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Notation

x ∈ X : experimental condition chosen by the experimenter.
y = y(x): observable experimental response.

Exact design: {x1, . . . , xn} 7−→ {y(x1), . . . , y(xn)}

ξn =

{
x1 . . . xk

ξn(x1) . . . ξn(xk)

}
, ξn(xj) =

nj
n
, j = 1, . . . k < n

Continuous design ξ: a probability measure on X .

Responses and experimental conditions may be related through:

1 Regression model:
y =η(x , θ) + ε, E(ε) = 0, Var(ε) = σ2.

2 Statistical model: parametric family of pdf’s, f (y , x , θ).
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Optimal design of experiments

An optimality criterion function is a concave function

Φ : Ξ −→ IR, ξ ∈ Ξ,

which summarizes the goal of the inferential study: estimation,
prediction or discrimination.

Equivalence theorem

The design ξ∗ is called Φ–optimal if and only if

∂Φ(ξ∗, ξ̄) ≤ 0, for any design ξ̄,

where ∂Φ(ξ, ξ̄) = limλ→0+
Φ[(1−λ)ξ+λξ̄]−Φ(ξ)

λ .

If differentiable, ∂Φ(ξ∗, ξx) ≤ 0, for any x ∈ X , where ξx =

{
x
1

}
.

The efficiency of a design ξ with respect to ξ∗ is:

0 ≤ EffΦ(ξ) =
Φ(ξ)

Φ(ξ∗)
≤ 1
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Optimal design for model discrimination

1 ηi (x , θi ): regression model, where θi ∈ Ωi ⊂ IRmi is an
unknown parameter vector, i = 1, 2.

2 fi (y , x , θi ): statistical model, where θi ∈ Ωi ⊂ IRmi is an
unknown parameter vector, i = 1, 2.

GOAL

To fix the experimental conditions with the aim of identifying:

1 which of two rival regression functions, η1(x , θ1) and
η2(x , θ2), is the most adequate (Ds- and T-optimality);

2 which of two rival statistical models, f1(y , x , θ1) and
f2(y , x , θ2), is the most adequate (Ds- and KL-optimality).
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Nested models: Ds–criterion

η1(x)∼=θT1 f1(x)+θT2 f2(x) and η2(x)∼=θT2 f2(x)

y ∼= F1θ1 + F2θ2+ε = Fθ + ε , F =[F1,F2], θ =

(
θ1

θ2

)
M(ξ) ∝ FTF =

[
FT

1 F1 FT
1 F2

FT
2 F1 FT

2 F2

]
M−1(ξ) =

[
M11(ξ) M12(ξ)
M21(ξ) M22(ξ)

]
Var(θ̂1) ∝ M11(ξ) =

{
FT

1 [I − F2(FT
2 F2)−1FT

2 ]F1

}−1

Ds-optimality criterion

ΦDs (ξ) = log
∣∣M11(ξ)

∣∣−1
= log

|M(ξ)|
|M22(ξ)|

The Ds-optimum design, ξ∗Ds
= arg maxξ ΦDs (ξ), minimizes in

some sense Var(θ̂1).
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Ds–optimality for model discrimination

The noncentrality parameter of F test for the following
system of hypothesis:{

H0 : η(x) = θT2 f2(x)

H1 : η(x) = θT1 f1(x) + θT2 f2(x)
⇔

{
H0 : θ1 = 0

H1 : θ1 6= 0

is

ζ(ξ; θ1) ∝ θT1 FT
1 [I − F2(FT

2 F2)−1FT
2 ]F1 θ1

Interpretation

The power of the F test is an increasing function of the
noncentrality parameter. Since
ξ∗Ds

= arg maxξ
∣∣FT

1 [I − F2(FT
2 F2)−1FT

2 ]F1

∣∣, in some sense the
Ds -optimum design maximizes the power of the F test for any
value of θ1.
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Equivalence theorem

1 If ξ∗Ds
is a regular design, i.e. if M(ξ∗Ds

) is a non singular
matrix, then ξ∗Ds

is Ds-optimum if and only if:

f (x)′M−1(ξ∗Ds
)f (x)− f2(x)′M−1

22 (ξ∗Ds
)f2(x)− s ≤ 0, x ∈ X

2 In case of nested statistical models, M(ξ; θ) =
∫
J(x ; θ)dξ(x)

is the Fisher information matrix and ξ∗Ds
is Ds-optimum if

and only if:

tr[M−1(ξ∗Ds
; θ)J(x ; θ)−M−1

22 (ξ∗Ds
; θ2)J22(x ; θ)]− s ≤ 0, x ∈ X
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Gaussian regression models (not necessarily nested):
T–optimality (Atkinson and Fedorov, 1975)

y = ηi (x , θi ) + ε, ε ∼ N(0, σ2), σ2 known, i = 1, 2

Let η(x) = η1(x , θ1) be the true (known) model.

T-optimality criterion

The T-optimality criterion function is the minimum sum of squares
for the lack of fit of the rival model:

T21(ξ) = inf
θ2

∑
x∈X

[η(x)− η2(x , θ2)]2 ξ(x)

The experiment should be designed to get the largest value of
T21(ξ): ξ∗T = arg maxξ T21(ξ)
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Interpretation of T–optimality

In the case of linear models: ηj(x , θj)=θTj fj(x), j = 1; 2

T21(ξ) = min
θ2

||F1θ1 − F2θ2||2, θ̂2 =(FT
2 F2)−1FT

2 F1θ1

= θT1 FT
1 [I − F2(FT

2 F2)−1FT
2 ]F1 θ1

T21(ξ) is proportional to the noncentrality parameter of F
test ζ(ξ; θ1) for testing:{

H0 : η(x) = θT2 f2(x)

H1 : η(x) = θT1 f1(x) + θT2 f2(x)

Interpretation

T-optimum design maximizes the power of the F test.
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Equivalence theorem

If ξ∗T is a regular design, i.e. if

Ω2(ξ∗T )=

{
θ̂2 : θ̂2(ξ)=arg min

θ2∈Ω2

∑
x∈X

[η(x)− η2(x , θ2)]2 ξ∗T (x)

}
,

is singleton, then a necessary and sufficient condition for a design
ξ∗T to be T-optimum is

[η(x)− η2(x , θ̂2)]2 −
∑
x∈X

[η(x)− η2(x , θ̂2)]2ξ∗T (x) ≤ 0, x ∈ X
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Comparison between T- and Ds-criteria

The Ds -optimum design ξ∗Ds
maximizes

∣∣M11(ξ)
∣∣−1

, therefore
in some sense it also maximizes the power of the F test.

When the rival models differ by one parameter, then M11(ξ)
−1

is a scalar and thus, T- and Ds -criteria are equivalent.

A disadvantage of Ds -optimality wrt the T-criterion is that it
can be used only for nested models. However, the Ds -criterion
is a more general tool as it can be applied to the Fisher
information matrix, and therefore it enables to discriminate
nested statistical models (not only regression functions).
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Rival statistical models (nested or not; Gaussian or not):
KL–optimality

Rival statistical models: f1(y , x , θ1) and f2(y , x , θ2).

Let f (x) = f1(y , x , θ1) be the true (known) model, which may
include or not the rival model f2(y , x , θ2) as special case.

Kullback–Leibler divergence between f1 and f2:

I [f1, f2] =

∫
f1(y , x , θ1) log

[
f1(y , x , θ1)

f2(y , x , θ2)

]
dy .

KL–optimality (López-Fidago, Tommasi and Trandafir ’07)

I2,1(ξ) = min
θ2

∫
X
I [f1(y , x , θ1), f2(y , x , θ2)] ξ(dx)

KL-efficiency of ξ with respect to the KL-optimum design

ξ∗KL = arg max
ξ

I2,1(ξ), 0 ≤ Eff2,1(ξ)=
I2,1(ξ)

I2,1(ξ∗KL)
≤ 1
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EQUIVALENCE THEOREM

Given a design ξ∗KL , if

Ω2(ξ∗KL) =

{
θ̂2 : θ̂2(ξ∗KL) = arg min

θ2∈Ω2

∑
x∈X
I(f1, f2, x , θ2) ξ∗KL(x)

}
,

is singleton, then ξ∗KL is KL-optimum if and only if

I(f1, f2, x , θ̂2)−
∑
x∈X
I(f1, f2, x , θ̂2) ξ∗KL(x)︸ ︷︷ ︸

ψ(x ,ξ∗KL)=∂I21(ξ∗KL,ξx )

≤ 0, x ∈ X
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Properties of the KL-criterion

Concavity: I2,1(ξ; θ1) is concave (Tommasi, 2007).

Upper semi-continuity: if the Kullback-Leibler divergence
I(x , θ1, θ2) is continuous with respect to x then I2,1(ξ; θ1) is
upper semi-continuous (May and Tommasi, 2014).

Continuity: Under some mild conditions on I(x , θ1, θ2) and
I2,1(ξ; θ1), the KL-criterion is continuous (Aletti, May &
Tommasi, 2014).

Invariance: If Z = {z = α + qx |x ∈ X} then the
KL-optimum design on Z is η∗KL(dz) = ξ∗KL(dx) where
z = α + qx and x ∈ X (Aletti, May & Tommasi, 2014).
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A first order algorithm for computing ξ∗KL

1 given ξs , find

θ2,s = arg min
θ2∈Ω2

∫
X

∫
Y

log
f1(y |x ; θ1)

f2(y |x ; θ2)
f1(y |x ; θ1) dy ξs(dx)

xs = arg max
x∈X

∫
Y

log
f1(y |x ; θ1)

f2(y |x ; θ2,s)
f1(y |x ; θ1) dy

2 Choose αs = arg max
β∈[0,1]

I2,1((1− β)ξs + βξxs ) and construct

ξs+1 = (1− αs)ξs + αsξxs ,

where ξxs is a design with measure concentrated at the single
point xs .
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A stopping rule for the algorithm

The directional derivative of I2,1(ξ; θ1) at ξ in the direction ξx − ξ is

ψ(x , ξ) = I(f1, f2, x , θ̂2)−
∑
x∈X
I(f1, f2, x , θ̂2) ξ(x)

Since [
1 +

maxx∈χ ψ(x ; ξ)

I2,1(ξ)

]−1

≤ I2,1(ξ)

I2,1(ξ∗KL)
≤ 1,

the iterative procedure stops at the step s if ξs is such that[
1 +

maxx∈χ ψ(x ; ξs)

I2,1(ξs)

]−1

> δ

where 0 < δ < 1 is a suitably choosen value, e.g. δ = .99.
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Regular designs

In the context of parameter estimation a design is regular if its
information matrix is non singular.

In the setting of discrimination between models a design is
regular if the following set is a singleton:

Ω2(ξ) =

{
θ̃2 : θ̃2(ξ) = arg min

θ2∈Θ2

∫
X
I(x , θ2) ξ(dx)

}
These definitions of regular designs are equivalent if
f2(y |x ; θ2) is a generalized linear model or a nonlinear
Gaussian model. For these models, the first order algorithm
(used to compute a KL-optimum design) converges whenever
the initial design ξ0 has a non singular information matrix
(Aletti et al., 2014).
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KL-optimality versus T- and Ds-criteria

1 For regression models with Normal error distribution, the
KL- optimality criterion coincides with

the T-optimality criterion, in the homoschedastic case;
the generalization of the T-optimality criterion provided by
Uciński and Bogacka (2004), in the heteroschedastic case.

2 For generalized linear models, the KL-criterion coincides
with the generalization of the T-optimality criterion provided
by Ponce de Leon and Atkinson (1992).

3 If f2 is nested in f1, then the Ds -criterion is a competitor of
the KL-criterion. Whereas, if the models are separate, the
KL-criterion is the only possibility.
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EXAMPLE 1: discrimination between copula models in
clinical trials (Deldossi, Osmetti, Tommasi, 2019)

When efficacy and toxicity are jointly studied, it is necessary to find
the right dependence structure between the responses probabilities.

Let x ∈ X denote the dose of a drug and (Y1,Y2) be a binary
efficacy-toxicity response variable.
Both Y1 and Y2 take values in {0, 1}.

B Success probability of efficacy:

π1(x ;α) = P(Y1 = 1|x ;α) =
eα0+α1x+α2x2

1 + eα0+α1x+α2x2

B “Success” probability of toxicity:

π2(x ;β) = P(Y2 = 1|x ;β) =
eβ0+β1x

1 + eβ0+β1x

α = (α0, α1, α2) and β = (β0, β1) are unknown coefficients
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A copula model for efficacy and toxicity

A copula C (·, ·; θC ) represents the dependence structure between
Y1 and Y2, as the joint probability can be expressed in terms of the
copula:

Toxicity
Efficacy 1 0

1 pC11 pC10 π1(x ;α)

0 pC01 pC00 1− π1(x ;α)

π2(x ;β) 1− π2(x ;β) 1

where pC11 =P(Y1 =1,Y2 =1|x ; δ, θC )=C
[
π1(x ;α), π2(x ;β); θC

]
and

pC10 = π1(x ;α)− pC11(x ; δ, θC ),

pC01 = π2(x ;β)− pC11(x ; δ, θC ),

pC00 = 1− π1(x ;α)− π2(x ;β) + pC11.
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The P-optimal dose depends on the copula function

Clinicians are interested in the optimal safe dose:

d∗p = arg max
d∈D

pC10(d ; δ, θC ),

where the design region X has been transformed into D = [−1, 1]
through

d =
x − (xmin + xmax)/2

(xmax − xmin)/2
∈ D = [−1, 1].

Motivation of the discriminating between rival copulas

The P-optimal dose d∗P may change considerably under different
dependence structures, therefore it is necessary to discriminate
between rival copulas.
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Discriminating Clayton versus Gumbel copulas

Copula C (u1, u2; θC ) θC ∈ ΘC

Clayton (u−θCl1 + u−θCl2 − 1)−1/θCl θCl ∈ [0,∞)

Gumbel exp
(
−
[
{− ln(u1)}θG + {− ln(u2)}θG

]1/θG) θG ∈ [1,∞)

Assuming as true model the Clayton Copula (with θCl = 2), and
setting (α0, α1, α2) = (−.5, 1, 0) and (β0, β1) = (0, 1), from the
application of the first order algorithm, we obtain

ξ∗KL =

{
-1 1
0.58 0.42

}
which is optimal as shown by the figure of directional derivative:

-1.0 -0.5 0.5 1.0

-0.015

-0.010

-0.005
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Designing to detect model heteroscedasticity (Lanteri,
Leorato, Lopez-Fidalgo, Tommasi, 2023)

Non-linear Gaussian regression model

yi = η(xi ;β) + εi , εi ∼ N(0;σ2h(xi ; γ)), i = 1, . . . , n

The error variance depends on the experimental conditions
through a specific positive function: h : Rp × Rs 7→ R+.

β ∈ Rm, σ2 and γ ∈ Rs are unknown parameters, such that
γ0 leads to the homoscedastic model, i.e. h(xi ; γ0) = 1.

Inferential goal: to test local alternatives{
H0 : γ = γ0

H1 : γ = γ0 + λ√
n
, λ 6= 0

by applying a likelihood-based test (log-likelihood ratio, score or
Wald test).
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Noncentrality parameter of a likelihood-based test

Noncentrality parameter

Under local alternatives, H1 : γ = γ0 + λ/
√
n, a likelihood-based

statistic is asymptotically distributed as a chi-squared r.v. with s df
and noncentrality parameter:

ζ(ξ;λ; γ0) = λTM22.1(ξ; γ0)λ

where M22.1(ξ; γ) = M22 −MT
12M

−1
11 M12 is the Shur complement

matrix of M22 in the following partition of the Fisher information
matrix

M(ξ;β, σ2, γ) =

[
M11 M12

MT
12 M22

]
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Noncentrality parameter and Ds-optimality

Let us recall that the asymptotic covariance matrix of MLE
(β̂, σ̂2, γ̂) is

M(ξ;β, σ2, γ)−1 =

[
M11 M12

M21 M22

]
Therefore, asymptotic covariance matrix of γ̂ is
M22 = [M22.1(ξ; γ)]−1 and the Ds -optimum design for γ is

ξDs = arg min
ξ
|M22| = arg max

ξ
|M22.1(ξ; γ)|.

Ds -optimality (at γ0): a criterion for testing hypothesis

ξDs = arg maxξ |M22.1(ξ; γ0)| maximizes in some sense ζ(ξ;λ; γ0)
(for any value of λ).
In the scalar case (s = 1), the ξD1 maximizes exactly the
noncentrality parameter.
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Analytical expression of the D1-optimum design

Ds -optimality for γ is equivalent to D-optimality

The Ds -optimum design for γ coincides with the D-optimum
design for estimating (α0, α

T ), with αT = (α1, . . . , αs), in the
following linear regression model:

yi = α0 + αT∇ log h(xi ; γ) + εi , εi ∼ N(0;σ2), i = 1, . . . , n,

where ∇ log h(x ; γ) =
(
∂ log h(x ;γ)

∂γ1
, . . . , ∂ log h(x ;γ)

∂γs

)T
.

Scalar case: D1-optimal design

ξD1 =

{
argminx

∂ log h(xi ;γ)
∂γ

∣∣∣
γ=γ0

argmaxx
∂ log h(xi ;γ)

∂γ

∣∣∣
γ=γ0

0.5 0.5

}
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Analytical expression for the KL-optimum design

Usually, the KL-optimum design must be computed numerically
and the computation may be cumbersome.

KL-optimum design to discriminate
εi ∼ N(0;σ2h(xi ; γ1)) vs εi ∼ N(0;σ2), where γ1 = γ0 + λ√

n

I2,1(ξ; γ1) = 1 + logAh − logGh

where Ah =
∑k

i=1 h(xi ; γ1) ξ(xi ) and Gh =
∏k

i=1[h(xi ; γ1)]ξ(xi ) are
the arithmetic and the geometric means h(xi ; γ1), i = 1, . . . , k,
respectively.

ξKLγ1
= arg max

ξ
I2,1(ξ; γ1) =

{
arg inf

x
h(x ; γ1) arg sup

x
h(x ; γ1)

ω 1− ω

}
,

ω =

(
h

h − h
− 1

log h − log h

)
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KL-criterion and noncentrality parameter

From a Taylor expansion of I2,1(ξ; γ1) = 1 + logAh − logGh at γ0:

Connection between KL-criterion and noncentrality parameter

I2,1
(
ξ; γ1

)
= I2,1

(
ξ; γ0+

λ√
n

)
= 1 +

1

n
ζ(ξ;λ; γ0) + O

(
||λ||3

n
3
2

)
.

This expansion holds uniformly in ξ, therefore as n→∞,

ξKLγ1
= arg sup

ξ
I2,1(ξ; γ1)→ arg sup

ξ
ζ(ξ;λ; γ0)

ξKLγ0
maximizes the noncentrality parameter

ξKLγ1
→ ξKLγ0

=

{
x x

0.5 0.5

}
therefore, ξKLγ0

maximizes the noncentrality parameter ζ(ξ, λ, γ0).
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EXAMPLE 2: The Hill model

The Hill model

y = η(x , β) + ε =
(Econ − b) · (x/IC50)s

(1 + (x/IC50)s)
+ b + ε,

is widely applied in dose-response contexts, biology and
enzymatic kinetics.

Physical interpretation of the parameters:Econ the effect on
the control for dose x = 0, b the asymptotic value of the
response when x →∞, IC50 corresponds to the value for
which the response would be the middle of the range Econ − b
and finally s is a shape parameter s > 0 makes the response
strictly increasing and s < 0 strictly decreasing.

The random error term may be: ε ∼ N (0, σ2) (constant
absolute error), or ε ∼ N (0, σ2 η(x , β)2) (constant relative
error).
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Constant absolute error vs constant relative error

To decide in favour of one of the two error-variance
structures, we compute the KL-optimum design (setting
β = (Econ, b, IC50, s)T = (1.70, 0.137, 111,−1.03)T and
X = [0.01, 1500]):

ξ?KL =

{
0.01 1500
0.23 0.77

}
,

that does not allow to estimate all the parameters of the
model.

The KL-optimum design has only 2 support points, therefore
the parameters of the Hill model cannot be estimated.

The aim of a design should be dual: to discriminate
between the rival models and to estimate efficiently the
parameters of the models.
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MODEL DISCRIMINATION AND PARAMETER
ESTIMATION

Background

Nested regression models with Gaussian errors:
DD1-criterion: Dette (1993).
DDs -criterion: Tsai and Zen (2004) and Zen and Tsai (2004).
DT-criterion: Atkinson (2008).

DKL-optimality criterion (Tommasi, 2009):

ΦDKL(ξ)=
(

I21(ξ)
I21(ξ∗21)

)α1
(

I12(ξ)
I12(ξ∗12)

)α2
(
|M1(ξ)|
|M1(ξ∗D1

)|

)α3
m1

(
|M2(ξ)|
|M2(ξ∗D2

)|

)α4
m2

,

4∑
i=1

αi=1

DKL-optimum design: ξ∗DKL = arg maxξ log ΦDKL(ξ)

May and Tommasi (2013) generalize the DKL-optimality to
the case of several nested non-linear models. They also
provide a sequential version of their criterion which
asymptotically selects the true model and converges to the
D-optimum design for the true model.
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BAYESIAN KL-CRITERION

Drawback of KL-criterion

The KL-criterion depends on the unknown parameters θ1 of the
assumed known model f1(y ; x , θ1): ξ∗KL is only locally optimum.

Standardized Bayesian KL-criterion:

I SB(ξ)=π1 Eθ1

[
I2,1(ξ,θ1)

I2,1(ξ∗2,1,θ1)

]
+(1− π1)Eθ2

[
I1,2(ξ,θ2)

I1,2(ξ∗1,2,θ2)

]
I2,1(ξ; θ1) and I1,2(ξ; θ2) may have different magnitudes for
this reason they are standardized.

Standardized Bayesian KL-optimum design:

ξ∗SB = arg max
ξ

I SB(ξ),

which does not depend any more on the nominal values for
the parameters.
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KL–optimality for several models

Rival models: fi (y , x , θi ) with i = 1, . . . , k.

Extended model: fk+1(y , x , θk+1), which includes each fi (y , x , θi )
as a special case.

Kullback–Leibler divergence between fk+1 and fi :

I [fk+1, fi ] =

∫
fk+1(y , x , θk+1) log

[
fk+1(y , x , θk+1)

fi (y , x , θi )

]
dy .

KL–optimality to discriminate between fi and fk+1

Ii ,k+1(ξ) = min
θi

∫
X
I [fk+1(y , x , θk+1), fi (y , x , θi )] ξ(dx)

KL-efficiency of ξ with respect to the KL-optimum design

Eff i ,k+1(ξ)=
Ii ,k+1(ξ)

Ii ,k+1(ξ∗i )
, ξ∗i = arg max

ξ
Ii ,k+1(ξ)
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Generalized KL–criterion

Generalized KL–criterion (Tommasi ’07)

Iα(ξ)=
k∑

i=1

αi Eff i ,k+1(ξ), αi ≥ 0,
k∑

i=1

αi = 1

Equivalence Theorem

ξα is a Generalized KL-optimum design, i.e. ξα = arg max
ξ

Iα(ξ), iff
k∑

i=1

αi

[
Isi ,k+1(x)−

∫
X
Isi ,k+1(x) ξα(dx)

]
≤ 0, x ∈ X

Standardized Kullback–Leibler divergence:

Isi ,k+1(x) =
I [fk+1(y , x , θk+1), fi (y , x , θ̂i )]

Ii ,k+1(ξ∗i )
, where

θ̂i = arg min
θi∈Ωi

∫
X
I [fk+1(y , x , θk+1), fi (y , x , θi )] ξ∗i (dx).
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Minimum KL–efficiency criterion

Minimum KL–efficiency criterion (Tommasi, Mart́ın-Mart́ın,
López-Fidalgo, 2015)

Im(ξ) = min
i∈{1,...,k}

Eff i ,k+1(ξ)

Motivation: Im(ξ) gives equal efficiencies to those models that are
more difficult to be discriminated.

Equivalence Theorem

ξ∗m is a max-min KL-efficiency design, i.e. ξ∗m = arg max
ξ

Im(ξ), iff

there exists a set of weights α∗i on the index set of the models with
the same minimum efficiency, i.e.

C(ξ∗m) =

{
arg min

i∈{1,...k}
Eff i ,k+1(ξ∗m)

}
, such that∑

i∈C(ξ∗m)

α∗i

[
Isi ,k+1(x)−

∫
X
Isi ,k+1(x) ξ∗m(dx)

]
≤ 0, x ∈ X
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Properties

The Equivalence Theorem cannot be used to check for the
minimum KL–efficiency optimality of a design, because both
the index set C(ξ∗m) and the weights α∗i on C(ξ∗m) are
unknown.

A max-min KL-efficiency design is always a Generalized
KL-optimum design.

This suggests to search the max-min KL-efficency design
ξ∗m = arg max

ξ
min

i∈{1,...,k}
Eff i ,k+1(ξ) in the class of the

Generalized KL-optimum designs:

ξα = arg max
ξ

Iα(ξ), αi ≥ 0,
k∑

i=1

αi = 1

.
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Corollaries of the Equivalence Theorem

Corollary 1

A max-min KL–efficiency design: ξ∗m = arg max
ξ

min
i∈{1,...,k}

Eff i ,k+1(ξ)

is also optimum for the optimality criterion min
i∈C(ξ∗m)

Eff i ,k+1(ξ).

Corollary 2

If for any subset A ⊆ {1, 2, . . . , k}, such that #A ≤ l < k , the
max-min KL–efficiency design to discriminate among models
{fi : i ∈ A} is not optimum to discriminate among all the k
models, then #C(ξ∗m) is at least equal to l + 1.

Corollary 3

A design ξ∗i = arg maxξ Eff i ,k+1(ξ), which is KL–optimum to
discriminate between fi and fk+1, cannot be a max-min
KL–efficiency design, for any i = 1, . . . , k. In other words #A 6= 1.
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Iterative algorithm

1 Set l = l + 1, l = 1, . . . , k − 1.

2 For a subset of l models {fi : i ∈ A} with A = {i1, . . . , il},
find the α̃ for which the corresponding Generalized
KL-optimum design

ξα̃ = arg max
ξ

l∑
j=1

α̃j · Eff ij ,k+1(ξ), satisfies

Eff i1,k+1(ξα̃) = Eff i2,k+1(ξα̃) = · · · = Eff il ,k+1(ξα̃). (1)

3 If
Effr ,k+1(ξα̃) > Eff i1,k+1(ξα̃) = · · · = Eff il ,k+1(ξα̃),

r 6= ij ; j = 1, . . . , l (2)

then STOP, since α̃ = α∗ and thus ξα̃ = ξ∗m.
Else, try another subset of l models and go to Step 2.

4 If for any subset of l models the corresponding ξα̃ under
restriction (1) does not satisfy (2), then go to Step 1.
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EXAMPLE 3: logistic regression models

Rival models (they belong to the same class of models):

Pi (Y = 1; x , θi ) = eηi (x,θi )

1+eηi (x,θi )
, X = [0, 1]

η1(x , θ1) = θ1,1x

η2(x , θ2) = θ2,0 + θ2,1x

η3(x , θ3) = θ3,1x + θ3,2x
2

A reasonable extended model corresponds to the following
predictor function:

η4(x , θ4) = θ4,0 + θ4,1x + θ4,2x
2.

Nominal values: θ4,0 = θ4,1 = θ4,2 = 1.
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Numerical computation of max-min KL-efficiency designs

Step 1. For a pair of models (Pi1 ,Pi2), find α̃ and compute

ξα̃ = arg max
ξ

[α̃ · Eff i1,m(ξ) + (1− α̃) · Eff i2,m(ξ)]

for which Eff i1,m(ξα̃) = Eff i2,m(ξα̃).

Step 2. If
Eff i3,m(ξα̃) > Eff i1,m(ξα̃) = Eff i2,m(ξα̃) (3)

STOP since ξα̃ = ξ∗m. Else try another couple of
models and go back to Step 1.

Step 3. If for any pair of models condition (3) is never
satisfied, then the max-min KL-efficiency design is

ξ∗m = arg max
ξ

Eff i1,m(ξ)

under the common efficiency restriction:

Eff i1,m(ξ) = Eff i2,m(ξ) = Eff i3,m(ξ)
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Subset {P1,P2}

Eff14HΞΑ

*L

Eff24HΞΑ

*L
0.5975 1

Α

0.628

1
Efficiencies

α̃ = .5975 and ξ
∗(1,2)
α̃ =

{
0. 0.344875 1.

0.610709 0.245741 0.143551

}
is not the max-min KL-efficiency design since

Eff3,4

(
ξ
∗(1,2)
α̃

)
= .611 < Eff1,4

(
ξ
∗(1,2)
α̃

)
= Eff2,4

(
ξ
∗(1,2)
α̃

)
= .628.
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Subset {P1,P3}

The Generalized KL-optimum is concentrated at the point x = 0

for any value of α, that is ξ
∗(1,3)
α = ξ0.

Eff2,4(ξ0) < Eff1,4(ξ0) = Eff3,4(ξ0) = 1, thus ξ0 cannot be the
max-min KL-efficiency design.
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Subset {P2,P3}

Eff24HΞΑ

*L

Eff34HΞΑ

*L

0.408 1
Α

0.618

1
Efficiencies

α̃ = .408 and ξ
∗(2,3)
α̃ =

{
0. 0.361548 1.

0.618394 0.239079 0.142527

}
Eff1,4(ξ

∗(2,3)
α̃ ) = .633 > Eff2,4(ξ

∗(2,3)
α̃ ) = Eff3,4(ξ

∗(2,3)
α̃ ) = .618,

therefore ξ
∗(2,3)
α̃ is the max-min KL-efficiency design.
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Ongoing research in discrimination problems

This algorithm for computing max-min efficiency designs is
very slow and may give numerical problems if the rival models
are not smooth enough. Chen et al. (2020) have used the
particle swarm optimization (PSO) to numerically search
KL-optimum designs. In collaboration with Pozuelo-Campos,
Casero-Alonso, López-Fidalgo and Wong, we are applying the
PSO algorithm to discriminate among several random effects
linear models.

When θi ∼ N(bi ;σ
2Ti ), with i = 1, 2, the KL-criterion has

the same interpretation of the T-criterion:

I2,1(ξ) = min
b2

||F1b1 − F2b2||2Σ−1
1
,

where || · ||Σ−1
1

denotes the norm which corresponds to the

inner product < v ,w >Σ−1
1

= v ′Σ−1
1 w and Σ1 = I + F1 T1 F

′
1.

Tommasi Chiara Optimally discriminating designs



References

Aletti, May and Tommasi. KL-optimum designs: theoretical properties and practical
computation. Statistics and Computing, 2014.

Atkinson. Planning experiments to detect inadequate regression models. Biometrika,
1972.

Atkinson and Cox. Planning experiments for discriminating between models. JRSSB,
1974.

Atkinson and Fedorov . The design of experiments for discriminating between two
rival models (several models). Biometrika, 1975 (a, b).

Biedermann, Dette and Pepelyshev. Optimal discrimination designs for exponential
regression models. JSPI, 2007.

Braess and Dette. Optimal discriminating designs for several competing regression
models. Annals, 2013.

Dette, Melas, Pepelyshev, and Strigul. Efficient design of experiments in the monod
model. JRSSB, 2003.

Dette and Titoff. Optimal discrimination designs. Annals of Statistics, 2008.

Deldossi, Osmetti, Tommasi. Optimal design to discriminate between rival copula
models for a bivariate binary response. TEST, 2019.

Tommasi Chiara Optimally discriminating designs



References
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Thanks for your attention!
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