Using Gaussian Processes to Uncover the Secrets of the Universe

Henry Moss @ MASCOTNUM 2024

Institute of

Using Gaussian Processes to Uncover the Secrets of the Universe Stochastic Equation Discovery via Interpretable Additive Models

Henry Moss @ MASCOTNUM 2024

La presqu'île de Giens

Why do we want to learn symbolic equations?

La presqu'île de Giens

Why do

 we want to learn symbolic equations?

Morecambe

Why do we want to learn symbolic equations?

To learn parameterisations

Why do we want to learn symbolic equations?

To learn parameterisations

Why do we want to learn symbolic equations?

To learn parameterisations

Why do we want to learn symbolic equations?

$\mathcal{C}_{\text {Sundqvist }} \stackrel{\text { def }}{=} 1-\sqrt{\frac{\min \left\{\mathrm{RH}, \mathrm{RH}_{\text {sat }}\right\}-\mathrm{RH}_{\text {sat }}}{\mathrm{RH}_{0}-\mathrm{RH}_{\text {sat }}}} \quad \mathcal{C}_{\text {Teixeira }} \stackrel{\text { def }}{=} \frac{D q_{c}}{2 q_{s}(1-\widehat{\mathrm{RH}) K}}\left(-1+\sqrt{1+\frac{4 q_{s}(1-\widehat{\mathrm{RH}}) K}{D q_{c}}}\right)$

$$
f\left(\mathrm{RH}, T, \partial_{z} \mathrm{RH}, q_{c}, q_{i}\right)=I_{1}(\mathrm{RH}, T)+I_{2}\left(\partial_{z} \mathrm{RH}\right)+I_{3}\left(q_{c}, q_{i}\right),
$$

How can we learn symbolic equations?

How can
 we learn symbolic equations？

E．g．Sparse Identification of Nonlinear Dynamics s

都
路都

How can

we learn symbolic equations?

E.g. Sparse Identification of Nonlinear Dynamics

How can

E.g. Sparse Identification of Nonlinear Dynamics

we learn

 symbolic equations?- Functional form in advance
- Correlated inputs
- Only uncertainty over params

What do we want?

- ML to HELP scientists discovery equations
- Learn STOCHASTIC equations

Lets use Gaussian processes!

GPs for big data?

- Use Sparse variational GP
- Replace with $\mathrm{M}(\ll \mathrm{N})$

representative points

GPs for big data?

- Use Sparse variational GP
- Replace with $M(\ll N)$
representative points

$$
\begin{aligned}
\operatorname{ELBO}(q(\mathbf{f})) & =\int q(\mathbf{f}) \log p(\mathbf{y} \mid \mathbf{f}) d \mathbf{f}-\mathcal{K} \mathcal{L}(q(\mathbf{f}), p(\mathbf{f})) \\
& =\sum_{i=1}^{N} \int q\left(f_{i}\right) \log p\left(y_{i} \mid f_{i}\right) d \mathbf{f}-\mathcal{K} \mathcal{L}(q(\mathbf{f}), p(\mathbf{f}))
\end{aligned}
$$

$$
y_{i} \sim \mathcal{N}\left(f\left(\mathbf{x}_{i}\right), \sigma^{2}\right)
$$

SVGPs for non-Gaussi an data?

(Hensman et al. 2015, Saul et al. 2016)

$y_{i} \sim\left(f\left(\sigma^{2}\right)\right.$

SVGPs for $y_{i} \sim \mathcal{N}\left(f_{0}\left(\mathbf{x}_{i}\right), e^{f_{1}\left(\mathbf{x}_{i}\right)}\right)$ non-Gaussi an data?
(Hensman et al. 2015, Saul et al. 2016)

SVGPs for non-Gaussi an data?

(Hensman et al. 2015, Saul et al. 2016)
$y_{i} \sim\left(f\left(x_{i}\right), \sigma^{2}\right)$ $y_{i} \sim \mathcal{N}\left(e^{f 1\left(x_{i}\right)}\right)$ $y_{i} \sim \mathcal{S t}\left(f_{0}\left(\mathbf{x}_{i}\right), e^{f_{1}\left(\mathbf{x}_{i}\right)}, \nu\right)$

Standard Gaussian Process

$\underline{y_{i} \sim\left(f\left(x_{i}\right), \sigma^{2}\right)}$

SVGPs for non-Gaussi an data?
(Hensman et al. 2015, Saul et al. 2016)
$\operatorname{ELBO}\left(q\left(\mathbf{f}_{0}\right), q\left(\mathbf{f}_{1}\right)\right)$ $y_{i} \sim \mathcal{N}\left(e^{f 1\left(x_{i}\right)}\right)$ $y_{i} \sim \mathcal{S} t\left(f_{0}\left(\mathbf{x}_{i}\right), e^{f_{1}\left(\mathbf{x}_{i}\right)}, \nu\right)$

Standard Gaussian Process

$$
-\mathcal{K} \mathcal{L}\left(q\left(\mathbf{f}_{0}\right), p(\mathbf{f})\right)-\mathcal{K} \mathcal{L}\left(q\left(\mathbf{f}_{1}\right), p(\mathbf{f})\right)
$$

SVGPs for non-Gaussi an data?

(Hensman et al. 2015, Saul et al. 2016)

$$
y_{i} \sim \mathcal{B}\left(\alpha=f_{0}\left(\mathbf{x}_{i}\right), \beta=e^{f_{1}\left(\mathbf{x}_{i}\right)}\right)
$$

GPs for high-dim data?

Beware the curse of dimensionality

$$
k(\mathbf{x}, \mathbf{y})=e^{-\| \frac{\| x, y l}{2 p^{2}}}
$$

GPs for high-dim data?

- GPs are great in high-dim
- RBF kernels are not......
- $l_{i} \propto \sqrt{D}$

$$
\begin{align*} & k(\mathbf{x}, \mathbf{y})=e^{-\frac{\|\mathbf{x}-\mathbf{y}\|^{2}}{2 l^{2}}} \\ &=\prod_{i}^{d} k_{i}\left(x_{i}, y_{i}\right) \\ & \text { AND } \end{align*}
$$

 \section*{GPs for

 \section*{GPs for

 high-dim

 high-dim

 data?}

 data?}}
\square

$$
\begin{aligned} k(\mathbf{x}, \mathbf{y}) & =e^{-\frac{\|\mathbf{x}-\mathbf{y}\|^{2}}{2 l^{2}}} \\ & =\prod^{d} k_{i}\left(x_{i}, y_{i}\right) \end{aligned}
$$
 GPs for
 high-dim
 high-dim
 data?
 data?

GPs for high-dim data?

GPs for high-dim data?

GPs for
 high-dim
 data?

GPs for high-dim data?

- Type of still (column/pot?)
- Type of grape (Ugni Blanc?)
- Wood for the barrel
- Location (Armagnac-Ténarèze, Bas-Armagnac ,Haut-Ammagnac?)
- Blend
- Age

GPs for
 high-dim
 data?

$$
\begin{aligned}
k(\mathbf{x}, \mathbf{y}) & =e^{-\frac{\|\mathbf{x}-\mathbf{y}\|^{2}}{2 l^{2}}} \\
& =\prod_{i}^{d} k_{i}\left(x_{i}, y_{i}\right)
\end{aligned}
$$

GPs for high-dim data?

$$
\begin{aligned}
k(\mathbf{x}, \mathbf{y}) & =e^{-\frac{\|\mathbf{x}-\mathbf{y}\|^{2}}{2 l^{2}}} \\
& =\prod_{i}^{d} k_{i}\left(x_{i}, y_{i}\right) \\
k_{1}(\mathbf{x}, \mathbf{y}) & =\sum_{i}^{d} k_{i}\left(x_{i}, y_{i}\right) \\
k_{2}(\mathbf{x}, \mathbf{y}) & =\sum_{i<j}^{d} k_{i}\left(x_{i}, y_{i}\right) k_{j}\left(x_{j}, y_{j}\right)
\end{aligned}
$$

Additive
Gaussian
Processes

$$
k(x, y)=k_{0}+\sum k_{i}\left(x_{i}, y_{i}\right)+\sum_{i<j} k_{i}\left(x_{i}, y_{i}\right) k_{j}\left(x_{j} . y_{j}\right)
$$

Additive Gaussian Processes

1st order interactions $k_{1}+k_{2}+k_{3}$

2nd order interactions $k_{1} k_{2}+k_{2} k_{3}+k_{1} k_{3}$

3rd order interactions
$k_{1} k_{2} k_{3}$ (Squared-exp kernel)
(Duvenaud et al 2011)

Additive
 Gaussian

Processes

Ginsbourger et al. (2016)

$$
f(x)=f_{0}+\sum f_{i}\left(x_{i j}\right)+\sum_{i<j} f_{i v}\left(x_{i}, x_{j}\right)
$$

Additive
 Gaussian

Processes

$$
\begin{aligned}
& k(x, y)=k_{0}+\sum_{k_{i}\left(x_{i}, y_{i}\right)}+\sum_{k<j} k_{i}\left(x_{i}, y_{i}\right) k_{j}\left(x_{j}, y_{j}\right) \\
& \prod_{i(\mathbf{x})}=f_{0}+\sum_{f_{i}\left(x_{i}\right)}+\sum_{i<j} f_{i j}\left(x_{i}, x_{j}\right)
\end{aligned}
$$

- Standard RBF -> $O\left(d\left(N^{2}+N M\right)\right)$
- d additive RBF ->
$O\left(2^{d}\left(N^{2}+N M\right)\right)$

Additive
 Gaussian

Processes

- Newton Girard (Owvenaud et a 20111
- Standard RBF ->
$O\left(d\left(N^{2}+N M\right)\right)$

$$
\begin{aligned}
& f(\mathbf{x})=f_{0}+\sum f_{i}\left(x_{i}\right)+\sum_{i<j} f_{i j}\left(x_{i}, x_{j}\right) \\
& \text { - } \\
& k(x, y)=k_{0}+\sum k_{i}\left(x_{i}, y_{i}\right)+\sum_{i<j} k_{i}\left(x_{i}, y_{i}\right) k_{j}\left(x_{j} \cdot y_{j}\right)
\end{aligned}
$$

- d additive RBF ->
$O\left(2^{d}\left(N^{2}+N M\right)\right)$
- d additive $\operatorname{BBF}(\mathrm{NG})->O\left(d^{2}\left(N^{2}+N M\right)\right)$

Additive Gaussian

 Processes$$
\begin{array}{r}
k(x, y)=k_{0}+\sum k_{i}\left(x_{i}, y_{i}\right)+\sum_{i<j} k_{i}\left(x_{i}, y_{i}\right) k_{j}\left(x_{j} . y_{j}\right) \\
f(\mathbf{x})=f_{0}+\sum f_{i}\left(x_{i}\right)+\sum_{i<j} f_{i j}\left(x_{i}, x_{j}\right)
\end{array}
$$

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2}-2 x_{2}+\cos \left(3 x_{1}\right) \sin \left(5 x_{2}\right)
$$

$$
\mathcal{H}\left[\left.f_{i}\left(\mathscr{X}_{i}\right)^{\left(\text {a) } f_{1}\right.}\right|^{D}\right]=k_{i}\left(\mathscr{X}_{i}, \mathcal{X}^{\left(\text {b) } f_{2}\right.}\right) \mathbb{K}\left(\mathbf{X}^{\prime} \mathcal{X}^{\text {(c) Interaction }}\right.
$$

Additive
 Gaussian

Processes

- Orthogonalise (Durrande et al 2012)
$f\left(x_{1}, x_{2}\right)=\left(f_{1}\left(x_{1}\right)+\delta\right)+\left(f_{2}\left(x_{2}\right)-\delta\right)$

$$
\begin{gathered}
k(x, y)=k_{0}+\sum k_{i}^{(}\left(x_{i}, y_{i}\right)+\sum_{i<j} k_{i}\left(x_{i}, y_{i}\right) k_{j}\left(x_{j}, y_{j}\right) \\
f(\mathbf{x})=f_{0}+\sum f_{i}\left(x_{i}\right)+\sum_{i<j} f_{i j}\left(x_{i}, x_{j}\right)
\end{gathered}
$$

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2}-2 x_{2}+\cos \left(3 x_{1}\right) \sin \left(5 x_{2}\right)
$$

(f) f_{1}
(g) f_{2}
(h) Interaction

Additive
 Gaussian

Processes

- Orthogonalise (Durrande et al 2012)
$f\left(x_{1}, x_{2}\right)=\left(f_{1}\left(x_{1}\right)+\delta\right)+\left(f_{2}\left(x_{2}\right)-\delta\right)$
By conditioning

$$
f_{i}\left(x_{i}\right) \mid \int f_{i}\left(x_{i}\right) p\left(x_{i}\right) d x_{i}=0
$$

$$
\begin{aligned}
& f(\mathbf{x})=f_{0}+\sum f_{i}\left(x_{i}\right)+\sum_{i<j} f_{i j}\left(x_{i}, x_{j}\right)
\end{aligned}
$$

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2}-2 x_{2}+\cos \left(3 x_{1}\right) \sin \left(5 x_{2}\right)
$$

(f) f_{1}
(g) f_{2}
(h) Interaction

Additive Gaussian

 Processes- Orthogonalise (Durrande et al 2012)
$f\left(x_{1}, x_{2}\right)=\left(f_{1}\left(x_{1}\right)+\delta\right)+\left(f_{2}\left(x_{2}\right)-\delta\right)$

By conditioning

$$
f_{i}\left(x_{i}\right) \mid \int f_{i}\left(x_{i}\right) p\left(x_{i}\right) d x_{i}=0
$$

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2}-2 x_{2}+\cos \left(3 x_{1}\right) \sin \left(5 x_{2}\right)
$$

(f) f_{1}
(g) f_{2}
(h) Interaction

So, lets learn an equation

Predicting rainfall

Predicting rainfall

- >100 climate variables -> rainfall
- Non-Gaussian (Bernoulli-gamma)

Predicting rainfall

- >100 climate variables -> rainfall
- Non-Gaussian (Bernoulli-gamma)

$$
p(y \mid f)=\dot{\mathcal{N}}\left(f, \sigma^{2}\right)
$$

$$
p\left(\underline{y \mid f_{1}, f_{2}}, f_{3}\right)=\left\{\begin{array}{lcc}
1-f_{1} & \text { if } & y=0 \\
f_{1} \Gamma\left(f_{2}, f_{3}\right) & \text { o.w. }
\end{array}\right.
$$

Predicting rainfall

- >100 climate variables $->$ rainfall
- Non-Gaussian (Bernoulli-gamma)
- Data-driven vertical integration

Single-Column
 Model (SCM)

(3, 2)

Additive GP model output

Latent 0 rank 0 : Best guess (and uncertainty) at additive contributions from ['Relative Humidity']with sobol index 0.581364255678434

Additive GP model output

Latent 0 rank 0: Best guess (and uncertainty) at additive contributions from ['Relative Humidity']with sobol index 0.581364255678434

Additive GP model output

Latent 0 rank 0: Best guess (and uncertainty) at additive contributions from ['Relative Humidity']with sobol index 0.581364255678434

Latent 1 rank 1: Best guess at additive contribution from ['Sensible heat flux', 'Stdev of sub-gridscale orography'] with sobol index 0.0715865896060103

Learn a Stochastic Eq (via lots of easy Rs)

$p\left(y \mid f_{1}, f_{2}, f_{3}\right)=\left\{\begin{array}{lc}1-f_{1} & \text { if } \quad y=0 \\ f_{1} \Gamma\left(f_{2}, f_{3}\right) & \text { o.w }\end{array}\right.$

$$
\begin{aligned}
& f_{1}=e^{\lambda_{0}+\lambda_{1} R H-\lambda_{2} R H \sigma_{0}} \\
& f_{2}=\lambda_{3}+\lambda_{4}\left(S H F-\lambda_{5}\right)^{2} \\
& f_{3}=\lambda_{6}+\lambda_{7} \theta_{+}
\end{aligned}
$$

Learn a Stochastic Eq (via lots of easy SRs)

$$
\begin{aligned}
& p\left(y \mid f_{1}, f_{2}, f_{3}\right)=\left\{\begin{array}{cc}
1-f_{1} & \text { if } \quad y=0 \\
f_{1} \Gamma\left(f_{2}, f_{3}\right) & \text { o.w. }
\end{array}\right. \\
& E[y]=e^{\lambda_{0}+\lambda_{1} R H-\lambda_{2} R H * \sigma_{0}} \frac{\left(S H F-\lambda_{3}\right)^{2}}{\lambda_{4}+\lambda_{5} \theta_{+}}
\end{aligned}
$$

Whats next

- Gravity waves / cloud cover
- Learn the likelihood structure (another layer of symbolic regression)
- Improve "orthogonality" for correlated inputs
- Sample multiple candidate equations (Pareto front?)
- More user interaction
- Encode known physics (symmetries, invariances, conservation laws e.t.c)

Extra slides

Scientific priors via conditioning

Condition on an integral
$O(f)=\int f(\mathbf{x}) p(\mathbf{x}) d \mathbf{x}$
$\mathbb{P}(f)$

$\mathbb{P}(\mathbf{f} \mid O)$

Scientific priors via conditioning

Condition on an derivative

$$
O(\mathbf{f})=\frac{\partial f}{\partial \mathbf{x}}
$$

$$
O(\mathbf{f})=\frac{\partial f}{\partial \mathbf{x}}
$$

Scientific priors via conditioning

$\mathbb{P}(f)$

Condition on an derivative

Padidar et al. (2021)

Scientific priors via conditioning

Condition on monotonicity

$$
O(\mathbf{f})=\left(\frac{\partial f}{\partial \mathbf{x}}>0\right)
$$

$\mathbb{P}(f)$

$$
O(f)=\frac{\partial f}{\partial x_{1}}+\frac{\partial f}{\partial x_{2}}
$$

Scientific priors via conditioning

Condition on linear operator

$O(\mathbf{f})=\nabla \times \mathbf{f}$

Scientific priors via conditioning

Condition on linear operator

Scientific

priors via

 conditioningCondition on whatever you want and pretend its Gaussian
$\mathbb{P}(f \mid D) \propto \mathbb{P}(D \mid f) \mathbb{P}(f) \mathbb{P}(O(f))$

$$
\frac{d f^{2}}{d t}+\sin (t)+\beta \frac{d f}{d t}=0
$$

Two ways to be encode info into GPs

1) Additional conditioning

2) Thinking hard

- I want f to be periodic
- So choose a periodic kernel

$$
k_{p e r}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma^{2} \exp \left(\frac{-2 \sin ^{2}\left(\pi\left|\mathbf{x}-\mathbf{x}^{\prime}\right| / p\right)}{l^{2}}\right)
$$

Scientific
 priors via kernel design

Fiddle with the kernel to get periodicity

$$
k_{p e r}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma^{2} \exp \left(\frac{-2 \sin ^{2}\left(\pi\left|\mathbf{x}-\mathbf{x}^{\prime}\right| / p\right)}{l^{2}}\right)
$$

I

Scientific priors via kernel design

General idea:

$$
T(f)=f \Leftrightarrow T(k(\mathbf{x}, .))=k(\mathbf{x}, .)
$$

$$
\hat{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+k\left(T(\mathbf{x}), \mathbf{x}^{\prime}\right)
$$

Ginsbourger et al. 2013
Van der Wilk et al. 2018

