L'horloge circadienne, le cycle cellulaire et leurs interactions

Nature Reviews | Cancer

Madalena CHAVES

What do all these living organisms have in common?

Neurospora crassa

Mus musculus

Arabidopsis thaliana

Drosophila melanogaster

Synechococcus elongatus Cyanobacteria in Baltic sea

Cell cycle

• Cell cycle is the process by which cells growth and divide

Circadian rhythms

- Anticipate environment cycles (day/night) and prepare living organism for upcoming events (eg., expressing required genes)
- Generate an AUTONOMOUS molecular clock: cycle goes on independently of other cellular processes
- Temperature compensation: cycle always adjusts to 24h

2017 Nobel Prize

- J. Hall and M. Rosbash (1984) first to identify **gene "period"**, responsible for circadian rhythm in drosophila
- Hypothesis: protein PER contributes to eventually repress its own gene, thus creating a negative feedback loop

Drosophila Melanogaster → mouche du vinaigre

Figure 1. Molecular Map of Subciones in the per Region Used in Transformation with Reference to Chromosomal Preskonints and Transcripts from

Generates an oscillatory Cycle !

PER protein accumulates during the night

Zehring,..., Hall and Rosbash, Cell 1984

A basic negative feedback loop is not enough

- How to guarantee that oscillations are sustained ?
 - \rightarrow increase the number of steps:

A basic negative feedback loop is not enough

- How to guarantee that oscillations are sustained ?
 - \rightarrow increase the number of steps:
- How to generate a **24 hour cycle** ?

Other proteins are involved that impose "waiting" times

"timeless" (TIM) and "doubletime", discovered by M. Young 1994, 98

Circadian clock in Drosophila

Similar clock mechanisms across organisms

Autonomous clock: cyanobacteria

"In vitro" system: only proteins in a test tube; no genes, no transcription or translation involved !

Oscillations are due to an ordered cycle of phosphorylations and dephosphorylations of a protein, Kai C

Kondo lab, 2005-2007, Rust et al. 2007

Modeling cyanobacteria clock

Need to **calibrate model** that is find the values of parameters: $k_A, k_T, k_{TS}, k_S, \gamma_A, \gamma_T, \gamma_{TS}, \gamma_S, ...$

Chaves & Preto, Chaos 2013

Model calibration

Experiment 1 Dephosphorylation

Experiment 2 Phosphorylation

Data sets: Rust et al, Science 2007

Model validation

Values of parameters were obtained from **two distinct sets of** experiments, each for a "partial" model.

Putting all parameters together yields the correct oscillatory solution!

Data vs. model comparison

Values of parameters were obtained from **two distinct sets of** experiments, each for a "partial" model.

Putting all parameters together yields the correct oscillatory solution!

Model analysis

PREDICTION: there exist critical points in the periodic orbit, where the system my be perturbed and the **circadian cycle arrested** – such as when adding a large amount of Kai A.

Model predictions: response to light

Phase response to 5h pulses of ADP, applied at different instants during the circadian cycle. This experiment mimics clock entrainment by light – which varies the ratio ATP/(ATP+ADP).

Cell cycle and circadian rhythms How do they interact?

- The general belief (cf. cyanobacteria): autonomous molecular clock
- Very few possible links are known from clock to cell cycle (Bmal1 → Wee1)
- Almost no knowledge on how cell cycle affects clock (at mitosis gene expression shuts down)

Cell cycle and circadian rhythms How do they interact?

Gating (cell division allowed only at certain clock phases)

> Observed in Cyanobacteria

Independent?

Coordinated?

No gating in mammals

Mammalian clock and cell cycle experiments

Feuillet et al, PNAS 2014 (Delaunay Lab) (Cells: mouse fibroblasts)

Red: cell cycle, G1 phase cells are growing

cells are getting ready to divide

Reverba::Venus

Green: clock, high phase right after division

Mammalian clock and cell cycle experiments

Feuillet et al, PNAS 2014 (Delaunay Lab) (Cells: mouse fibroblasts)

Change the cell cycle period ?

Apply different concentrations of growth hormone

- cell cycle period decreases
- clock decreases by same amount
- 1:1 lock

Evidence in favour of:

cell cycle clock

Mammalian clock and cell cycle experiments

Feuillet et al, PNAS 2014 (Delaunay Lab) (Cells: mouse fibroblasts)

Change the clock period ?

Apply a drug that synchronizes cells clock, dexamethasone

synchronized cells

- two subpopulations (20% fbs):

1:1 lock

3:2 (cc:clock)

Evidence in favour of:

cell cycle

clock

How to identify the coupling mechanism ?

Mammalian Clock + Cell cycle Too complex!

How to identify the coupling mechanism ? \rightarrow SYNTHETIC BIOLOGY APPROACH

collaboration F. Delaunay Lab

→ DYNAMICAL ANALYSIS & PREDICTIONS

Reduced cell cycle model

S. Almeida et al, IFAC 2017

Interconnecting cell cycle and clock

Interconnecting cell cycle and clock

- Each oscillator has a different "individual" period
- When coupled, the two oscillators synchronize 1:1 (or stop oscillating)
- Question 1: range of periods over which the two oscillators synchronize?
- Question 2: is an oscillator either a "controller" or a "follower" ?

ie., is the final period closer to the clock or cell cycle individual periods?

Characterize dependence of these observations on the coupling strength

In summary

Cell cycle and circadian rhythms: Are they interconnected? And how? Many questions ! A current and lively topic

- Synthetic biology approach: minimal circuit design with desired properties
- Our tools: model reduction, mathematical analysis, and control

Merci !

