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E.g. Sparse Identification of 
Nonlinear Dynamics 

It’s an 
inside 
job!

How can 
we learn 
symbolic 
equations?

● Functional form in advance

● Correlated inputs

● Only uncertainty over params



What do we 
want?

● ML to HELP scientists 
discovery equations

● Learn STOCHASTIC equations



Lets use Gaussian processes!



Lets use Gaussian processes!

They can’t 
handle large 
data volumes



Lets use Gaussian processes!

They can’t 
handle large 
data volumes

Only for 
Gaussian 
data…….



Lets use Gaussian processes!

They can’t 
handle large 
data volumes

They can’t 
handle 

high-dimension
al data

Only for 
Gaussian 
data…….



Lets use Gaussian processes!

They can’t 
handle large 
data volumes

They can’t 
handle 

high-dimension
al data

They are not 
interpretable 
(symbolic)

Only for 
Gaussian 
data…….
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GPs for 
high-dim 
data?
● GPs are great in high-dim

● RBF kernels are not……
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GPs for 
high-dim 
data?

● Type of still (column/pot?)

● Type of grape (Ugni Blanc?)

● Wood for the barrel

● Location (Armagnac-Ténarèze, Bas-Armagnac ,Haut-Armagnac?)

● Blend

● Age

https://en.wikipedia.org/wiki/Armagnac-T%C3%A9nar%C3%A8ze
https://en.wikipedia.org/wiki/Bas-Armagnac
https://en.wikipedia.org/wiki/Haut-Armagnac
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● Newton Girard (Duvenaud et al 2011) ● Standard RBF ->

● d additive RBF ->

● d additive BBF (NG) ->
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Additive 
Gaussian 
Processes

0 1 2

This model is quite interpretable……

● Orthogonalise (Durrande et al 2012)

● By conditioning



So, lets learn an equation 
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Predicting 
rainfall

● >100 climate variables –> rainfall

● Non-Gaussian (Bernoulli-gamma)

● Data-driven vertical integration

https://e3sm.org/single-column-model-intercomparison-of-diurnal-cycle-of-precipitation/
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Whats next ….. 
● Gravity waves / cloud cover

● Learn the likelihood structure (another layer of symbolic regression)

● Improve “orthogonality” for correlated inputs

● Sample multiple candidate equations (Pareto front?) 

● More user interaction

● Encode known physics (symmetries, invariances, conservation laws e.t.c)



Thanks for your 
time!

La presqu'île de Blackpool



Extra slides
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Condition on whatever you want and 
pretend its Gaussian

Long et al. 2022

Scientific 
priors via 

conditioning



1) Additional conditioning 2) Thinking hard ….

● I want      to be periodic

● So choose a periodic kernel

Two ways to be encode info into GPs See “The 
kernel 

cookbook” 
https://www.cs.toronto.edu/

~duvenaud/cookbook/



 Fiddle with the kernel to get 
periodicity

Scientific 
priors via 

kernel design



 General idea:

Ginsbourger et al. 2013
Van der Wilk et al. 2018

So let

Scientific 
priors via 

kernel design


