

Institute of Computing for Climate Science

Using Gaussian Processes to Uncover the Secrets of the Universe

Henry Moss @ MASCOTNUM 2024

Institute of Computing for Climate Science

Using Gaussian Processes to Uncover the Secrets of the Universe Stochastic Equation Discovery via Interpretable Additive Models

Henry Moss @ MASCOTNUM 2024

La presqu'île de Giens

La presqu'île de Giens

La presqu'île de Morecambe

To learn parameterisations

NOAA GFDL CM2 Suite; Animation from J. Busecke

To learn parameterisations

Zanna et al 2020

To learn parameterisations

 $f(\mathrm{RH}, T, \partial_z \mathrm{RH}, q_c, q_i) = I_1(\mathrm{RH}, T) + I_2(\partial_z \mathrm{RH}) + I_3(q_c, q_i),$

Grundner et al. 2023

E.g. Sparse Identification of Nonlinear Dynamics

E.g. Sparse Identification of Nonlinear Dynamics

- Functional form in advance
- Correlated inputs
- Only uncertainty over params

E.g. Sparse Identification of Nonlinear Dynamics

What do we want?

• ML to **HELP** scientists discovery equations

• Learn **STOCHASTIC** equations

Lets use Gaussian processes!

They can't handle large data volumes Gaussian processes! Le.s S

They can't handle large data volv nes

Aussian processes.

Only for Gaussian data..... They can't handle large data volv hes They can't handle high-dimension al data

Aussian processes.

Only for Gaussian data.....

They can't handle large data voly hes Only for Gaussian data.....

AULS

high-dimension al data They are not interpretable (symbolic)

They can't

handle

esses.

GPs for big data?

- Use Sparse variational GP
- Replace with M (<<N)

representative points

GPs for big data?

- Use Sparse variational GP
- Replace with M (<<N)

representative points

 $y_i \sim \mathcal{N}(f(\mathbf{x}_i), \sigma^2)$

(Hensman et al. 2015, Saul et al. 2016)

Standard Gaussian Process

(Hensman et al. 2015, Saul et al. 2016)

Xi

 $y_i \sim \mathcal{N}(f_0(\mathbf{x}_i), e^{f_1(\mathbf{x}_i)})$

(Hensman et al. 2015, Saul et al. 2016)

(Hensman et al. 2015, Saul et al. 2016)

 $\operatorname{ELBO}(q(\mathbf{f}_0), q(\mathbf{f}_1)) =$

(Hensman et al. 2015, Saul et al. 2016)

$$y_i \sim \mathcal{B}(\alpha = f_0(\mathbf{x}_i), \beta = e^{f_1(\mathbf{x}_i)})$$

Beware the curse of

dimensionality

GPs for high-dim data?

- GPs are great in high-dim
- RBF kernels are not.....
- $l_i \propto \sqrt{D}$

 $k(\mathbf{x}, \mathbf{y}) = e^{-\frac{||\mathbf{x} - \mathbf{y}||^2}{2l^2}}$

 $k(\mathbf{x}, \mathbf{y}) = e^{-\frac{||\mathbf{x} - \mathbf{y}||^2}{2l^2}}$ d $= \prod k_i(x_i, y_i)$ iAND

 x_2

 $k(\mathbf{x}, \mathbf{y}) = e^{-\frac{||\mathbf{x} - \mathbf{y}||^2}{2l^2}}$ d $= \prod k_i(x_i, y_i)$ iAND x_1

- Type of still (column/pot?)
- Type of grape (Ugni Blanc?)
- Wood for the barrel
- Location (<u>Armagnac-Ténarèze</u>, <u>Bas-Armagnac</u>, <u>Haut-Armagnac</u>?)
- Blend
- Age

 $k(\mathbf{x}, \mathbf{y}) = e^{-\frac{||\mathbf{x} - \mathbf{y}||^2}{2l^2}}$ d $= \prod k_i(x_i, y_i)$ iAND

GPs for high-dim data?

$$k(\mathbf{x}, \mathbf{y}) = e^{-\frac{||\mathbf{x}-\mathbf{y}||^2}{2l^2}}$$
$$= \prod_i^d k_i(x_i, y_i)$$
AND
$$k_1(\mathbf{x}, \mathbf{y}) = \sum_i^d k_i(x_i, y_i)$$

$$k_2(\mathbf{x}, \mathbf{y}) = \sum_{i < j}^d k_i(x_i, y_i)k_j(x_j, y_j)$$

 $k(x,y) = k_0 + \sum k_i(x_i, y_i) + \sum k_i(x_i, y_i)k_j(x_j, y_j)$ i < jGinsbourger et al. (2016) $f(\mathbf{x}) = f_0 + \sum f_i(x_i) + \sum f_{ij}(x_i, x_j)$ i < j

 $k(x, y) = k_0 + \sum k_i(x_i, y_i) + \sum k_i(x_i, y_i)k_j(x_j, y_j)$ i < j $f(\mathbf{x}) = f_0 + \sum f_i(x_i) + \sum f_{ij}(x_i, x_j)$ i < j

- Standard RBF ->
- d additive RBF ->
- $O(d(N^2 + NM))$ $O(2^d(N^2 + NM))$

Additive

Gaussian

Processes

• Newton Girard (Duvenaud et al 2011)

 $k(x, y) = k_0 + \sum_{i=1}^{\infty} k_i(x_i, y_i) + \sum_{i=1}^{\infty} k_i(x_i, y_i) k_j(x_j, y_j)$ i < j $f(\mathbf{x}) = f_0 + \sum f_i(x_i) + \sum f_{ij}(x_i, x_j)$ i < i

- Standard RBF ->
- d additive RBF ->
- $O(d(N^2 + NM))$ $O(2^d(N^2 + NM))$ d additive BBF (NG) -> $O(d^2(N^2 + NM))$

$$k(x,y) = k_{0} + \sum_{i < j} k_{i}(x_{i}, y_{i}) + \sum_{i < j} k_{i}(x_{i}, y_{i})k_{j}(x_{j}.y_{j})$$

Ginsbourger et al. (2016)

$$f(\mathbf{x}) = f_{0} + \sum_{i < j} f_{i}(x_{i}) + \sum_{i < j} f_{ij}(x_{i}, x_{j})$$

$$f(x_{1}, x_{2}) = x_{1}^{2} - 2x_{2} + \cos(3x_{1})\sin(5x_{2})$$

$$f(x_{1}, x_{2}) = x_{1}^{2} - 2x_{2} + \cos(3x_{1})\sin(5x_{2})$$

$$f(x_{1}, x_{2}) = x_{1}^{2} - 2x_{2} + \cos(3x_{1})\sin(5x_{2})$$

$$E[f_{i}(x_{i})|\mathcal{D}] = k_{i}(x_{i}, X)K(X, X)^{-1}\mathbf{y}$$

Luct al. 2022

Lu et al. 2022

Additive Gaussian

Processes

• Orthogonalise (Durrande et al 2012) $f(x_1, x_2) = (f_1(x_1) + \delta) + (f_2(x_2) - \delta)$

 $k(x,y) = k_0 + \sum k_i(x_i, y_i) + \sum k_i(x_i, y_i) k_j(x_j, y_j)$ i < j $f(\mathbf{x}) = f_0 + \sum f_i(x_i) + \sum f_{ij}(x_i, x_j)$ i < j

Additive

Gaussian

Processes

- Orthogonalise (Durrande et al 2012) $f(x_1, x_2) = (f_1(x_1) + \delta) + (f_2(x_2) - \delta)$
- By conditioning $f_i(x_i) \bigg| \int f_i(x_i) p(x_i) dx_i = 0$

 $k(x,y) = k_0 + \sum k_i(x_i, y_i) + \sum k_i(x_i, y_i) k_j(x_j, y_j)$ i < j $f(\mathbf{x}) = f_0 + \sum f_i(x_i) + \sum f_{ij}(x_i, x_j)$ i < i

Additive

k(x, y)

Gaussian

Processes

- Orthogonalise (Durrande et al 2012) $f(x_1, x_2) = (f_1(x_1) + \delta) + (f_2(x_2) - \delta)$
- By conditioning $f_i(x_i) \left| \int f_i(x_i) p(x_i) dx_i = 0 \right|$

This model is quite interpretable.....

$$f(\mathbf{x}) = f_0 + \sum f_i(x_i) + \sum_{i < j} f_{ij}(x_i, x_j)$$

$$f(x_1, x_2) = x_1^2 - 2x_2 + \cos(3x_1)\sin(5x_2)$$

 $(.y_j)$

So, lets learn an equation

Predicting rainfall

• >100 climate variables -> rainfall

Predicting rainfall

- >100 climate variables -> rainfall
- Non-Gaussian (Bernoulli-gamma)

Predicting rainfall

- >100 climate variables -> rainfall
- Non-Gaussian (Bernoulli-gamma)

https://e3sm.org/single-column-model-intercomparison-of-diurnal-cycle-of-precipitation/

Predicting rainfall

- >100 climate variables -> rainfall
- Non-Gaussian (Bernoulli-gamma)
- Data-driven vertical integration

Additive GP model output

Latent 0 rank 0: Best guess (and uncertainty) at additive contributions from ['Relative Humidity']with sobol index 0.581364255678434

Additive GP model output

Latent 0 rank 0: Best guess (and uncertainty) at additive contributions from ['Relative Humidity']with sobol index 0.581364255678434

Additive GP model output

Latent 0 rank 0: Best guess (and uncertainty) at additive contributions from ['Relative Humidity']with sobol index 0.581364255678434

Latent 1 rank 1: Best guess at additive contribution from ['Sensible heat flux', 'Stdev of sub-gridscale orography'] with sobol index 0.0715865896060103

Learn a Stochastic Eq (via lots of easy SRs)

$$p(y|f_1, f_2, f_3) = \begin{cases} 1 - f_1 & if \quad y = 0 \\ f_1 \Gamma(f_2, f_3) & o.w. \end{cases}$$
Just illustrative results
• $f_1 = e^{\lambda_0 + \lambda_1 RH - \lambda_2 RH\sigma_0}$
• $f_2 = \lambda_3 + \lambda_4 (SHF - \lambda_5)^2$
• $f_3 = \lambda_6 + \lambda_7 \theta_+$

Learn a Stochastic Eq (via lots of easy SRs)

$$p(y|f_1, f_2, f_3) = \begin{cases} 1 - f_1 & \text{if } y = 0\\ f_1 \Gamma(f_2, f_3) & o.w. \end{cases}$$
Just illustrative results

$$E[y] = e^{\lambda_0 + \lambda_1 RH - \lambda_2 RH * \sigma_0} \frac{(SHF - \lambda_3)^2}{\lambda_4 + \lambda_5 \theta_+}$$

Whats next

- Gravity waves / cloud cover
- Learn the likelihood structure (another layer of symbolic regression)
- Improve "orthogonality" for correlated inputs
- **Sample** multiple candidate equations (Pareto front?)
- More user interaction
- Encode **known physics** (symmetries, invariances, conservation laws e.t.c)

Extra slides

Condition on an integral

O(f) = $f(\mathbf{x})p(\mathbf{x})d\mathbf{x}$

 $\mathbb{P}(f)$

Condition on an derivative

Condition on an derivative

Padidar et al. (2021)

 $\mathbb{P}(\mathbf{f}|O)$

Solak et al. (2002)

Condition on monotonicity

 $\left(\frac{\partial f}{\partial \mathbf{x}} > 0\right)$ $O(\mathbf{f})$

 $\mathbb{P}(\mathbf{f}|O)$

 $\mathbb{P}(f)$

Solak et al. (2002)

Condition on linear operator

 ∂f ∂f ∂x_1 ∂x_2 Diagonal: $e_{\rm rms} = 0.78$ Artificial obs: $e_{\rm rms} = 0.46$ Constant States and St $\mathbb{P}(f)$ x_2 x_2 2 4 4 x_1 x_1 Our approach: $e_{\rm rms} = 0.37$ $\mathbb{P}(\mathbf{f}|O)$ 2 2³ 2 0 Jidling et al. (2019) x_1

Condition on linear operator

$O(\mathbf{f}) = \nabla \times \mathbf{f}$

 $\mathbb{P}(f)$

Jidling et al. (2019)

Condition on whatever you want and pretend its Gaussian

 $\mathbb{P}(\boldsymbol{f}|D) \propto \mathbb{P}(D|\boldsymbol{f})\mathbb{P}(\boldsymbol{f})\mathbb{P}(\boldsymbol{O}(\boldsymbol{f}))$

$$\frac{df^2}{dt} + \sin(t) + \beta \frac{df}{dt} = 0$$

Two ways to be encode info into GPs

1) Additional conditioning

- 2) Thinking hard
- I want f to be periodic
- So choose a periodic kernel

$$k_{per}(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp(\frac{-2\sin^2(\pi |\mathbf{x} - \mathbf{x}'|/p)}{l^2})$$

See "The

kernel cookbook"

Scientific priors via kernel design

Fiddle with the kernel to get periodicity

$$k_{per}(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp(\frac{-2\sin^2(\pi |\mathbf{x} - \mathbf{x}'|/p)}{l^2})$$

Scientific priors via kernel design

General idea:

$$T(f) = f \Leftrightarrow T(k(\mathbf{x}, .)) = k(\mathbf{x}, .)$$

$$\hat{k}(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}, \mathbf{x}') + k(T(\mathbf{x}), \mathbf{x}')$$

Ginsbourger et al. 2013 Van der Wilk et al. 2018

