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Motivation
Application in Groundwater Flow @
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» Modelling and simulation of groundwater flow are
essential in many applications.

» Darcy’s law for an incompressible fluid leads to the
diffusion equation

—V - (k(x)Vu(x)) =f(x), xeDCRY,

with hydraulic conductivity k, source/sink terms f, and
resulting pressure head u of groundwater.
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» Modelling and simulation of groundwater flow are
essential in many applications.

» Darcy’s law for an incompressible fluid leads to the
diffusion equation

—V - (k(x)Vu(x)) =f(x), xeDCRY,

with hydraulic conductivity k, source/sink terms f, and
resulting pressure head u of groundwater.
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» Lack of data — uncertainty in model parameter k
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Motivation

Application in Groundwater Flow

» Uncertainty in k propagates through the model, inducing
uncertainty in pressure head u.

> We quantify the impact of uncertainty on outputs through
stochastic modelling (— random fields):

—V - (k(x,w)Vu(x,w)) = f(x), X €(0,1)?

U|X1:O = 1> U|X1:1 = 07
ou ou 0
_ =0, _ = U.
8“ X2=0 8“ X2:1
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Motivation

Application in Groundwater Flow

» Uncertainty in k propagates through the model, inducing
uncertainty in pressure head u.

> We quantify the impact of uncertainty on outputs through
stochastic modelling (— random fields):

—V - (k(x,w)Vu(x,w)) = f(x), X €(0,1)?

Ux=0=1,  Ux=1=0,
ou ou 0
— = 0 _ = .
8“ X2=0 8“ X2:1

» We are usually interested in finding E[Q], e.9. Q = u(x*, )
or Q being the travel time of contaminant particles.
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Multilevel Monte Carlo methods

Sampling

Suppose we are interested in finding E[Q], e.g. Q = u(x*,-). Then:

—V - (k(x, D)V u(x,w)) = £(x)

l

up(X, D) = u(x,w)

for one sample k (x,w(?)), using e.g. finite elements.
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Multilevel Monte Carlo Methods

Standard Monte Carlo

For N i.i.d. samples of k(x, -):

= ()
E[Qn] ~ QN = NZQ
Problem: N is typically very large and h is very small:

e (6,512,)2 - [(a,“,fﬁ . E[Q])Z] 2 %V[Qh] Ele s o)
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Multilevel Monte Carlo Methods

Multilevel Monte Carlo [Heinrich (2001), Giles (2008)]

Solution: spread the approximation cost over multiple “levels”:

]E[Q L] T QMLMC ]E[Qho] i ZE[th Qh£71]
=i

a3 (2 (a o).

= =
where hy =2fhyand Ng > Ny > ... > N|.
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Multilevel Monte Carlo Methods

Multilevel Monte Carlo [Heinrich (2001), Giles (2008)]

Solution: spread the approximation cost over multiple “levels”:

]E[Q L] T QMLMC ]E[Qho] i ZE[th Qh£71]
=i

e+ (RS (a-a )

1 i=1
where hy = 27‘hg and Ny > Ny > ... > N,. This gives:

<QMLMC) [(QMLMC IE[Q])2 XL: 1 —V[Yi]+(E[Qn, — Q])°
=0

K
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Multilevel Monte Carlo Methods

Complexity [Giles (2008), Cliffe et al (2011)]

Theorem (Complexity of Multilevel Monte Carlo)
Assume that
(A1) |E[Qn] — E[Q]| < C1 h*  (bias decay)

(A2) V[Qp, — Qh,_,] < G, h? (variance decay)

(A3) Cost(Q,(f) ) < C3h™™  (cost of one sample)
for some constants Cy, Cs, Cs, v, 3,y > 0 with 2« > min(S, ).
~ 2
Then there exist L and {N,}5_, such that e (Qﬁ/’“"’c> <¢e? and

O(e7?) if B>,
Cost(QMMC) = { O(c72 log(c)?)  if B =1,
O(e=2-0=B)e) jf g < ~.
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Multilevel Monte Carlo Methods

Complexity Il [Giles (2008), Cliffe et al (2011)]

There are three different cases in the complexity theorem:

» 3 > ~: the majority of computational cost is on level 0. In
this case V[Qn, — Qp,_,], and hence N,, decays quickly with
¢ and we do a negligible number of samples on level L.

> (3 = ~: the computational cost is spread evenly across the
levels.

» 3 < ~:the majorlty of computational cost is on level L. In

this case Cost(Q( ) grows very quickly with ¢ and just one
sample on level L ‘adds significantly to the cost.
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Multilevel Monte Carlo Methods

Complexity lll [Giles (2008), Cliffe et al (2011)]

With an optimal linear solver (i.e. v =~ d), and standard

piece-wise linear finite elements (i.e. « = 1 and g = 2), the
computational e-costs for the Darcy problem are bounded by:

MLMC MC
Gl bt
Q%) @
@i =)0

Q

W N =
P iz, o
m|

IS
N—r

For e = 1073 and d = 3, the costs of MLMC and MC are
O(10°%) and O(10"°), respectively.
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Circulant Embedding

Random Fields - Overview

Suppose K(x, -) is a log-normal random field, so that:
Kk(X,w) = exp(Z(x,w)),

where Z(X, -) is a Gaussian random field with:

E[Z(x,-)Z2(y, )] = r(x,y) = C(x —y). (1)
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Circulant Embedding

Random Fields - Overview

Suppose K(x, -) is a log-normal random field, so that:
Kk(X,w) = exp(Z(x,w)),
where Z(X, -) is a Gaussian random field with:

E[Z(x,-)] = 0
E[Z(x,)Z(y,-)] = r(x,y) = C(x —y). (1)

The covariance function C selected for this application is given
by (Hoeksema and Kitanidis, 1985):

C(r) = o2 exp <_”rp”‘> .
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Circulant Embedding @

Random Fields - Example |

Log-normal Random Field realisation for p=1 and 0 =1 Log-normal Random Field realisation for p=1 and o = 10

k(x), w)

k(x), w)

Figure: p=1,0 =1 Figure: p=1,0 =10
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Circulant Embedding

Random Fields - Example Il

Log-normal Random Field realisation for p=1and o=1 Log-normal Random Field realisation for p=0.1 and o= 1

N w
k(x), w)
-3
=
-
———
———
°© v N oW
k(x), w)

Figure: p=1,0 =1 Figure: p=0.1,0 =1
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Circulant Embedding
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Why?

Ogl?

How do we obtain samples of k(x,w) on mesh 77
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Circulant Embedding

Why?

How do we obtain samples of k(x,w) on mesh 77
For any factorisation of the covariance matrix R of Zy(x, -):
R=o060T,
and any vector £ such that:
&~ N(0,1),

we can take Z .= ©¢ to obtain Z ~ Zr (X, -).

Challenge: many classical factorisation methods, such as
Cholesky, have cubic cost in the number of mesh points!
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Circulant Embedding
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Overview [Dietrich and Newsam (1993)]

Ogl?

How do we obtain samples k(x,w) on mesh 77
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Circulant Embedding

Overview [Dietrich and Newsam (1993)]

How do we obtain samples k(x,w) on mesh 77

where:
» 7 - uniform two-dimensional discretisation mesh;
» R - covariance matrix;
» S - circulant embedding matrix;
» G=R(F)+ 3(F), F - two-dimensional Fourier matrix;
» A =./4mym,Fs - diagonal matrix of eigenvalues of S, with
s the first column of S;

» Z - sample from the Gaussian field.
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Circulant Embedding

Overview [Dietrich and Newsam (1993)]

How do we obtain samples k(x,w) on mesh 77

C(xi—y;)
—_—

Jo R

where:
» 7 - uniform two-dimensional discretisation mesh;
» R - covariance matrix;
» S - circulant embedding matrix;
» G=R(F)+ 3(F), F - two-dimensional Fourier matrix;
» A =./4mym,Fs - diagonal matrix of eigenvalues of S, with
s the first column of S;

» Z - sample from the Gaussian field.
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Circulant Embedding

Overview [Dietrich and Newsam (1993)]

How do we obtain samples k(x,w) on mesh 77

C(xi—Y;) embedding S

Jo R

where:
» 7 - uniform two-dimensional discretisation mesh;
» R - covariance matrix;
» S - circulant embedding matrix;
» G=R(F)+ 3(F), F - two-dimensional Fourier matrix;
» A =./4mym,Fs - diagonal matrix of eigenvalues of S, with
s the first column of S;

» Z - sample from the Gaussian field.
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Circulant Embedding

Overview [Dietrich and Newsam (1993)]

How do we obtain samples k(x,w) on mesh 77

7— C(Xi*yj) R embedding\ S Fourier \ S: G/\GT

transform

where:
» 7 - uniform two-dimensional discretisation mesh;
» R - covariance matrix;
» S - circulant embedding matrix;
» G=R(F)+ 3(F), F - two-dimensional Fourier matrix;
» A =./4mym,Fs - diagonal matrix of eigenvalues of S, with
s the first column of S;

» Z - sample from the Gaussian field.
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Circulant Embedding

Overview [Dietrich and Newsam (1993)]

How do we obtain samples k(x,w) on mesh 77

T C(xi—y)) B embedding S Fourier S— GAGT £~N(0,/) 7 _ G/\1/2£,

transform

where:
» 7 - uniform two-dimensional discretisation mesh;
» R - covariance matrix;
» S - circulant embedding matrix;
» G=R(F)+ 3(F), F - two-dimensional Fourier matrix;
» A =./4mym,Fs - diagonal matrix of eigenvalues of S, with
s the first column of S;

» Z - sample from the Gaussian field.
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Circulant Embedding

How? (1d for simplicity)

Co C Cm
C G Cm—
- 1 .0 m—1 s o (/)
: m
Cm Cm-1 Co
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Circulant Embedding

How? (1d for simplicity)

[ Co Cq Crr ]
Ci G Cm—1
B G, Cr Co
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Circulant Embedding

How? (1d for simplicity)

REE 6. ..  Chn Cpgpro -G
ey - Cpnq Cp i G
S=|Cn Cum Co G Con-1
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Circulant Embedding

How? (1d for simplicity)

Cq Coi - L Covii G i Co
S=| Cn Cp- Co Cy Cm—1
Cm—1 Cm—2 C1
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Circulant Embedding

How? (1d for simplicity)

Cy Coi - L Covii G i G
S Ch  Cn-1 Co Cy Cm—1
Cm—1 Cm—2 C1 CO Cm
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Smoothing

Why?

Issue: If the random field is extremely oscillatory (small p),
these fluctuations cannot be resolved on a very coarse grid.

Yol vs Y]
10==
—
1073
£
a
2 104
< 10
=
o
>
——
5 =
10 ——
—— Q= Q-1
= 61—61—1
10
0 1 2 3 1 5 6
level £

Figure: Q = u(x*), v =1.5and p = 0.03.

Heuristically: hy < p (or hy < v/8vp for Matérn kernels).
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Smoothing
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Overview [Istratuca, T. (submitted 2023)]
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Solution: “Smooth” samples of k(X, -) so that bulk behaviour i
captured correctly, and variations are resolved more easily.
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Smoothing

Overview [Istratuca, T. (submitted 2023)]

Solution: “Smooth” samples of k(X, -) so that bulk behaviour i
captured correctly, and variations are resolved more easily.

How: Drop the T smallest eigenvalues in a given sample
Z = GN'/2¢, which correspond to the sharpest oscillations.

Gaussian Field sample for p= 0.1 and o= 1, smoothing
Y

Gaussian Field sample for p=0.1 and o= 1, no smoothing
10 32

\

k(x, w)
k(x, w)

Figure: Without smoothing Figure: With smoothing
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Smoothing

Example

Random Field sample for p =0.01 and ¢ =1, ho smoothing

b &
v
' ) ‘ 101
G -
[ ; J-3
{ ‘ o
2, { 08
00 T
02 0.4)(?\
0.8 10 0.0

Figure: Without smoothing
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Random Field sample for p=0.01 and o =1, smoothing

k(x), w)



Smoothing

Error [Istratuca, T. (submitted 2023)]

Let 7 be the truncation index and Z be the resulting smoothed
sample. Then, for any p € N:

- P
E [||z . zngo} <s% < max /A,-) P,
j=s—7+1,...;8

where s = [[%_, 2(m; + Jj).

» Here, s is the dimension of the circulant matrix S.
» We have m; mesh points in 7 in dimension i.

> J; are "padding" values that might be necessary to ensure
S is symmetric positive definite. (Not needed for the
covariance function considered in this talk.)

Aretha Teckentrup | Multilevel Monte Carlo Methods with Smoothing: MASCOT-NUM, April 4th 2024



Smoothing

Error Il [Istratuca, T. (submitted 2023)]

The preceding theorem can be used to obtain convergence
rates in 7 of Q, — Qp, given convergence rates of the
eigenvalues.

Let r be the truncation index and Qy, be the resulting smoothed
quantity of interest. Then, for C as in (1) and any p € [1,0):

E 1Gn - Q| S (s = 7+1)P 7P,

where s = [[%,2mand m=h~" + 1.

Similar results are obtained for Matérn covariance kernels.
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Smoothing

Multilevel Monte Carlo [Istratuca, T. (submitted 2023)]
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» Using smoothing in multilevel Monte Carlo, we introduce a
level-dependent truncation index .

» We choose 7, = 0, so that this strategy does not introduce
additional bias in the final result.
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Smoothing

Multilevel Monte Carlo [Istratuca, T. (submitted 2023)]

» Using smoothing in multilevel Monte Carlo, we introduce a
level-dependent truncation index .

» We choose 7, = 0, so that this strategy does not introduce
additional bias in the final result.

» Combining the preceding theorem with an error bound on
Q — Qp, i.e. the finite element error, we obtain

Bll@ Q= Chy+C(si=nt1) '
» We choose 7, as a function of h, to balance the two error
contributions.

» Note that this means that the convergence rates « and g in
the multilevel Monte Carlo complexity theorem are
unchanged.
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Numerical Experiments
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Computational complexity - p = 0.3 for Q = u(x*)
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DiNgot

R

Time complexity for p(x*) with p= 0.3

. = £~-4.37 RMSE MC
\ —v— £~2.65 RMSE MLMC
1ot " \ —e— £°-2.6 RMSE smoothing
10°
Q
=
= 102
>
o
o
10!
10°
10 ~=

10-3 102 10
relative RMSE

Figure: MC vs MLMC vs MLMC with smoothing for p = 0.3.
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Numerical Experiments
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Computational complexity - p = 0.1 for Q = u(x*)
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R
E N

Time complexity for p(x*) with p=0.1

=— g7~-4.15 RMSE MC
—s— £7-2.52 RMSE MLMC
—e— £7-2.59 RMSE smoothing

10°
104 [ 8
107

102

CPU time

10?

10°

10

10~ 10~ 10~
relative RMSE

Figure: MC vs MLMC vs MLMC with smoothing for p = 0.1.
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Conclusions and Outlook

» Circulant Embedding is an efficient technique for sampling
exactly from a random field on a discrete mesh.

» Introducing smoothing improves the performance of
multilevel Monte Carlo in the case of small correlation
lengths in the random hydraulic conductivity.
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Conclusions and Outlook

» Circulant Embedding is an efficient technique for sampling
exactly from a random field on a discrete mesh.

» Introducing smoothing improves the performance of
multilevel Monte Carlo in the case of small correlation
lengths in the random hydraulic conductivity.

» Similar ideas can be used in other sampling methods, e.g.
Karhunen-Loéve expansions [Ullmann et al 2013].

» Smoothing can be introduced in multilevel Markov chain
Monte Carlo, see e.g. [Dodwell et al 2019] and references
therein.

» Multilevel Monte Carlo can do more than compute
expected values - see Mike Giles’ community website!
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