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Context: particles in flows

m/lain ISsue: \

— Dynamics of particles in flow

— Dispersion
n! @
a 'Q ;e -
* Keywords AT
— Transport
— Dispersion

— Deposition/resuspension

— Clogging

\ — Agglomeration /
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Context: elongated particles in flows

* Environmental issues

— Branches/leaves in urban areas and marine systems

..-' s, ) o
-+ Deposition

Leaves in a manhole
(source: internet)

Leaves in a rain gutter
(source: internet)

Transport

Leaves in rivers
(source: internet)

I Clogging
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Context: elongated particles in flows

* Environmental issues
— Branches/leaves in urban areas and marine systems

— Dynamics of plastic in marine systems
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Plastic debris in oceans Plastic debris on riverbanks or beaches
(source: internet) (source: internet)
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Context: elongated particles in flows

/Environmental iIssues

— Branches/leaves in urban areas and marine systems

— Dynamics of plastic in marine systen{s

— Dynamics of plankton in oceanszﬁ;\\

Agglomeration

Chains of diatoms in the ocean
(source: internet)
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Context: elongated particles in flows

Klndustrial Issues \

— Papermaking industry

Crown with branches | i
5'.’"", Pith ~_  Adultwood . 2y TLIM () = 7\2 "*74\1 j'l :
ey S .;}/% 4 OwaiI:rler suspension ’25’ u/\_ﬁ&’ ;o
S e : Q N .‘9 AQ tW‘i
: 3 T 5 i g i e :
> QAN AR
\ o i = Water flowing in a structured fiber network

Wood cell wall
¥ . Middle Lamella \
“Different cell wall layers TABLE DE FORMATION FRESSES SECHERIE FINTTION - EXROULEUSE
Microfibril composed of elementary fibrils embedded i
/matrix of hemicellulose and lignin Entanglement

Cellulose chain

-

0 PR Re . .
s ] " Fiber suspension used for paper
2 A My S (source: internet)
Structure of wood fibers
(source: internet)
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Context: elongated particles in flows

* Industrial issues
— Papermaking industry

— Branches/leaves/fishes in pump systems

Thermal Power Plant: Once-Through Cooling
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Sketch of a thermal power plant
(source: internet)
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Fouled filtration system in a pump
(source: internet)
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Context: elongated particles in flows

/Summary of the main processes: \
Orientation a g e, IS >

Transport

(turbulent) \ O '\‘/ Shape
Q ;

-
--------
-
= -
-

Deposition Resuspension

\ - A large range of processes/Imechanisms /
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Context: elongated particles in flows

* Various type of particles involved

1A 1 nm 1 pum 1 mm 1m

Pmlmryotesé
: (e.g. protei / (Egbafterlﬂ} L
L SEEEEEEEEEEERE NN Eukaryotes

: | (e.g. plant, fungus, animal)

> Organisms

Sediment-
ology

buspemled tlusl SR BN R

I

: | | Atmospheric
| H

|

particulate
matter

. |
Gas | Soot |

| 5
. i Smoke

— A large range of spatial and temporal scales
- A large range of applications

C. Henry C@fé-In: INRIA Sophia Antipolis SN2 7




Context: elongated particles in flows

KScientific domains involved \

Field
— Fluid dynamics (drag and lift forces)
— Physico-chemistry of interfaces (adhesion forces)
— Material physics (kesistance, heterogeneities)
— Solid mechanics e q}stic/elastic deformations)
— Biology ¥ [ofganisms)
— Granular matter (complex network of granular media)
— Surface hydrology (plastic in riverbeds)
=T e

\ - Highly multidisciplinary topic /
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Main iIssue encountered

* Dynamics of deformable elongated particles

— Tumbling & buckling instabilities

Tambling : ,‘H- . : i i : #“ E
£,/L = 3.75 & i i

A=29x10° | & — — s \ | / - o — S
€ Buckling E

bp/L =29

i=39x 103 — — N\ 9 9 ) ) e g

I Turn

£, /L =124

B=53x 107 o e e R /——~__,....-——- g

Evolution of a filament 20 um filament in a shear flow
(source: Liu et al., ArXiv, 2018)
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Main iIssue encountered

ﬂynamics of deformable elongated particles \

— Tumbling & buckling instabilities

(c) 1

L]
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Buckling of 10 um filaments in a shear flow End-to-end length L as a function of the shear/stress rate
(source: Kanstler & Goldstein, PRL, 2012, 108, 038103)
- How do rods deform and break?
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What is deformation or breakup?

A/Iechanics of materials \

— Stress = force per unit area (N/m?)
a) Compression
b) Tension
c) Shear _
| 3 b C

o

Material being loaded
(source: internet)

— Strain / deformation = change of geometry

Deformation under loading
(source: internet)
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What Is

deformation or breakup?

A/Iechanics of materials

€.

F

F
— Elasticity =
* Young modulus E
* Yield stress
— Plasticity =

= Relation between stresses and strain

\stress o=F/A

~_

yield fracture
X

linear area _
o=E& strain &

/

ability to deform
= measure of the stiffness
= threshold before permanent deformation

unrecoverable strain

* Compressive stress = threshold before compressive failure/fracture

* Tensile stress

= threshold before tensile failure/fracture

K
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Case of elongated particles

KCase considered: \

— Rod of length L
— Radius r, (circular cross-section)

Definition of rod:
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Case of elongated particles

/Case considered: Definition of rod:
L>r,
: : . /
— Rod of size L and radius r, A

* Kirchhoff equations

— Energies due to:

* Bending
* Twisting

 Stretching

Undeformed

C. Henry C@fé-In: INRIA Sophia Antipolis 19/ 37

s




Case of elongated particles

KCase considered: \

— Rod of size L and radius r,

* Kirchhoff equations “‘k :
— Energies due to: - } 7 3
* Bending (energy per Iength’)f,f Eb — %E] le /

» Twisting ' / | h'\ ! / Radius, }
\

 Stretching
A
5.
» =
o
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Case of elongated particles

KCase considered: \

— Rod of size L and radius r,

* Kirchhoff equations ™

— Energies due to: .
* Bending

o
r ‘
« Twisting (energy per length) Ef — lGJ 6"2
 Stretching / :

-
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Case of elongated particles

KCase considered:

* Kirchhoff equations
— Energies due to:
* Bending
* Twisting

Undeformed

— Rod of size L and radius r,

-

. .

ff

 Stretching (energy per length) _E'q — 1 EA E

Val

Undeformed

S
rmed ;
Stretch, ¢ — LE:[}
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Case of elongated particles

/Specific case: Euler-Bernoulli equation \

— Valid for slender rods (L >>r,)

— Isotropic and homogeneous material

— Under Hooke's law _ SN
(linearly elastic) g = E E >

— Pure bending g -

— Relation between beam's deflection (w) and applied load (q)

dil
EI— — g(z).
da?

\ with E the Young modulus and | the moment of area /
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How dry spaghettis break under load?

ﬁroblem (known as Feynman conjecture) \

—  What happens when spaghettis are bent between the two ends?

Picture of the fracture device
(Taken from Heissner et al.,
PNAS, 2018, 115, 8665)

€. K
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How dry spaghettis break under load?

A:Woblem (known as Feynman conjecture) \
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How dry spaghettis break under load?

ﬂroblem (known as Feynman conjecture)

—  What happens when spaghettis are bent between the two ends?

o

100 degrees

S
5

F
Image of a spaghetti breaking
(Taken from Heissner et al., PNAS, 2018, 115, 8665)

- Does it always break in several pieces?

~

C. Henry C@fé-In: INRIA Sophia Antipolis

EABa3 7



How dry spaghettis break under load?

ﬂroblem (known as Feynman conjecture) \

— Does it always break in several pieces?

Video

- Binary
breaking

Video

_——
o
S

- Multiple
fragments

500 mm/s

Image of a spaghetti breaking at two quenching speeds

(Taken from Heissner et al., PNAS, 2018, 115, 8665)
\ - How does breaking depends on quenching? /
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How dry spaghettis break under load?

ﬁ:’roblem (known as Feynman conjecture)

— How does breaking depends on quenching?

(c) 18 8 (d) o2s (e) 8
L ® » o 02f
_ e o090 ° 2 8
Etlggq © o @ £ 015} 8
L g el Mo =
5 g 0 = 2 2
g a o = $ 01} f::E’4
2 14t @ o CE,, 5
— £ o =
R R ! T PR o3 & c
- e 8,%°° 88 & ¢ e
.! @ = —_— Ay # —_— N~y
121 o0 0.05¢
100 10° 107 100 2 100 10 102 10° 2 10° 107 108
Quench speed (mm/s) Quench speed (mm/s) Quench speed (mm/s)
Bristle elastic rods fractured by quenching
(Taken from Heissner et al., PNAS, 2018, 115, 8665)
— Curvature at breaking — Power-law scaling of the — Asymptotic power-law for
independent of quenching minimum fragment length the number of fragments

\ — What leads to multiple fragmentation? /

C. Henry C@fé-In: INRIA Sophia Antipolis 29/ 37




How dry spaghettis break under load?

ﬂroblem (known as Feynman conjecture) (&) \

— What leads to multiple fragmentation? £ e
E :
9
£
E
=
=
Ly
ecture geseace obSSISEEIESDC I Simulations showing bending waves after breakage
(Taken from Heissner et al., PNAS, 2018, 115, 8665) (Taken from Heissner et al., PNAS, 2018, 115, 8665)|
— Fracture cascade due to bending waves
\ - Is there another way to avoid multiple braekage? /
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How dry spaghettis break under load?

ﬂroblem (known as Feynman conjecture)

— Is there another way to avoid multiple breakage?

()

330 degrees

x107

(d) X1
€

8 155
E’ 1.0 %
S 05 ®
& i+
oo

Observation and simulation of breakage using twisting and quenching
(Taken from Heissner et al., PNAS, 2018, 115, 8665)

K - Use of twist

~
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How dry spaghettis break under load?

(€)

Limit curvature (m”)

ﬁ:’roblem (known as Feynman conjecture)

Is there another way to avoid multiple breakage?
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0 50 100 150 200 250 300 350

Twist (degrees)

Video

Video

Phase diagram for breakage at different twist angles
(Taken from Heissner et al., PNAS, 2018, 115, 8665)

€.

— Twisting favors binary breakage

— What is the role of twisting?

~

v
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How dry spaghettis break under load?

ﬂroblem (known as Feynman conjecture) \

— What is the role of twisting?

(f) 25
— 0,=1.9x10"Nm*

20} -- oM=19x10"Nm2 | |3 @
E -- 0°=5.3x 10" Nm? 3
= 15} '©
= &
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3 10 ~ W25 3
E S
3 g 2

0 2

L I L 1
0 50 100 150 200 250 300 350
Twist (degrees)

Evolution of the critical curvature for breakage with twisting angle
(Taken from Heissner et al., PNAS, 2018, 115, 8665)

\ — Twist waves lower the critical curvature for breakage /
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How dry spaghettis break under load?

ﬂroblem (known as Feynman conjecture) \

— What is the role of twisting?

x107

A=2mm

—
330 degrees &

Simulations showing bending -?a) and twisting (b) waves after breakage
(Taken from Heissner et al., PNAS, 2018, 115, 8665)

— Twist waves lower the critical curvature for breakage
- Twist waves propagate faster
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Conclusion and perspectives

ﬂ'ake home message \

— Patrticles in flow:

¢ Complex shapes
* Complex dynamics (deformation, breakage)

— Deformation and breakage: _
* Role of compression, tension and shear

- Material dependent T

— Specific case of spaghettis

* Multiple breakage due to bending wave propagation

* Binary breakage favored by twisting

% v
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Thank you for your attention

And happy cooking!

Any question?

‘
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