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Approximation

We consider the approximation of a function f of a normed space V by an element of a
subset Vm described by m parameters.

An approximation tool (Vm)m≥1 is selected from some prior knowledge on the function
class K to approximate, for obtaining a fast (hopefully optimal) convergence of the best
approximation error

inf
g∈Vm

‖f − g‖V

Sobolev or Besov smoothness: splines or wavelets

Analytic smoothness: polynomials

For a broader class of functions: tensor networks, neural networks

Low-dimensional space or manifold Vm = {F (θ) : θ ∈ Rm} that approximate K ,
obtained by manifold approximation (or model order reduction) methods.
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Approximation from limited information

In practice, an approximation f̂m in Vm is constructed by an algorithm using only a
limited number of information `1(f ), . . . , `n(f ), such as pointwise evaluations
f (x1), . . . , f (xn) (standard information).

An algorithm is quasi-optimal for a function class if for any function from this class,

‖f − f̂m‖V ≤ C inf
g∈Vm

‖f − g‖V

A random algorithm is quasi-optimal in average (of order p) if

E(‖f − f̂m‖pV )1/p ≤ C inf
g∈Vm

‖f − g‖V

When getting information is costly, a challenge is to provide quasi-optimal
algorithms using a number of information n close to the number of parameters m.

This requires to adapt the information to Vm and the target function class (active
learning setting).
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Least squares approximation

Consider the approximation of a function f in V = L2
µ(X ) equipped with the norm

‖f ‖2 =

∫
f (x)2dµ(x).

We are given a m-dimensional space Vm in L2
µ(X ).

A weighted least-squares approximation f̂m ∈ Vm is defined by minimizing

1

n

n∑
i=1

w(xi )
−1(f (xi )− v(xi ))2 := ‖f − v‖2

n

over v ∈ Vm, for some suitably chosen points x = (x1, . . . , xn) and weight function w .

If xi are samples from a distribution ν = wµ, then

E(‖ · ‖2
n) = ‖ · ‖2
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Least squares approximation

Given an L2
µ-orthonormal basis ϕ1(x), ..., ϕm(x) of Vm,

λmin(G)‖v‖2 ≤ ‖v‖2
n ≤ λmax(G)‖v‖2 ∀v ∈ Vm,

where G is the empirical Gram matrix given by

G =
1

n

n∑
i=1

w(xi )
−1ϕ(xi )ϕ(xi )

T

with ϕ(x) = (ϕ1(x), ..., ϕm(x))T ∈ Rm.

The quality of least-squares projection is related to how much G deviates from the
identity

‖f − f̂m‖2 ≤ ‖f − PVm f ‖
2 + λmin(G)−1‖f − PVm f ‖

2
n
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Least-squares approximation with i.i.d. sampling and conditioning

If the xi are samples from ν = wµ,
E(G) = I

For i.i.d. samples, the matrices Ai := w(xi )
−1ϕ(xi )ϕ(xi )

T are i.i.d. and with spectral
norm almost surely bounded by

Kw (Vm) = sup
x∈X

w(x)−1‖ϕ(x)‖2
2.

From matrix Chernoff inequality [Tropp 2010, Cohen and Migliorati 2017], we know that

P(λmax(G) > 1 + δ) ∧ P(λmin(G) < 1− δ) ≤ m exp(− nδ2

2Kw (Vm)
)

and an optimal sampling measure (leverage score sampling) is given by

νm = wmµ with wm(x) =
1

m
‖ϕ(x)‖2

2 =
1

m

m∑
j=1

ϕj(x)2 (Inverse Christoffel function)

This gives an optimal constant Kwm (Vm) = m.
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Least-squares approximation with i.i.d. sampling and conditioning

Theorem ([Cohen and Migliorati 2017][Haberstich, N., Perrin 2022])

Assume that (x1, . . . , xn) is drawn (by rejection) from ν⊗n
m conditioned to the event

Sδ = {λmin(G) ≥ 1− δ}, 0 < δ < 1,

and
n ≥ 2δ−2m log(mη−1).

Then P(Sδ) ≥ 1− η and

E(‖f − f̂m‖2) ≤ (1 +
m

n
(1− η)−1(1− δ)−2) inf

g∈Vm

‖f − g‖2.

The number of samples n ∼ δ−2m log(m) may be large compared to m, and a
fundamental question is whether we can achieve stability with n ∼ m.
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Subsampling

Subsampling methods start with a stable empirical Gram matrix obtained with m log(m)
samples and select a (hopefully small) subsample preserving stability.

In [Haberstich, N. and Perrin 2022]1, deterministic greedy subsampling algorithm:

E(‖f − f̂m‖2)1/2 ≤ C log(m)1/2 inf
v∈Vm

‖f − v‖

Often returns a number of samples close (or even equal) to m, without theoretical
guaranty to downsample to O(m).

In [Dolbeault and Cohen 2022], subsampling algorithm based on successive random
partitioning of the samples:

E(‖f − f̂m‖2)1/2 ≤ C inf
v∈Vm

‖f − v‖,

with number of samples in O(m), but not computationally feasible.

In [Bartel, Schafer and T. Ullrich 2023], feasible subsampling algorithms ensuring
λmin(G) ≥ 1− δ with O(m) samples, but no guaranty of quasi-optimality in
expectation.

1C. Haberstich, A. Nouy, and G. Perrin. Boosted optimal weighted least-squares. Mathematics of
Computation, 91(335):1281–1315, 2022.
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Introducing dependence

A way to control the minimal eigenvalue of the empirical Gram matrix is to maximize its
determinant det(G(x)).

In a deterministic setting, this correspond to D-optimal design of experiments and is
related to maximum volume concept [Goreinov et al 2010, Fonarev et al 2016].

In a randomized setting, consider a sample x = (x1, . . . , xm) of size m from

dγm(x) ∝ det(G(x))dν⊗m
m (x)

that tends to promote high determinant of G(x) and high likelihood w.r.t. optimal i.i.d.
sampling measure ν⊗m

m .

It is a projection determinantal point process (DPP) for Vm [Lavancier et al 2015]

dγm(x) =
1

m!
det(ϕ(x)Tϕ(x))dµ⊗m(x), ϕ(x)T = (ϕ(x1) . . .ϕ(xm)) ∈ Rm×m.

The marginals are all equal to the optimal measure νm for i.i.d. sampling.

The density det(ϕ(x)Tϕ(x)) introduces a repulsion between points (null density
whenever ϕ(xi ) = ϕ(xj) for i 6= j), and promotes dissimilarity in the selected features
ϕ(xi ).
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Projection DPP

From base-height formula of the determinant

1

m!
det(ϕ(x)Tϕ(x)) =

1

m
‖ϕ(x)‖2

2︸ ︷︷ ︸
∼ x1

. . .
1

m − k
‖ϕ(x)− PWkϕ(x)‖2

2︸ ︷︷ ︸
∼ xk+1|x1 . . . , xk

. . . ‖ϕ(x)− PWm−1ϕ(x)‖2
2︸ ︷︷ ︸

∼ xm|x1 . . . xm−1

where PWk is the orthogonal projection onto the subspace

Wk = span{ϕ(x1), . . . ,ϕ(xk)} ⊂ Rm.

A sample (x1, . . . , xm) from γm can be obtained by a sequential procedure

xk+1 ∼
1

m − k
‖ϕ(x)− PWkϕ(x)‖2

2dµ(x)

This is a randomized version of empirical interpolation

xk+1 = arg max
x
‖ϕ(x)− PWkϕ(x)‖2

2

= arg max
x

k(x , x)− k(x , x)k(x , x)−1k(x , x), x = (x1, ..., xk)

or adaptive gaussian process interpolation with projection kernel k(x , y) = ϕ(x)Tϕ(y).
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Improving stability

Stability can be ensured with high probability

by adding n −m i.i.d. samples from νm, which corresponds to volume-rescaled
sampling [Dereziński et al 2022].

It yields an unbiased estimate of the orthogonal projection,

E(f̂m) = PVm f

but the performance is similar to i.i.d. optimal sampling.

by using multiple samples from γm (repeated DPP).

Theorem (N. and Michel 2023)

Assume that (x1, . . . , xn) is drawn (by rejection) from γ
⊗(n/m)
m conditioned to the

event Sδ = {λmin(G) ≥ 1− δ}. Then the weighted least-squares projection
satisfies

E(‖f − f̂m‖2) ≤ (1 +
m

n
P(Sδ)−1(1− δ)−2) inf

g∈Vm

‖f − g‖2.

Similar theoretical results as for i.i.d., but better concentration properties in practice.
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P(Sp(G) ⊂ [1/2, 3/2]) as a function of m and n

(a) i.i.d. µ (Classical) (b) i.i.d. νm (Optimal i.i.d.)

(c) γm + n − m i.i.d. νm

(Volume-rescaled sampling)
(d) multiple γm (repeated DPP)

Figure: P(Sp(G) ⊂ [ 1
2
, 3

2
]) as a function of m and n, from 0 (black) to 1 (white). Vm is a

polynomial space of degree m − 1 and µ the uniform measure over [−1, 1].
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Nonlinear approximation: theory to practice gap

For a nonlinear manifold M described by m parameters, for obtaining an approximation
f̂m ∈ M with an error close to

inf
v∈M
‖f − v‖

the required number of samples n can be much higher than the number of parameters m.

This is the theory to practice gap, proven for neural networks [Grohs and
Voigtlaender 2021] and tensor networks for i.i.d. samples
[Eigel, Schneider and Trunschke, 2022].

Quasi-optimality can be proven with i.i.d. sampling provided

n & Kw (M) = sup
x∈X

w(x)−1κM(x) (κ−1
M : Generalized Christoffel function)

that yields an optimal i.i.d. sampling strategy [Trunschke 2022, Cardenas et al 2024]

However, in general, no real benefit compared to classical sampling. E.g. for sets M
of low-rank tensors in a tensor space U⊗d , Kw (M) = Kw (U⊗), that yields the
condition

n & dim(U)d (curse of dimensionality)

More assumptions on functions and dedicated algorithms are needed.
Algorithms and sampling should (in general) be adaptive.
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Active learning for natural gradient descent

Consider a differentiable manifold M and a natural gradient algorithm (in function space)
for solving

inf
v∈M
L(v), L(v) := ‖f − v‖2

which constructs a sequence (fk)k≥0 by successive corrections in linear spaces Vk ,

fk+1 = Rk(fk − skgk)

with

Vk is a local approximation of M − fk
gk a projection of the gradient ∇L(fk) = fk − f onto Vk

sk a step size
Rk a retraction map with values in M

M

fk
f

fk + Vk

fk − gkfk − skgk
fk+1
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Consider a differentiable manifold M and a natural gradient algorithm (in function space)
for solving

inf
v∈M
L(v), L(v) := ‖f − v‖2

which constructs a sequence (fk)k≥0 by successive corrections in linear spaces Vk ,
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Active learning for natural gradient descent

gk is defined as an empirical (quasi-)projection of the gradient onto Vk

gk = P̂Vk (fk − f )

using evaluations of fk − f at points drawn from an optimal sampling distribution for
Vk .

A natural choice for Vk is a linearization of M = {F (θ) : θ ∈ Rm} at fk = F (θk),

TfkM = span{ψ := ∇θF (θk)}

or a subspace of TfkM.
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Active learning for natural gradient descent

A natural (but not easy to control) retraction is

Rk(fk − skgk) = F (θk − skγk) for gk(x) = ψ(x)Tγk .

Taking

γk = (ψ, fk − f )n =
1

n

n∑
i=1

ψ(xi )(fk(xi )− f (xi )) = ∇θ(Ln(F (θk)))

corresponds to classical batch stochastic gradient descent (SGD), where gk is a
quasi-projection on Vk that can be very far from the orthogonal projection of fk − f .

Our algorithm can be seen as an preconditioned SGD using optimal sampling
strategy.
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Convergence analysis

We make the following asumptions

The empirical (quasi-)projection P̂V onto a d-dimensional linear space V satisfies

(PV g ,E(P̂n
V g − PV g)) ≥ −cb‖PV g‖‖(id − PV )g‖ (bias),

E(‖P̂n
V g‖2) ≤ cv‖g‖2 (variance)

where cb = cb(n)→ 0 as n→∞.

Satisfied by (unbiased) quasi-projection or least-squares projections using i.i.d.
samples from optimal distribution or (repeated) determinantal point processes.
Requires a number of samples n . d log(d).

The retraction map Rk at fk satisfies

‖Rk(fk + g)‖2 ≤ ‖fk + g − f ‖2 +
CR

2
‖g‖2 + βk (CR)

with some prescribed sequence βk = o(sk).

Requires an assumption on the reach (or
curvature) of the manifold and adaptation of
the step size.
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Convergence analysis

With (Fk)k≥1 the filtration associated with the samples generated until step k, it holds

E(‖fk+1 − f ‖2|Fk) ≤ E(‖fk − f ‖2|Fk)− γksk‖PVk (f − fk)‖+
1 + CR

2
s2
k‖f − fk‖2 + βk

where

γk = 1− cb
‖(id − PVk )(f − fk)‖
‖PVk (f − fk)‖

For unbiased projections (cb = 0) and step size sk sufficiently small (deterministic)

E(‖fk+1 − f ‖2|Fk) ≤ E(‖fk − f ‖2|Fk)

We even obtain almost sure convergence using martingale theory ([Robbins and
Siegmund 1971]), with algebraic rates between O(k−1) (GD) and O(k−1/2) (SGD).

In favorable cases (recovery setting) and assuming strong Polyak-Lojasiewicz
condition on manifold, we even get the exponential rate of GD, unlike SGD.

For biased projections (cb > 0), possible decay with sufficiently small step size only if
γk > 0. Condition depending on the capacity of Vk to approximate the current error
f − f k . Feasible with sufficiently small cb (large n).

We prove a convergence towards a neighborhood of a stationary point.
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Tree tensor networks

Tree tensor networks form a prominent class of approximation tools for the
approximation of multivariate functions f (x1, . . . , xd). This includes Tensor Train format
[Oseledets & Tyrtyshnikov 2009], Hierarchical Tucker format [Hackbusch & Kuhn 2009].

They have a high approximation power (optimal rates for a large class of smoothness
classes).

They admits a multilinear parametrization in terms of a collection of low-order tensors θα:

M = {F (θ1, . . . , θL) : θ1 ∈ RI1 , . . . , θL ∈ RIL}, F multilinear.

θ1,...,5

θ1,2,3

θ1

φ1

x1

θ2,3

θ2

φ2

x2

θ3

φ3

x3

θ4,5

θ4

φ4

x4

θ5

φ5

x5
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Tree tensor networks

M is a differentiable manifold2 with tangent space

TF (θ)M = span{∇θ1F (θ)}+ . . .+ span{∇θLF (θ)}

Controlled retraction using higher order singular value decomposition.

Choosing Vk as span{∇θiF (θ)} corresponds to coordinate descent (alternating
minimization). No retraction is needed.

Using classical linear algebra, we obtain optimal sampling density in a format amenable
for sequential sampling in high dimension.

2A. Falcó, W. Hackbusch, and A. Nouy. Geometry of tree-based tensor formats in tensor banach spaces.
Annali di Matematica Pura ed Applicata (1923 -), 2023.
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Tree tensor networks

Approximation of function f (x) = (1 +
∑d

i=1 xi )
−1 on [0, 1]d (d = 5) using tensor train

format. Use of alternating minimization with step size s = 1.

(a) Classical i.i.d. sampling (no conditioning) (b) Optimal i.i.d. sampling (conditioning)

Figure: Error versus iteration for different ranks and different oversampling factors β, where
n = β4d log(4d) , d = dim(Vk ).
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Neural networks

We consider RePU shallow networks with width s = 20

M = {F (θ) = aTσ(Ax + b) : θ = (a,A, b) ∈ Rs × Rs×d × Rs}, σ(·) =< · >2
+

for the approximation of f (x) = sin(2πx) on [−1, 1].

-----

A
=·=->--=--
-
·

A>

Figure: Loss L(uk ) for SGD with classical sampling and deterministically decreasing step sizes,
plotted against the number of steps
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for the approximation of f (x) = sin(2πx) on [−1, 1].
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Figure: Loss L(uk ) for NGD with optimal sampling, least squares projection and adaptive step
sizes, plotted against the number of steps
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Outline

1 Optimal sampling for linear approximation

2 Optimal sampling for nonlinear approximation

3 More about linear approximation
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Sampling from general generating systems

Assume we have access to a (non orthonormal) generating system ψ = (ψ1, . . . , ψd) of a
linear Vm, e.g. ψ = ∇θF (θ) for M = {F (θ) : θ ∈ Rd}.
Optimal sampling density for Vm is given by

w?(x) =
1

m
‖ϕ(x)‖2

2 =
1

m
ψ(x)TG+

?ψ(x),

where G? is the Gram matrix of ψ.

An approximately orthogonal basis can be obtained from an estimate of the Gram matrix

G =
1

n

n∑
i=1

ψ(xi )ψ(xi )
T .

If n is sufficiently large to ensure

(1− ε)G? ≤ G ≤ (1 + ε)G? =⇒ (1 + ε)−1w? ≤ w ≤ (1− ε)−1w?

But this requires n & K1,m, which may grow exponentially with m or even be unbounded.

A bootstrap strategy can be used, with convergence guarantees3

G k+1 =
k

k + 1
G k +

1

k
Hk , Hk =

1

n

n∑
i=1

wk(xi )
−1ψ(xi )ψ(xi )

T , xi ∼ wkµ

3A. Nouy and P. Trunschke. Optimal sampling for least squares approximation with general dictionaries,
coming soon.
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More general metrics... towards physics informed optimal sampling

Consider a Hilbert space V of functions defined on X equipped with the norm

‖f ‖2 =

∫
X
|Lx f |2dµ(x), Lx : H → R` (linear)

e.g. V = L2
µ(X ) for Lx f = f (x) or V = H1

µ(X ) with Lx f =

(
f (x)
∇f (x)

)
.

A weighted least-squares approximation f̂m ∈ Vm is defined by minimizing

1

n

n∑
i=1

w(xi )
−1|Lxi f − Lxi v |

2 := ‖f − v‖2
n, xi ∼ wµ.

An optimal sampling measure for i.i.d. sampling is given by the density

wm(x) = α−1‖Lxϕ‖2
2, Lxϕ ∈ Rm×`,

with α ≤ m. With conditioned sampling and O(m log(m)) samples, we prove
quasi-optimality result in expectation in the V norm4.

4R. Gruhlke, A. Nouy and P. Trunschke. Optimal sampling for stochastic and natural gradient descent:
arXiv:2402.03113.
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Control in probability

We would like to obtain quasi-optimality guarantees almost surely. This requires further
assumptions on the target function and a suitable correction of the weighted
least-squares projection.

A weighted least-squares approximation satisfies

‖f − f̂m‖2 ≤ ‖f − g‖2 + λmin(G)−1‖f − g‖2
n, ∀g ∈ Vm

This requires an almost sure control of λmin(G)−1 ≤ (1− δ)−1 (by conditioning) and of
the empirical norm ‖ · ‖n.

Assuming the target function is in a subspace H such that for all g ∈ H,

‖g‖ ≤ CH‖g‖H (continuous embedding H ↪→ L2
µ)

and
‖g‖n ≤ ‖g‖H ,

it holds almost surely

‖f − f̂m‖2 ≤ (C 2
H + (1− δ)−1) inf

v∈Vm

‖f − v‖2
H
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Assume that there exists a positive density h > 0 such that

H ↪→ L∞h−1/2µ ⇔ ess sup
x∈X

h(x)−1/2|g(x)| ≤ ‖g‖H , ∀g ∈ H

For example

H = L∞µ (X ) and h(x) = 1.

H a RKHS continuously embedded in L2
µ with kernel k and h(x) = k(x , x).

Then ‖g‖n ≤ 2‖g‖H holds by choosing for the weight function a mixture

w(x) =
1

2
wm +

1

2
h(x)

For i.i.d. sampling from wµ, the empirical Gram matrix G remains an unbiased estimator
of I and

Kw,m = sup
x∈X

w(x)‖ϕ(x)‖2
2 ≤ 2Kwm,m = 2m

Only a factor 2 is lost in the number of i.i.d. samples required to ensure
λmin(G)−1 ≤ (1− δ)−1 with controlled probability.

We can also generalize volume sampling and obtain similar guarantees.5

5A. Nouy and B. Michel. Weighted least-squares approximation with determinantal point processes and
generalized volume sampling. arXiv:2312.14057.
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Almost sure quasi-optimality in RKHS6

When H is a RKHS with kernel k, almost sure quasi-optimality in H-norm can be
obtained by modifying the least-squares projection

f̂m = arg min
v∈Vm

‖f − v‖2
n, ‖f ‖2

n = f (x)Tk(x , x)−1f (x), x = (x1, . . . , xn)

Letting PHx be the H-orthogonal projection onto Hx := span{k(·, xi ) : 1 ≤ i ≤ n}, it
holds almost surely

‖f ‖n = ‖PHx f ‖H ≤ ‖f ‖H
and the quasi-optimality

‖f − f̂m‖2
H ≤ (1 + λmin(G(x))−1) inf

v∈Vm

‖f − v‖2
H

with the Gram matrix G(x) = ϕ(x)Tk(x , x)−1ϕ(x).

λmax(G(x)) ≤ 1 and sampling from det(G(x)) allows to control λmin(G(x)). For n = m,

det(G(x)) =
det(ϕ(x)Tϕ(x))

k(x , x)

which is a ratio of densities of determinantal point processes for Vm and H.

6A. Nouy and P. Trunschke. Almost-sure quasi-optimal least squares approximation. Coming soon.
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Conclusions

Linear approximation using optimal i.i.d. or generalized volume sampling.
Quasi-optimality with a low number of samples [1,2,3].

Natural gradient method for nonlinear approximation in an active learning setting
using optimal sampling for linear approximation. Convergence guarantees [4].

Applies to a large class of risk functionals and metrics... towards physics informed
optimal sampling and other machine learning tasks .

Sampling can be efficiently implemented for tree tensor networks and shallow
networks in L2 setting. Possible sequential sampling strategy for a linear space
defined by an arbitrary generating system [5].
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N. Nagel, M. Schäfer, and T. Ullrich.

A new upper bound for sampling numbers.

Foundations of Computational Mathematics, pages 1–24, 2021.

Anthony Nouy Centrale Nantes, Nantes Université 33
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