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Motivation
Application in Groundwater Flow
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▶ Modelling and simulation of groundwater flow are
essential in many applications.

▶ Darcy’s law for an incompressible fluid leads to the
diffusion equation

−∇ · (k(x)∇u(x)) = f (x), x ∈ D ⊆ Rd ,

with hydraulic conductivity k , source/sink terms f , and
resulting pressure head u of groundwater.

▶ Lack of data → uncertainty in model parameter k
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Motivation
Application in Groundwater Flow

▶ Uncertainty in k propagates through the model, inducing
uncertainty in pressure head u.

▶ We quantify the impact of uncertainty on outputs through
stochastic modelling (→ random fields):

−∇ · (k(x, ω)∇u(x, ω)) = f (x), x ∈ (0,1)2

u|x1=0 = 1, u|x1=1 = 0,
∂u
∂n

∣∣∣∣
x2=0

= 0,
∂u
∂n

∣∣∣∣
x2=1

= 0.

▶ We are usually interested in finding E[Q], e.g. Q = u(x∗, ·)
or Q being the travel time of contaminant particles.
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Multilevel Monte Carlo methods
Sampling

Suppose we are interested in finding E[Q], e.g. Q = u(x∗, ·). Then:

−∇ · (k(x, ω(i))∇u(x, ω(i))) = f (x)y
uh(x, ω(i)) ≈ u(x, ω(i))y

Q(i)
h ≈ Q(i)

for one sample k
(
x, ω(i)), using e.g. finite elements.
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Multilevel Monte Carlo Methods
Standard Monte Carlo

For N i.i.d. samples of k(x, ·):

E[Qh] ≈ Q̂MC
h,N :=

1
N

N∑
i=1

Q(i)
h .

Problem: N is typically very large and h is very small:

e
(

Q̂MC
h,N

)2
:= E

[(
Q̂MC

h,N − E[Q]
)2
]
=

1
N
V[Qh] + (E[Qh − Q])2 .
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Multilevel Monte Carlo Methods
Multilevel Monte Carlo [Heinrich (2001), Giles (2008)]

Solution: spread the approximation cost over multiple “levels”:

E[QhL ] ≈ Q̂MLMC
L := E[Qh0 ] +

L∑
ℓ=1

E[Qhℓ
− Qhℓ−1 ]

=
1

N0

N0∑
i=1

Q(i)
h0

+
L∑

ℓ=1

(
1
Nℓ

Nℓ∑
i=1

(
Q(i)

hℓ
− Q(i)

hℓ−1

))
,

where hℓ = 2−ℓh0 and N0 > N1 > . . . > NL.

This gives:

e
(

Q̂MLMC
L

)2
:= E

[(
Q̂MLMC

L − E[Q]
)2
]
=

L∑
ℓ=0

1
Nℓ

V[Yℓ]+
(
E[QhL − Q]

)2
.
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Multilevel Monte Carlo Methods
Complexity [Giles (2008), Cliffe et al (2011)]

Theorem (Complexity of Multilevel Monte Carlo)
Assume that

(A1) |E[Qh]− E[Q]| ≤ C1 hα (bias decay)

(A2) V[Qhℓ
− Qhℓ−1 ] ≤ C2 hβ

ℓ (variance decay)

(A3) Cost(Q(i)
h ) ≤ C3 h−γ (cost of one sample)

for some constants C1,C2,C3, α, β, γ > 0 with 2α ≥ min(β, γ).

Then there exist L and {Nℓ}L
ℓ=0 such that e

(
Q̂MLMC

L

)2
≤ ε2 and

Cost(Q̂MLMC
L ) =


O(ε−2) if β > γ,

O(ε−2 log(ε)2) if β = γ,

O(ε−2−(γ−β)/α) if β < γ.
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Multilevel Monte Carlo Methods
Complexity II [Giles (2008), Cliffe et al (2011)]

There are three different cases in the complexity theorem:

▶ β > γ: the majority of computational cost is on level 0. In
this case V[Qhℓ

−Qhℓ−1 ], and hence Nℓ, decays quickly with
ℓ and we do a negligible number of samples on level L.

▶ β = γ: the computational cost is spread evenly across the
levels.

▶ β < γ: the majority of computational cost is on level L. In
this case Cost(Q(i)

hℓ
) grows very quickly with ℓ and just one

sample on level L adds significantly to the cost.
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Multilevel Monte Carlo Methods
Complexity III [Giles (2008), Cliffe et al (2011)]

With an optimal linear solver (i.e. γ ≈ d), and standard
piece-wise linear finite elements (i.e. α = 1 and β = 2), the
computational ε-costs for the Darcy problem are bounded by:

d MLMC MC
1 O(ε−2) O(ε−3)

2 O(ε−2) O(ε−4)

3 O(ε−3) O(ε−5)

For ε = 10−3 and d = 3, the costs of MLMC and MC are
O(109) and O(1015), respectively.
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Circulant Embedding
Random Fields - Overview

Suppose k(x, ·) is a log-normal random field, so that:

k(x, ω) = exp(Z (x, ω)),

where Z (x, ·) is a Gaussian random field with:

E[Z (x, ·)] ≡ 0
E[Z (x, ·)Z (y, ·)] = r(x,y) = C(x − y). (1)

The covariance function C selected for this application is given
by (Hoeksema and Kitanidis, 1985):

C(r) := σ2 exp

(
−∥r∥1

ρ

)
.
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Circulant Embedding
Random Fields - Example I

Figure: ρ = 1, σ = 1 Figure: ρ = 1, σ = 10
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Circulant Embedding
Random Fields - Example II

Figure: ρ = 1, σ = 1 Figure: ρ = 0.1, σ = 1
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Circulant Embedding
Why?

How do we obtain samples of k(x, ω) on mesh T ?

For any factorisation of the covariance matrix R of ZT (x, ·):

R = ΘΘT ,

and any vector ξ such that:

ξ ∼ N (0, I),

we can take Z := Θξ to obtain Z ∼ ZT (x, ·).

Challenge: many classical factorisation methods, such as
Cholesky, have cubic cost in the number of mesh points!
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Circulant Embedding
Overview [Dietrich and Newsam (1993)]

How do we obtain samples k(x, ω) on mesh T ?

T
C(xi−yj )−−−−−→ R

embedding−−−−−−→ S Fourier−−−−−→
transform

S = GΛGT ξ∼N (0,I)−−−−−−→ Z = GΛ1/2ξ,

where:
▶ T - uniform two-dimensional discretisation mesh;
▶ R - covariance matrix;
▶ S - circulant embedding matrix;
▶ G = ℜ(F ) + ℑ(F ), F - two-dimensional Fourier matrix;
▶ Λ =

√
4m1m2Fs - diagonal matrix of eigenvalues of S, with

s the first column of S;
▶ Z - sample from the Gaussian field.
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Circulant Embedding
How? (1d for simplicity)

R =


C0 C1 . . . Cm
C1 C0 . . . Cm−1
...

...
. . .

...
Cm Cm−1 . . . C0

 , Ci = C
(

i
m

)
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Smoothing
Why?

Issue: If the random field is extremely oscillatory (small ρ),
these fluctuations cannot be resolved on a very coarse grid.

Figure: Q = u(x∗), ν = 1.5 and ρ = 0.03.

Heuristically: h0 ≤ ρ (or h0 ≤
√

8νρ for Matérn kernels).
Aretha Teckentrup | Multilevel Monte Carlo Methods with Smoothing: MASCOT-NUM, April 4th 2024



17

Smoothing
Overview [Istratuca, T. (submitted 2023)]

Solution: “Smooth” samples of k(x, ·) so that bulk behaviour is
captured correctly, and variations are resolved more easily.

How: Drop the τ smallest eigenvalues in a given sample
Z = GΛ1/2ξ, which correspond to the sharpest oscillations.

Figure: Without smoothing Figure: With smoothing
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Smoothing
Example

Figure: Without smoothing Figure: With smoothing
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Smoothing
Error [Istratuca, T. (submitted 2023)]

Theorem
Let τ be the truncation index and Z̃ be the resulting smoothed
sample. Then, for any p ∈ N:

E
[
∥Z − Z̃∥p

∞

]
≲ s− p

2

(
max

j=s−τ+1,...,s

√
λj

)p

τp,

where s =
∏d

i=1 2(mi + Ji).

▶ Here, s is the dimension of the circulant matrix S.
▶ We have mi mesh points in T in dimension i .
▶ Ji are "padding" values that might be necessary to ensure

S is symmetric positive definite. (Not needed for the
covariance function considered in this talk.)
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Smoothing
Error II [Istratuca, T. (submitted 2023)]

The preceding theorem can be used to obtain convergence
rates in τ of Qh − Q̃h, given convergence rates of the
eigenvalues.

Theorem

Let τ be the truncation index and Q̃h be the resulting smoothed
quantity of interest. Then, for C as in (1) and any p ∈ [1,∞):

E
[
|Qh − Q̃h|p

]
≲ (s − τ+1)−p τp.

where s =
∏d

i=1 2m and m = h−1 + 1.

Similar results are obtained for Matérn covariance kernels.
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Smoothing
Multilevel Monte Carlo [Istratuca, T. (submitted 2023)]

▶ Using smoothing in multilevel Monte Carlo, we introduce a
level-dependent truncation index τℓ.

▶ We choose τL = 0, so that this strategy does not introduce
additional bias in the final result.

▶ Combining the preceding theorem with an error bound on
Q − Qh, i.e. the finite element error, we obtain

E[|Q − Q̃hℓ
|] ≤ C hα

ℓ + C′ (sℓ − τℓ + 1)−1 τℓ.

▶ We choose τℓ as a function of hℓ to balance the two error
contributions.

▶ Note that this means that the convergence rates α and β in
the multilevel Monte Carlo complexity theorem are
unchanged.
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Numerical Experiments
Computational complexity - ρ = 0.3 for Q = u(x∗)

Figure: MC vs MLMC vs MLMC with smoothing for ρ = 0.3.
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Numerical Experiments
Computational complexity - ρ = 0.1 for Q = u(x∗)

Figure: MC vs MLMC vs MLMC with smoothing for ρ = 0.1.
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Conclusions and Outlook

▶ Circulant Embedding is an efficient technique for sampling
exactly from a random field on a discrete mesh.

▶ Introducing smoothing improves the performance of
multilevel Monte Carlo in the case of small correlation
lengths in the random hydraulic conductivity.

▶ Similar ideas can be used in other sampling methods, e.g.
Karhunen-Loève expansions [Ullmann et al 2013].

▶ Smoothing can be introduced in multilevel Markov chain
Monte Carlo, see e.g. [Dodwell et al 2019] and references
therein.

▶ Multilevel Monte Carlo can do more than compute
expected values - see Mike Giles’ community website!
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