .

- We want to sample the length-scales in a range of appropriate values to avoid degenerate cases.
- For too small values: $k_{\theta}(x_i, x_j) \rightarrow 0$ for all $i \neq j$, and $K_{\theta} \rightarrow \sigma^2 I_n$.
- For too large values: $k_{\theta}(x_i, x_j) \rightarrow 1$, and $K_{\theta} \rightarrow \mathbf{1}_{n \times n}$.

We sample the length-scales using an entropy-based criterion.

201

STELLANTIS

CHOICE OF THE SUB-MODEL LENGTH-SCALES

First, we study the case for a Gaussian correlation where analytical expressions can be obtained.

- Assume that design points are distributed as a random vector $X = (X^{(1)}, ..., X^{(d)})$ with i.i.d components with common variance σ_X^2 and kurtosis κ_X .
- We note D^2 the random square distance between two independent points X and X' of the design. For a large enough dimension:

$$D^{2} = \sum_{k=1}^{d} (X_{k} - X_{k}')^{2} \sim \mathcal{N} \left(2d\sigma_{X}^{2}, 2d\sigma_{X}^{4}(\kappa_{X} + 1) \right).$$

• For a Gaussian correlation:

$$R_{\theta} = e^{-\frac{1D^2}{2\theta^2}} \sim \log \mathcal{N}\left(\frac{-\sigma_X^2}{\theta^2}d, \frac{\sigma_X^4}{2\theta^4}(\kappa_X+1)d\right).$$

• We can finally obtain the entropy of the correlation:

$$H(R_{\theta}) = \mathbf{E}\left(-\log f_{R_{\theta}}(R_{\theta})\right) = -\frac{\sigma_X^2}{\theta^2}d + \frac{1}{2}\ln\left(\frac{\sigma_X^4}{2\theta^4}d(\kappa_X+1)2\pi\right) + \frac{1}{2}.$$

$$H(R_{\theta}) = \mathbf{E}\left(-\log f_{R_{\theta}}(R_{\theta})\right) = -\frac{\sigma_X^2}{\theta^2}d + \frac{1}{2}\ln\left(\frac{\sigma_X^4}{2\theta^4}d(\kappa_X+1)2\pi\right) + \frac{1}{2}$$

How to use the knowledge about this entropy ?

- When sampling the length-scales, we want to favor θ corresponding to high entropy values, which result in a high variability in the correlation.
- Finally, we will sample the length-scales using a positive transformation of the entropy:

 $f(\theta) \propto \exp(H(R_{\theta})).$

Entropy of a Gaussian correlation in 50D for a uniform design ($\sigma_X^2 = 1/12$ and $\kappa_X = 9/5$).

STEL TIS

 \rightarrow We propose a model which is a combination of Kriging models with random length-scales

Choice of the sub-models

 $M_{tot}(x) = \sum_{i=1}^{\nu} w_i(x) M_i(x),$

with $M_i(x) = \mu_i + k_{\theta_i}(x, X) K_{\theta_i}^{-1}(Y - \mu_i)$ Kriging model with fixed length-scale vector θ_i .

• One method uses constant weights obtained by minimizing the LOOCV error of the combination (see Viana et al., 2009) :

$$e_{LOOCV}(M_{tot}) = \frac{1}{n} \sum_{k=1}^{n} \left(\sum_{i=1}^{p} w_i M_{i-k}(\mathbf{x}_k) - y(\mathbf{x}_k) \right)^2 = \mathbf{w}^T \mathbf{C} \mathbf{w}.$$

 \rightarrow The components of the matrix \boldsymbol{C} are : $c_{ij} = \frac{1}{N} e_i^T e_j$, with $e_i^{(k)} = \left[\boldsymbol{K}_{\theta_i}^{-1} \boldsymbol{Y} \right]_k / \left[\boldsymbol{K}_{\theta_i}^{-1} \right]_{k,k}$, k = 1, ..., n.

The weights are then obtained by :

$$w_{LOOCV} = \arg\min_{w} w^T C w$$
, subject to $\mathbf{1}^T w = 1 \implies w_{LOOCV} = \frac{\mathbf{1}^T C^{-1}}{\mathbf{1}^T C^{-1} \mathbf{1}}$.

(See Appriou et al., 2022 for more details and comparison with other methods).

• Kriging models naturally provides a measure of the model error. For a Kriging model with $Y(.) \sim \mathcal{GP}(\mu, k_{\sigma, \theta}(., .))$:

$$\mathbf{E}\left(\left(M(x) - Y(x)\right)^{2}\right) = \mathbf{Var}(Y(x)|Y(X)) = k(x, x) - k(x, X)\mathbf{K}(X, X)^{-1}k(X, x)$$

 \rightarrow This prediction error is essential when performing Bayesian optimization.

We can obtain the prediction error for every individual sub-model, but **the covariance structure between the sub-models is unknown**.

 \rightarrow We cannot directly access the prediction error of the combination.

STELL

VARIANCE OF THE COMBINATION

To obtain the variance of the combination, we add the hypothesis that the underlying Gaussian Process Y_{tot} is a combination (with different weights) of independent Gaussian Processes:

$$Y_{tot} = \sigma_{tot}^2 \sum_{i=1}^p \alpha_i Y_i$$
, with $Y_i \sim \mathcal{GP}\left(\mu_i, r_{\theta_i}(.,.)\right)$, $\sum_{i=1}^p \alpha_i = 1$, and σ_{tot}^2 the variance of the GP.

Thus, the covariance of this GP is:

$$k_{tot}(.,.) = \sigma_{tot}^2 \sum_{i=1}^p \alpha_i^2 r_{\boldsymbol{\theta}_i}(.,.).$$

To simplify the upcoming expressions, we will also assume that the sub-models (and the associated GPs) are combined following a binary tree structure:

STELLANTIS

VARIANCE OF THE COMBINATION

• The weights α in the combination of GPs are chosen to **minimize the expected mean-square error of the combined model** with respect to $Y_{tot} = \alpha Y_1 + (1 - \alpha)Y_2$:

$$\alpha^* = \arg\min_{\alpha} \mathbf{E} \left[\mathbf{E} \left[(wM_1(x) + (1-w)M_2(x) - \alpha Y_1(x) + (1-\alpha)Y_2(x))^2 | Y_1, Y_2] \right].$$

By approximation the global MSE using the LOOCV error, we obtain:

$$\alpha^* = \frac{a_1(w)}{a_1(w) + a_2(w)}, \quad \text{with:} \begin{cases} a_1(w) = w^2 \mathbf{E}(e_{LOOCV}(M_1)|Y_2) + (1 - w^2) \mathbf{E}(e_{LOOCV}(M_2)|Y_2), \\ a_2(w) = (1 - w)^2 \mathbf{E}(e_{LOOCV}(M_2)|Y_1) + (1 - (1 - w)^2) \mathbf{E}(e_{LOOCV}(M_1)|Y_1). \end{cases}$$

Finally, the variance of the combination is obtained as:

$$\hat{s}^2(\mathbf{x}) = \operatorname{Var}(Y_{tot}(\mathbf{x})|\mathcal{D}) = k_{tot}(\mathbf{x}, \mathbf{x}) - k_{tot}(\mathbf{x}, \mathbf{x})K_{tot}(\mathbf{x}, \mathbf{x})^{-1}k_{tot}(\mathbf{x}, \mathbf{x})$$

RELATION TO OTHER METHODS

Relation to other methods:

 Relation to additive models: as we use an additive structure for obtaining the variance, why not use it for the prediction as well ?

$$\widetilde{M}(x) = \mathbf{E}(Y_{tot}(\mathbf{x})|\mathcal{D}) = \mu_{tot} + k_{tot}(\mathbf{x}, \mathbf{X})\mathbf{K}_{tot}(\mathbf{X}, \mathbf{X})^{-1}(\mathbf{Y} - \mu_{tot}).$$

 $\rightarrow K_{tot}(X, X)^{-1}$ is the inverse of a sum of matrices and there is no direct formula for the inverse of a sum of matrices.

- Estimating the weights will involve a large number of matrix inversions and an inner optimization which we aim to avoid with our method.
- Relation to mixture models: a mixture of GPs will give the same mean prediction as the linear combination, and we can
 directly obtain the variance of the mixture.
- \rightarrow There is a relation between the MSE of both models:

$$\mathbf{E}\left[\left(M_{mix}(x) - Y_{mix}(x)\right)^{2}\right] = \mathbf{E}\left[\left(M_{tot}(x) - Y_{tot}(x)\right)^{2}\right], \quad \text{when } k_{tot}(.,.) = \sum_{i=1}^{p} w_{i}k_{\theta_{i}}(.,.).$$

 \rightarrow By tuning the weights α , we achieve **better calibrated confidence intervals** than a mixture model.

OUTLINE

1) Context

- Design optimization
- Gaussian Process regression
- Bayesian Optimization
- 2) Issues in high-dimension
- 3) Combination of Kriging models with random length-scales
 - Sampling the random length-scales
 - Weights of the combination
 - Variance of the combination

4) Numerical results

NUMERICAL RESULTS

STELLANTIS

We test the combination for high-dimensional Bayesian optimization and compare it to ordinary Kriging models using MLE:

- Number of initial samples : $2 \times d$,
- Number of iterations : $10 \times d$,
- MLE optimization of the hyperparameters at each iteration:
 - R package DiceKriging (L-BFGS-B, 300 max iterations),
- Number of sub-models : p = 16,
- Optimization of the EI with the package DiceOptim along with TREGO trust regions (see Diouane et al., 2023),
- 10 optimization runs with different initializations.

NUMERICAL RESULTS – TEST FUNCTIONS

In this section, we consider two test functions (with varying dimensions) for the optimization:

The sphere function:

$$f_{sphere}(x_1, \dots, x_d) = \sqrt{\sum_{i=1}^d (x_i - 0.5)^2}, \quad 0 \le x_i \le 1.$$

- \rightarrow Deceptively difficult to model with Gaussian Processes with few observations.
- \rightarrow Easy to optimize (convex function).

GP trajectory:

$$f_{GP}(.) \sim GP(\mathbf{0}, k_{\theta}(.,.)),$$

Where k_{θ} is an isotropic Matérn 5/2 correlation with length-scale $\theta = \sqrt{\frac{d}{12}}$.

- \rightarrow Harder to optimize (multimodal) and more representative of true functions.
- \rightarrow Case where the Kriging hypothesis is verified.

True Sphere function 1.0 × Global mini 0.8 0.6 0.4 0.2

GP trajectory

(•)

ى

0.0

0.0

0.2

NUMERICAL RESULTS – TEST FUNCTIONS

- Design of an electrical machine:
- 37 design variables:

Position and size of air holes and magnets, radius of the machine.

Full problem:

- 2 objectives:

Consumption and cost of the machine.

- 10 constraints:

Related to the dynamics of the vehicle and to the dynamics of the machine.

- \rightarrow Here we test the method only for single objective optimization.
- \rightarrow We only optimize the first constraint (maximum speed of the car).

NUMERICAL RESULTS – SPHERE FUNCTION

• Sphere function

 \rightarrow The combination converges faster at the beginning of the optimization (few points) because the models are more accurate.

NUMERICAL RESULTS – GP TRAJECTORY

• GP trajectories

\rightarrow The combination still converges faster.

 \rightarrow For the multi-modal GP trajectories, the combination converges to a better optimum.

NUMERICAL RESULTS – ELECTRICAL MACHINE

• Electrical machine

\rightarrow Similar results to the optimization of GP trajectories.

- The combination of Kriging models shows promising results on the test functions and outperforms the ordinary Kriging especially at the start of the optimization.
- A benchmark against other high-dimensional optimization methods such that additive models or dimension reduction techniques still need to be conducted.
- The method was tested on an **industrial test cases** only for single objective optimization. Tests on **multi-objective problems with constraints** can be conducted by adapting the acquisition strategy (for example EHVI).

For more details, see our preprint: https://hal.science/hal-04477236

Thank you for your attention !

Contact :

Tanguy APPRIOU tanguy.appriou@stellantis.com

REFERENCES

- Appriou, T., Rullière, D. and Gaudrie, D., 2022. Combination of High-Dimensional Kriging Sub-models.
- Appriou, T., Rullière, D. and Gaudrie, D., 2024. High-Dimensional Bayesian Optimization with a Combination of Kriging models.
- Bouhlel, M.A., Bartoli, N., Otsmane, A. and Morlier, J., 2016. Improving kriging surrogates of high-dimensional design models by Partial Least Squares dimension reduction. *Structural and Multidisciplinary Optimization*, *53*(5), pp.935-952.
- Constantine, P.G., Dow, E. and Wang, Q., 2014. Active subspace methods in theory and practice: applications to kriging surfaces. SIAM Journal on Scientific Computing, 36(4), pp.A1500-A1524.
- Diouane, Y., Picheny, V., Riche, R.L. and Perrotolo, A.S.D., 2023. TREGO: a trust-region framework for efficient global optimization. *Journal of Global Optimization*, *86*(1), pp.1-23.
- Durrande, N., Ginsbourger, D. and Roustant, O., 2012. Additive covariance kernels for high-dimensional Gaussian process modeling. In Annales de la Faculté des sciences de Toulouse: Mathématiques (Vol. 21, No. 3, pp. 481-499).
- Gu, M., Palomo, J. and Berger, J.O., 2018. RobustGaSP: Robust Gaussian stochastic process emulation in R. arXiv preprint arXiv:1801.01874.
- Gu, M., Wang, X. and Berger, J.O., 2018. Robust Gaussian stochastic process emulation. The Annals of Statistics, 46(6A), pp.3038-3066.

- Jones, D.R., Schonlau, M. and Welch, W.J., 1998. Efficient global optimization of expensive black-box functions. *Journal of Global optimization*, *13*, pp.455-492.
- Roustant, O., Ginsbourger, D. and Deville, Y., 2012. DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization. *Journal of statistical software*, *51*, pp.1-55.
- Rasmussen, C.E. and Williams, C.K., 2006. *Gaussian processes for machine learning*. Cambridge, MA: MIT press.
- Viana, F.A., Haftka, R.T. and Steffen, V., 2009. Multiple surrogates: how cross-validation errors can help us to obtain the best predictor. *Structural and Multidisciplinary Optimization*, *39*(4), pp.439-457.

APPENDICE – EMPIRICAL ENTROPY

In practice, for any correlation function R_{θ} and any design plan **X**.

- 1. For a given length-scale θ . We sample N values of the correlation for the design plan $X: r_{\theta}^{(1)}, \dots r_{\theta}^{(N)}$.
- 2. We make a kernel estimation $\hat{f}_{R_{\theta}}$ of the density of R_{θ} based on these samples.
- 3. We compute the empirical entropy:

$$\widehat{H}(R_{\theta}) = -\frac{1}{n} \sum_{i=1}^{n} \ln \widehat{f}_{R_{\theta}}\left(r_{\theta}^{(i)}\right).$$

4. We define a grid of possible values for the length-scales $\theta_{grid}^{(\ell)}$, $\ell = 1, ..., q$, and we sample with probability:

 $P\left(\theta_{grid}^{(\ell)}\right) \propto \exp(H(R_{\theta})).$

 \rightarrow We sample d length-scale values (one for each dimension) for each of the sub-models.

exp(entropy) for a Gaussian correlation

20

APPENDICE - VARIANCE OF THE COMBINATION

• Finally, the last step is to calibrate the amplitude of the variance using the amplitude hyperparameter σ_{tot}^2 .

For LOO strategies, typically this is done by observing that **the normalized LOO errors should be normally distributed if the model is well-specified**:

$$\frac{e_{LOO}}{\sqrt{\sigma_{tot}^2 Var_{LOO}}} \sim \mathcal{N}(0,1).$$

 \rightarrow Thus, by setting the empirical variance of the normalized residuals to 1:

However, this definition tends to give too large amplitudes due to the presence of many outliers in the LOO error.

To have an **expression for the amplitude more robust to outliers** and which overall give prediction interval that are better calibrated, we fit **the empirical inter-quartile distance** of the LOO error to that of a Gaussian distribution:

$$IQ\left(\frac{e_{LOO}}{\sigma_{tot}\sqrt{Var_{LOO}}}\right) = IQ_{norm} \iff \sigma_{tot} = \frac{IQ\left(\frac{e_{LOO}}{\sqrt{Var_{LOO}}}\right)}{IQ_{norm}} = \frac{q_{0,75}\left(\frac{e_{LOO}}{\sqrt{Var_{LOO}}}\right) - q_{0,25}\left(\frac{e_{LOO}}{\sqrt{Var_{LOO}}}\right)}{IQ_{norm}}$$

$$\sigma_{tot}^2 = \frac{1}{n} \sum_{i=1}^n \frac{e_{LOO_i}^2}{Var_{LOO_i}}.$$

APPENDICE – RESULTS FOR SPHERE FUNCTION

Precision of metamodels for sphere function (dim = 30)

Average results over 10 loops

STELLANTIS

 \rightarrow The Ordinary Kriging needs many iterations to achieve a reasonable precision.

 \rightarrow The 2D example shows how ordinary Kriging still finds the global minimum with good precision despite a poor global accuracy of the surrogate model.

02

0.8

1.0