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Abstract

Implicit and explicit simulations of morphodynamical �ows are considered.

The physical problem is modeled through the shallow water equations cou-

pled with the Exner equation which describes the time evolution of the bed

pro�le. The formulae used to express the sediment transport �uxes are those

of the Grass model and of the Meyer Peter Müller one. The spatial discretiza-

tion of the equations is obtained using a �nite-volume method and a modi�ed

Roe scheme for non conservative systems. In this context previous studies

investigated the accuracy and e�ciency of linearized implicit schemes, car-

ried out with a strategy based on automatic di�erentiation to compute the

�ux Jacobians and on the defect correction approach to reach second-order

accuracy. These studies were carried out for Froude number equal to 0.1, and

it was shown that implicit time advancing was more e�cient than the explicit

one for slow and intermediate rates of interaction between the bedload and

the �ow.

The present study focuses on the same analysis by varying Froude num-

bers. In particular the relationship between the maximum CFL number al-

lowed by result accuracy in the implicit simulations and the parameter that

represents the speed of interaction between the �ow and the sediment trans-

port has been investigated at increasing Froude numbers. It is shown that

implicit solutions become less convenient when the Froude number increases,

but some di�erences exist depending on the sediment model used and the

way of varying the Froude value. The Ag-Fr couples for whom implicit so-

lutions are convenient have been identi�ed. The last part is about similar

investigations for 2D tests.
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Chapter 1

Literature survey and

Introduction

The problem of Shallow Water �ows is recurring in coastal and enviromental

engineering since studies on this topic can have a lot of interesting implica-

tions for these matters. Thus the literature is full of articles, studies and so

on about it, and it is always sensitive to new developments and tests. This

chapter contains a review of some of the recent approaches to such a problem,

in order to make a comparison with the models used and the results obtained

in the present work.

First, the traditional Shallow Water problem focuses just on the hydrodinam-

ical aspect because the bed-load is considered rigid, so no sediment transport

is involved. In order to consider the bedload evolution an other additional

equation must be added to the SWEs. Therefore, there is the morphologi-

cal part of the problem to be considered in addition to the hydrodinamical

one. At this point, it is possible to make a separation from those approaches

that consider the two aspects to be separated to those where the two compo-

nents are put together obtaining a coupled model. We focus on this category

of studies, analyzing then some characteristic in particular: the numerical

model used, the sediment transport formulae adopted and the results were

carried out.
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1.1 Numerical method

The system composed by the SWEs and by the equation that takes into

account the sediment transport, most of the times expressed by the Exner

equation [see for example 1, 29, 34, 37, 38], is rarely solved analytically

because of its complexity, so a numerical method is almost always used. Of

course, there is not a unique method to get a solution of this problem.

The well-established Roe's scheme has been modi�ed for sediment trans-

port problems [5, 11, 12, 13]. One of the drawbacks of this method could be

an increase of computational costs due to its treatment of the source terms.

Some authors extended the ENO (Essentially Non Oscillatory) andWENO

(Weighted Essentially Non Oscillatory) schemes to sediment transport prob-

lems [15] while others used the CWENO (Central Weighted Essentially

Non Oscillatory) scheme [8]. The central idea of these schemes is to com-

pute the smoothness for several possible stencils which cover a given region

of space and then interpolate this zone with hig order of accuracy using this

types of reconstruction via primitive function, developed by many authors.

Unfortunately, most ENO, WENO and CWENO method, that solve real

two-dimensional sediment transport problems accurately are still very com-

putationally expensive.

Numerical methods using discontinuous Galerkin techniques have also

been studied [30]: this method is a robust �nite element method that is par-

ticularly well suited for advection dominated transport equations. It incor-

porates upwind numerical �uxes and slope limiters to provide sharp reslution

of steep bathymetric gradients that may form in the solution, and it possesses

a local conservation property that conserves sediment mass on an element

level.

Numerical method based on relaxation approach have also been applied to

sediment tranport equations in [16]. Using this method, the nonlinear set of

equations is transformed to a semilinear diagonalizable problem with linear

characteristics variables. The relaxation stage is solved by an implicit-explicit

Runge-Kutta scheme while a second order MUSCL-TVD (Total Variation Di-

minishing) method is used for the advection stage. The principal advantages



of this approach are that neither Riemann problem solvers nor nonlinear it-

erations are required during the solution process.

However, most of these methods for unstructured grids present results with

an order of accuracy smaller than that expected. Besides this fact, it is known

that TVD schemes have their order of accuracy reduced to the �rst order in

the presence of shocks due to the e�ects of limiters. Unstructured meshes can

be highly advantageous based on their ability to provide local mesh re�ne-

ment near important bedload features and structures. As a consequence, the

ability to provide local mesh re�nement where it is needed leads to improved

accuracy for a given computational cost as compared to methods that use

structured meshes.

An other example of �nite volume solver is the Godunov-type method [16,

38, 41] based on dynamically adaptive quadtree grids. This particular grid

can be seen as an unstructured mesh that makes the application of SWEs

for complex geometries easier. Godunov scheme with an appropriate Rie-

mann solver can capture the steep water surface elevation gradient and for

the problem of interest it can be used where a dramatic water surface change

occurs, e.g. scour due to dam break �ow.

The Method of Characteristics (MOC) [28, 29] is for example one of the

well-known tools for the solution and analysis of unsteady open channel �ow

problems even if it has not been widely used for solving hyperbolic �udi �ow

problems. This is due to its relative complexity for coding when compared

to �nite volume methods. On the other hand, this method gives a visual

representation of �ow structure for 1D problems that can be used to pro-

vide valuable physical insight into the problem under consideration. More-

over MOC schemes comprise reliable quasi-analytical solutions for problems

where analytical examples are rare or not present at all, like those of �uid

�ow over an erodible bed. Furthermore, in problems where shocks do not

occur the MOC becomes a particularly attractive method, being the shock

one of the principal problems for this method.



1.2 Sediment transport formulae

Most of the studies on morphodynamic used the Grass formula for modeling

the sediment transport. This is due to the semplicity of this formulation: even

if it does not take into account all the fundamental mechanisms of sediment

transport, it is simple to be implemented. A more "realistic" model is then

o�ered by the Meyer-Peter Müller formula where the presence of a threshold

velocity helps to simulate in a more physical way the evolution of the bed

pro�le. Other recurring formulae for sediment transport in these papers are

described in Appendix.

1.3 Experiments and results

In order to validate and to test the e�ciency of the modelling of the problem

several numerical experiments were carried out in the literature. For the

large part these experiments are elementary examples, in order to assess was

the accuracy of the numerical simulations.

The sinusoidal bump that is the object of the simulations of this study is

a well-known case used for many of the works present in the literature [10,

16, 28]. Many of these tests were computed using the Grass formula for the

bedload sediment �ux, and so they focused on the evolution of the bottom

pro�le varying the parameter of interaction between the �ow and the bedload

using for all cases a Froude number of 0.1 [1, 8, 10, 15]. This is the classical

situation for performing this kind of simulations, as the starting point for the

investigations of this work, as it will be seen in the next chapters.

An anlysis carried out di�erent Froude numbers is [27] where one of the issues

was to investigate whether the traditional, decoupled approach or wheter the

coupled one is preferable. For a small Froude number, in terms of computa-

tional cost, the decoupled approach is preferable, also from the point of view

of reducing the amount of numerical di�usion in the modelling. Neverthless,

for high Froude numbers and a relatively mobile bed, the coupled approach

is clearly necessary.

One of the most popular simulations is represented by the dam-break



test [10, 28, 31]: this kind of �ow can be summarized as an uncontrolled

release of water �ow induced by partial or catastrophic failure of water re-

taining structures and therefore the it may be cause of serious �ooding to

downstream areas of the failed structure. These tests were carried out on

rigid beds, (this is an example of the traditional Shallow Water problem), or

mobile beds. For the purpose of the present study they are not very signi�-

cant, since they are characterized by sudden variations of the �ow conditions,

included the Froude number. Therefore, it is anticipated that implicit time

advancing is not well suited for this type of problem.

Experimental and real test cases applications represent probably the most

interesting part of the literature, since from them it is possible to understand

the goodness and the limits of the proposed models as well as future devel-

opments. There are many examples of such of these simulations [1, 3, 11, 18,

19, 28, 31, 39].

The last chapter of this work focuses on a comparison with a two-dimensional

test case analyzed in [1] in order to appreciate the accuracy of implicit sim-

ulations for a more complicated case than the one-dimensional one.

1.4 Aim of the present work

The present work is part of the research activity on the development and on

the validation of a strategy for implicit time advancing of the the shallow-

water equations coupled with the Exner equation, based on a defect-correction

approach and on a time linearization, in which the �ux Jacobians are com-

puted through automatic di�erentiation [4, 5, 6]. This time advancing strat-

egy was coupled with two di�erent �nite-volume methods for space discretiza-

tion, viz. the SRNH predictor-corrector scheme [5] and a modi�ed Roe

scheme for non-conservative systems of equations [12]. The Grass expres-

sion [22], which provides one of the most popular and simple models for solid

transport discharge, was initially used. Di�erent 1D and 2D numerical ex-

periments showed that, if the time scales characterizing the evolution of the

hydrodynamic and morphodynamic components are not too small, implicit

time advancing leads to large reductions of the computational costs with



respect to those of explicit schemes, while preserving the result accuracy.

Since the Grass model does not take into account the fact that the bottom

movement starts when the shear stress exceeds a given critical value, the

Meyer Peter Múller model has successively been considered [14]. The results

were compared to the Grass ones and strategy in terms of accuracy and

e�ciency was investigated also for this model. It was found out that implicit

simulations obtained with the Grass model can reach the same value of the

Courant Friedrichs Lewy condition (CFL condition) of those carried out with

MPM model but using 3 DeC iterations instead than one, so the MPM model

is preferable from this point of view in terms of computational costs.

The investigations in [14] were limited to a low value of the Froude number

(0.1). The aim of this work is to investigate what happens when varying the

Froude number. Di�erent simulations were carried out rising this parameter,

acting on the velocity or on the height of the �ow, in order to understand how

the computational cost of implicit simulations varies for both the Grass and

the MPM model with the Froude number for di�erent speeds of interaction

between the bedload and the �ow. As for numerical discretization in space,

the present study is limited to the modi�ed Roe scheme. This is motivated

by the fact that previous studies indicated that overall performance of the

implicit time advancing is practically independent of the space discretization

scheme to which it is coupled.



Chapter 2

Physical Model

2.1 Shallow Water Equations

The standard formulation of Shallow Water equations is derived starting

from the incompressible Navier-Stokes equations and by assuming that the

velocity in one direction and the corresponding acceleration are negligible.

Then, by depth averaging the governing equations the standard Shallow Wa-

ter formulation is recovered.

As for the mathematical notation, considering a �xed reference level Lref ,

H is the bathymetry function with respect to Lref and the height of the

bottom is denoted by Z. Therefore, we have (see also Fig. 1.1):

H + Z = Lref (2.1)

the height of the �ow above the bottom Z is denoted by h, while Qi is the

sediment transport �ux in the xi direction. Since only 1D and 2D pysical

models are considered in this work, the axis x1 and x2 will be simply denoted

by x and y . Finally the symbol reserved for the acceleration of gravity is g

and the sediment porosity is denoted by p.
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Figure 2.1: Physical variables considered for sediment transport models

The 1D Shallow Water equations can be formulated as follows:∂h
∂t

+ ∂hu
∂x

= 0

∂hu
∂t

+
∂(hu2+ 1

2
gh2)

∂x
= −ghdZ

dx

(2.2)

while in the 2D case they assume the following form:
∂h
∂t

+ ∂hu
∂x

+ ∂hv
∂y

= 0

∂hu
∂t

+
∂(hu2+ 1

2
gh2)

∂x
+ ∂huv

∂y
= −ghdZ

dx

∂hv
∂t

+ ∂huv
∂x

+
∂(hv2+ 1

2
gh2)

∂x
= −ghdZ

dy

(2.3)

Note that, in standard Shallow Water formulation the bed level Z is �xed

in time, thus Z = Z(x) or Z = Z(x.y) for (1.2) and (1.3), respectively.

The variable bottom topography introduces an additional, non-homogeneous,

term in the set of equations: the discretization of this term requires particular

attention. The mathematical structure of the Shallow Water equations is

strictly related to the one of the Euler equations for barotropic �ows. In

fact, the evolution of the �uid variables can be described by the following



system of equations: 
∂W
∂t

+ ∂F (W )
∂x

= 0

F (W ) = (ρu, ρu2 + p, ρuξ)T

W = (ρ, ρu, ρξ)T

(2.4)

The �rst two equations are, respectively, the mass and the momentum bal-

ances for the �uid. The third eqaution describes the time-evolution of the

substance ξ. The conservation law for ξ is decoupled from the rest of the

system and, as a consequence, ξ is usually referred as a passive scalar.

Indeed, by considering only the homogeneous part of the system or, equiv-

alently, a constant bed level, the following 1D system is recovered:∂h
∂t

+ ∂hu
∂x

= 0

∂hu
∂t

+
∂(hu2+ 1

2
gh2)

∂x
= 0

(2.5)

In order to include the e�ect of sediment transport, an additional equation

which describes the time evolution of the bed level is required. The Exner

equation, a well-known and a common choice for this kind of problems, has

been used here:

(1− p)∂Z
∂t

+
∂Q1

∂x
+
∂Q2

∂y
= 0 (2.6)

where p is the (constant) sediment porosity and Q1 and Q2 are the bed-load

sediment transport �uxes in the x and y directions. There are many di�erent

formulae in the literature that de�ne the sediment transport �uxes; this work

focused on two of them, and they will be decribed in the following section.

Using (2.3) and (2.6) the following complete system is then obtained:

∂h
∂t

+ ∂hu
∂x

+ ∂hv
∂y

= 0

∂hu
∂t

+
∂(hu2+ 1

2
gh2)

∂x
+ ∂huv

∂y
= −ghdZ

dx

∂hv
∂t

+ ∂huv
∂x

+
∂(hv2+ 1

2
gh2)

∂x
= −ghdZ

dy

∂Z
∂t

+ ξ ∂Q1

∂x
+ ξ ∂Q2

∂y
= 0

(2.7)



where

ξ =
1

1− p
(2.8)

It is possible to write (1.6) as a system of conservation laws with a source

term, that is:
∂W

∂t
+
∂F1(W )

∂x
+
∂F2(W )

∂y
= S(W) (2.9)

where 

W = (h, hu, hv,H)T

F1(W ) = (hu, hu2 + 1
2
gh2, huv,−ξQ1)T

F2(W ) = (hv, hvu, hv2 + 1
2
gh2,−ξQ2)T

S(W ) = (0, gh∂H
∂x
, gh∂H

∂y
, 0)T

(2.10)

It can be easily checked that the Jacobian matrices of F1(W ) and F2(W )

in (1.9) are singular and this may cause severe numerical di�culties in many

�nite-volume schemes. Furthermore, in order to obtain a well-balanced

scheme, the presence of a source term requires a speci�c treatment. Thus,

in the literature di�erent formulations of system (2.10) have been derived to

cope with these di�culties. Among the di�erent possibilites, following the

work in [12], the source term in (2.10) is rewritten as follows:

S(W ) = B1(W )
∂W

∂x
+ B2(W )

∂W

∂y
(2.11)

where:

B1(W ) =


0 0 0 0

0 0 0 gh

0 0 0 0

0 0 0 0

 , B2(W ) =


0 0 0 0

0 0 0 0

0 0 0 gh

0 0 0 0


The previous system can further be recast in a non-conservative form as

follows:
∂W

∂t
+ A1(W )

∂W

∂x
+ A2(W )

∂W

∂y
= 0 (2.12)



where:

Ak(W ) =
∂Fk(W )

∂W
−Bk(W ) k = 1, 2 (2.13)

Note that the matrix Ak is the sum of a conservative term, the Jacobian

of Fk(W ), and a non-conservative one, Bk(W ) which takes into account

the spatial variation of the bed. Furthermore, matrices A1 and A2 are not

singular [12, 13] and it can be easily seen that this approach eliminates the

source term.

2.2 Sediment Transport Models

The sediment can be de�ned as a fragmented material from rocks that has

been formed by di�erent physical and/or chemical process. The study of

sediment transport processes includes movement of rocks in a mountain as

material di�usion in water, among other processes. Transport is caused by

gravity e�ects and by friction e�ects with the air or the �uid containing the

sediment. Sediment transport is usually divided into three types: bedload,

saltation and suspension (see Fig. 2.2). Bedload transport is de�ned as the

type of transport where sediment grains roll or slide along the bed. Saltation

transport is de�ned as the type of transport where single grains jump over the

bed a length proportional to their diameter, losing for instants the contact

with the soil. Sediment is suspended when the �ux is intense enough such

as the sediment grains reach height over the bed. This work focuses on the

study of bedload sediment transport.

Figure 2.2: Types of sediment transport

In literature di�erent equations to model the solid transport sediment

�ux could be found: Grass equation [22], Meyer-Peter & Müller's equation



[33], Van Rijn's equation, Nielsen's equation, Kalinske, Einstein's equation,

etc., generally obtained by empirical methods. Among all these formulae,

some are deterministic formulae and others are based on probabilistic terms.

In most of them, except for Grass model, the movement of the sediment is

controlled by a physical parameter called critical shear stress, usually deter-

mined experimentally. This work focuses on deterministic equations only.

The two formulae used herein for the bed-load transport �uxes are usually

obtained for stationary �uxes in rivers, but they can also be applied to tidal

or coastal currents, as the time of response of the sediment is very small in

comparison with the period of tides or waves.

2.2.1 Grass Model

Grass [22] proposed the following formulae for the solid transport discharge:Q1 = Agu(u2 + v2)
m−1

2

Q2 = Agv(u2 + v2)
m−1

2

(2.14)

where Ag(0 ≤ Ag ≤ 1) and m(1 ≤ m ≤ 4) are parameters depending on

the particular problem under consideration. Ag takes into account the grain

diameter and the kinematic viscosity and is directly related with the strength

of the interaction between the water �ow and the bedload; low values of Ag

correspond to a weak interaction between the sediment and the �uid, while

values close to 1 to a strong interaction. As for m, in the following, only the

usual value m = 3 is considered, so that (2.14) reduces to:Q1 = Agu(u2 + v2)

Q2 = Agv(u2 + v2)
(2.15)

Notice that, according to Grass formula, the bedload sediment transport

begins automatically when the �uid starts to move. This is the principal

concern about this formula. Also the maximum of sediment mass �ow is

on the upper side of the water, and this is clearly unphysical. Hogg (2005)

proposed a correction with water column h.



2.2.2 Meyer-Peter and Müller Model

In order to better understand Meyer-Peter & Müller [33] (MPM in what fol-

lows) expression, let us underline which are the essential elements of Shield's

theory about incipient motion. According to this theory, bed-load movement

begins when the shear stress exceeds a critical shear value. Above this value,

the current is able to transport the granular sediment. Various physical pa-

rameters should be considered:

• shear stress at the bottom τ ;

• sediment density ρs and �uid density ρ or their ratio G = ρs
ρ
;

• diameter of the sediment d;

• characteristics of �uid dynamic motion.

The problem is a�ected by local phenomena. Shields studied an average

depth, composed of granular and non-cohesive sediments and this allowed

him to avoid the in�uence of these local phenomena. Thus, he imposed the

balance of forces on a generic sediment particle, observing that the movement

starts when the shear stress exceeds a given critical shear stress τc. In the

literature it is possible to �nd di�erent approaches to determine the incipi-

ent motion condition, based on a critical Froude number or a critical mass

�ow or a given mean speed of the �uid. The threshold found by Shields is

obtained through several experiments, carried out on larger grains and then

extrapolated for smaller cases. The shear stress is written as:

τ = γsRH |SF | (2.16)

γs is the speci�c water weight, RH is the hydraulic ratio, usually equal to

the water column h, and the form factor is de�ned according to the Manning

Theory:

SF =
gη2

0u|u|
R

3/4
H

(2.17)

η0 is the Manning coe�cient and u is the �uid speed at the bottom used

to evaluate the �uid-dynamic forces. After several experiments, Shields ob-



tained an incipient motion diagram (Fig. 2.3), through the non-dimensional

shear:

θ =
τ

(γs − γ)d
(2.18)

where γ is the speci�c water weight. The incipient motion condition is ex-

pressed as:

θ > θcr (2.19)

where

θcr =
τcr

(γs − γ)d
(2.20)

θcr is known as Shields number, and it varies between 0.03 and 0.06. The

diagram in Fig. 2.3 shows that a considerable amount of data is scattered

but, after a given Reynolds value, the Shields number is almost constant

(' 0.04 ÷ 0.06) . The non dimensional shear stress can still be written

following the non-dimensional form proposed by Chezy:

θ = Cτ
u2

(G− 1)gd50

(2.21)

where Cτ is called Chezy parameter which is generally of the order of 10−2.

It can be chosen depending on the speci�c case and it is very often used in

practice. Furthermore, θ is de�ned according to the mean diameter d50, but

it can also be expressed with respect to other characteristic parameters (e.g.

the diameter of a similar particle with a higher weight).

Meyer-Peter & Müller developed one of the most known formulae for

the solid transport discharge, based on median grain diameter d50. The

original formula can be reduced to the following general expression in the 1D

formulation:
qb√

(G− 1)gd3
50

= 8sgn(u)(θ − θcr)
3
2 (2.22)

Typically, it describes the sediment transport for rocky rivers, rather than

for sandy areas as in Grass model (2.15). It is important the choice of the

model for the shear stress τ , to well de�ne the Shields condition. Generally,

the motion condition is θcr = 0.047 [20], according to Bathurst theory. For



di�erent cases this value could be changed. This formula is set for coarse

sediments (d50 = 0.4429mm), useful for coarse stream-beds and for depth in-

clination of less than 2. For higher inclinations, MPM formula overestimates

sediment discharge. E�ciency of relation (2.22) is signi�cant, because it is

based on a large experimental data set and it takes into account only the

mean characteristic of the �ow. An interesting correction of the MPM model

is investigated:

qb√
(G− 1)gd3

50

= 8sgn(u)(θ − γ∆η − θcr)3/2 θ − γ∆η

‖θ − γ∆η‖
(2.23)

where γ is a non-dimensional parameter, related to bottom slope e�ects. The

slope of the depth appears by its gradient, expressing the stabilizing e�ect

of the seabed reshaping.

Figure 2.3: Motion condition according to Shields theory. The line represents
the incipient movement condition, with respect to the Reynolds Number at
the bottom (Re∗ = U∗d

ν
where U∗ is the velocity at the bottom, d the particle

diameter and ν the kinematic viscosity)

It is possible to rewrite the MPM formula in a form similar to the Grass

one. In order to do this, it is important the choice of the model for the shear

stress τ , to well de�ne the Shields condition. To simplify the computational

problem, the shear stresses are written in the Chezy form τ = Cu2 where

C is a constant that can be determined by di�erent theories. So, the non-



dimensional shear stress τ is:

θ =
C

K
u2 (2.24)

whereK can be de�ned as: K = (G−1)gd50 and, substituting in the previous

expression of MPM formula, a simpli�ed equation is obtained:

qb = sgn(u)Ã(u2 − ũ2)3/2 (2.25)

where:

Ã = a
C3/2

K
d50 (2.26)

ũ2 = θcr
K

C
(2.27)

a is usually taken equal to 8. In this way, the incipient motion condition is

related to the square of velocity u. If u2 > ũ2, sediment transport is present

and expressed by (2.23).



Chapter 3

Numerical Method

In this chapter a �nite-volume discretization of the physical model presented

in the previous one is described. In this work a Modi�ed Roe scheme (MR)

is used for space discretization. The MR explicit scheme has been developed

by Castro et al. (see e.g.[12]) and it is a Roe scheme modi�ed in order to

deal with non conservative systems of equations. The implicit counterpart

of the aforementioned explicit numerical scheme for the 2D case is obtained

following[5, 6]. In particular the implicit numerical schemes is generated

through the use of the automatic di�erentiation tool TAPENADE [25]. This

chapter presents the 2D numerical discretization, skipping the 1D numerical

case. However, once the 2D numerical method is de�ned, the 1D formulations

can easily be recovered by simply setting to zero the velocity component along

the y-axis and all derivatives in the y-direction.

3.1 General de�nitions for the considered �nite-

volume formulation

The considered space discretization is based on a �nite-volume approach.

At a preliminary stage, the considered 2D computational domain V ∈ R2 is

approximated by means of a polygonal domain Vpol which, in turn, is divided

into triangles. Then, the ith �nite-volume cell Vi, associated with the vertex
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Pi, is given by:

Vi =
⋃
h∈t(i)

V
(h)
i (3.1)

where t(i) is the set of indexes marking those triangles which share Pi as

a vertex and V
(h)
r represents the subset of the triangle Th which is de�ned

by further dividing Th into six sub-triangles by means of its medians and

subsequently considering those two subtriangles which share Pr as a vertex

(see Fig. 3.1).

Figure 3.1: Generation of the dual mesh

Clearly, there is a �nite-volume cell for each vertex. The considered �nite-

volume discretization is sometimes referred to as a �dual mesh� (see e.g., [20]),

by virtue of the speci�c procedure which is adopted in order to build the cells

starting from the triangles. Some properties for this choice of computational

cells are given in [23], where it is shown that, on these cells, �nite-volume

centered schemes are equivalent to P1 �nite-element mass-lumped schemes.

The following notation is also considered: given a �nite-volume cell Vi, |Vi| is
its area and Gi is its center of mass. N(i) is the set of indexes of the neigh-



boring cells of the ith-cell and Bi = N(i) ∪ {i}. Furthermore, B̄i = ∪j∈Bi
Bj

is the set of indexes marking the ith-cell, its neighbors and the neighbors of

the neighbors.

Γij,1 and Γij,2 are the two segments of the common interface between cell

Vi and Vj and |Γij,1| and |Γij,2| their length (see Fig. 3.1). The normal

unit vector to Γij,1 is nij,1 = (nx,ij,1, ny,ij,1)T and a similar de�nition holds

for nij,2. The average normal vector for the interface between the ith and

jth-cell is de�ned as follows:

|Γij|nij = |Γij,1|nij,1 + |Γij,2|nij,2 (3.2)

where nij is the normal unit vector and |Γij| is the interface length. Finally,
W n

i is the average value of the solution W in the ith cell at time tn:

W n
i =

1

|Vi|

∫
Vi

W (x, tn) dV (3.3)

3.2 A Roe-type scheme for non-conservative sys-

tems

The scheme adopted herein for the space discretization has been proposed by

Castro et al. in a series of papers [11, 12, 13]. More precisely, it is possible

to de�ne a Roe-type scheme for the nonconservative system (1.11) leading to

the following semi-discrete form:

∂W n
i

∂t
= RHS1

({
Wj

}
j∈Bi

)
(3.4)

where

RHS1

({
Wj

}
j∈Bi

)
= − 1

|Vi|
∑
j∈N(i)

|Γij|
(
F
(
W n

i ,W
n
j ,nij

)
−1

2
Bij

(
W n

j −W n
i

))
(3.5)



and F
(
W n

i ,W
n
j ,nij

)
is a Roe-like numerical �ux function de�ned as:

F
(
W n

i ,W
n
j ,nij

)
=

1

2

(
Fnij

(
W n

i

)
+ Fnij

(
W n

j

))
−1

2
|Aij|

(
W n

j ,W
n
i ,nij

)(
W n

j −W n
i

) (3.6)

where Fnij

(
W
)

= nx,ijF1

(
W
)

+ ny,ijF2

(
W
)
while the espressions of the

matrices |Aij| and Bij depend on W n
i , W

n
j and nij . (see [4, 6] for more

details).

3.2.1 Second-order extension

To extend to second-order of accuracy the previous MR scheme, �rst a recon-

struction operator Pi(x) is de�ned at each cell. This reconstruction operator

is a function of the values of the solution in the neighbor cells of Vi, that is:

Pi(x) = Pi

(
x;
{
W n

j

}
j∈Bi

)
(3.7)

In this work we consider a MUSCL-like reconstruction operator which is

explicitly de�ned in [4, 6]. Once the reconstruction operator is de�ned, it is

possible to extend the Modi�ed Roe scheme to the second order accuracy.

The semi-discrete formulation of (2.12) is:

∂W

∂t
= − 1

|Vi|
∑
j∈N(i)

∫
Γij

(
F
(
W−

ij (σ),W+
ij (σ),nij

)
−1

2
Bij(σ)

(
W+

ij (σ)−W−
ij (σ)

))
dσ

+
1

|Vi|

∫
Vi

(
B1(Pi(x))

∂Pi
∂x

(x) + B2(Pi(x))
∂Pi
∂y

(x)
)
dV

(3.8)

where σ is a point of the interface Γij, W−
ij = Pi(σ), W+

ij = Pj(σ) and

Bij(σ) = B
(
W−

ij (σ),W+
ij (σ),nij

)
, B being de�ned in [4]. Even if it does

not clearly appear, the right-hand-side of (3.8) is time-dependent. Indeed,

due to (3.7), Pi(x) is a function of space but also of the solution W (x, t).

Note that, due to the non-conservative formulation, the second-order scheme



is not only a function of the extrapolated values of the solution at the cell

interfaces, but also function of the solution in the interior of the cells. The

integrals in (3.8) are numerically approximated and, in order to preserve

the second-order spatial accuracy of the scheme the order of the quadrature

formula must be higher than that of the reconstruction operator. In [3] it

has been shown that the third-order Gauss quadrature formula for the line

integrals and the barycenter quadrature formula for the surface integrals

satisfy both criteria.

The resulting semi-discrete expression of the second-order MR scheme is:

∂Wi

∂t
= RHS2

({
Wj

}
j∈B̄i

)
(3.9)

where RHS2

({
Wj

}
j∈B̄i

)
is de�ned as follows:

RHS2

({
Wj

}
j∈B̄i

)
= B1(P1(Gi))

∂Pi
∂x

(Gi)

+B2(P1(Gi))
∂Pi
∂y

(Gi)

− 1

|Vi|
∑
j∈N(i)

2∑
l=1

|Γij,l|
2∑

m=1

Wlm

(
F
(
W+

ij,lm,W
+
ij,lm,nij

)
−1

2
Bij,lm

(
W+

ij,lm −W−
ij,lm

))
(3.10)

where W−
ij,lm = Pi(σlm), W+

ij,lm = Pj(σlm), Bij,lm = Bij(σlm) and wlm and

σlm are respectively, the weights and the points of the quadrature rule. Note

that the dependency from j ∈ B̄i in (3.9) results from the reconstruction

operator and, more speci�cally, from W−
ij,lm and W+

ij,lm. Finally, limiters

are used following the same approach as in [12, 13]; a detailed description

can be found in [4, 6].

3.3 Explicit time advancing

To obtain an explicit scheme �rst-order accurate in time, the time-discretization

can be carried out using an explicit Euler method, so that the resulting �rst-



order numerical scheme is:

W n+1
i = W n

i + ∆tnRHS1

({
Wj

}
j∈Bi

)
(3.11)

Similarly, in order to obtain an explicit scheme second-order accurate in

time, the time discretization can be carried out using a second-order TVD

Runge-Kutta method [21]. The �nal expression of the second-order numerical

scheme is:W
n+1/2
i = W n

i + ∆tnRHS2

({
W n

j

}
j∈B̄i

)
W n+1

i =
W

n+1/2
i +wn

i

2
+ 1

2
∆tnRHS2

({
W

n+1/2
j

}
j∈B̄i

) (3.12)

3.4 Implicit time advancing

In this section the issue of generating an implicit scheme, starting from its

explicit counterpart, is addressed. In a �rst step, we will describe the �rst-

order numerical scheme, then the second-order extension is discussed.

3.4.1 First-order scheme

Generally speaking, the implicit counterpart of a �rst-order explicit Euler

method is obtained by considering the right hand side term as a function of

the solution at time n + 1 instead of n. That is, a fully-implicit �rst-order

version of the scheme in Eq. (3.11) is the following:

W n+1
i −∆tnRHS1

({
W n+1

j

}
j∈Bi

)
= W n

i (3.13)

However, from a practical point of view this would require the solution of

a large non-linear system of equations at each time step. The computa-

tional cost for this operation is in general not a�ordable in practical applica-

tions and, in general, signi�cantly overcomes any advantage that an implicit

scheme could have with respect to its explicit counterpart. A common tech-

nique to overcome this di�culty is to linearize the numerical scheme, that is



to �nd an approximation of RHS1

({
W n+1

j

}
j∈Bi

)
in the form:

RHS1

({
W n+1

j

}
j∈Bi

)
' RHS1

({
W n

j

}
j∈Bi

)
+
∑
j∈Bi

Dnij∆nWj (3.14)

where ∆n(·) = (·)n+1 − (·)n and Dnij are matrices depending on the solution

in a neighboring of Vi at time tn, i.e. Dnij = Dij
({

W n
l

}
j∈Bi

)
.

Using this approximation, the following linear system must be solved at

each time step:

∆nWi

∆nt
−
∑
j∈Bi

Dnij∆nWj = RHS1

({
W n

j

}
j∈Bi

)
(3.15)

The implicit linearized scheme is completely determined once a suitable def-

inition for the matrices Dnij is given. If the right hand side is di�erentiable,

a common choice is to use the Jacobian matrices, hence:

Dnij '
∂RHS1

({
W n

l

}
j∈Bi

)
∂W n

j

(3.16)

Nevertheless, it is not always possible nor convenient to exactly compute the

Jacobian matrices. This problem has been solved herein through the use of

the automatic di�erentiation software Tapenade [20]. The operational prin-

ciple of an automatic di�erentiation software is as follows: given the source

code of a routine which computes the function y = F (x), the automatic

di�erentiation software generates a new source code which compute the ana-

lytical derivative of the original program. In practice, each time the original

program performs some operation, the di�erentiated program performs ad-

ditional operations dealing with the di�erential values. For example, if the

original program at some time executes the following instruction on variables

a, b, c:

a = b · c (3.17)

then the di�erentiated program computes also the di�erentials da, db, dc of



these variables [35]:

da = db · c+ b · dc (3.18)

Through an automatic di�erentiation software it is possible to quickly imple-

ment an implicit linearized scheme of the form (3.15), once a routine which

computes the explicit �ux function is available. As a consequence using an

automatic di�erentiation tool, starting from a �rst-order explicit method, it

is possible to automatically compute the matrices Dnij and then implement

the linearized implicit method (3.15) without additional modi�cations.

3.4.2 Second-order DeC scheme

A second-order implicit scheme can be obtained from its explicit counterpart

using the same approach described for the �rst-order scheme in the previ-

ous subsection. Therefore the second-order fully implicit approach could be

written as follows:W
n+1/2
i −∆tnRHS2

({
W

n+1/2
j

}
j∈B̄i

)
= W n

i

W n+1
i − 1

2
∆tnRHS2

({
W n+1

j

}
j∈B̄i

)
=

W
n+1/2
i +wn

i

2

(3.19)

The application of this method would require the solution of two non linear

systems of equations at each time step, thus dramatically increasing the

computational costs with respect to the explicit version.

An alternative approach, generally more e�cient in terms of computa-

tional costs, is to use a second-order backward di�erentiation formula in

time:

(1 + 2τ)W n+1
i − (1 + τ)2W n

i + τ 2W n−1
i

∆nt1 + τ
−RHS2

({
W n+1

j

}
j∈B̄i

)
= 0

(3.20)

where τ = ∆nt
∆n−1t

. Similarly to the �rst-order case, a linearization of

RHS2

({
W n+1

j

}
j∈B̄i

)
must be carried out in order to avoid the solution of

a nonlinear system at each time step. Clearly, the same approach as for the

�rst-order scheme could be considered, that is to approximate



RHS2

({
W n+1

j

}
j∈B̄i

)
in the form:

RHS2

({
W n+1

j

}
j∈B̄i

)
' RHS2

({
W n

j

}
j∈B̄i

)
+
∑
j∈B̄i

Dn2,ij∆nWj (3.21)

However, the linearization for the second-order accurate �uxes and the solu-

tion of the resulting linear system imply signi�cant computational costs and

memory requirements. This is a consequence of the more complex expres-

sion of the second-order scheme with respect to its �rst-order counterpart

(compare (3.5) with (3.10)) and, in particular, of the larger stencil of the

second-order �ux function (by considering an uniform triangular grid, 7 and

19 nodes are involved for the �rst- and the second-order approaches respec-

tively). In order to reduce the computational costs, an alternative approach,

considered in this work, is to use a defect-correction technique (DeC) [39].

This method consists in iteratively solving simpler problems obtained by

considering the same linearization used for the �rst-order scheme. The DeC

iterations write as follows, the unknowns being ∆sW :
W0 = W n

Lsi∆sWi −
∑

j∈N(i)Dsij∆sWj = Csi s = 0, ..., r − 1

W n+1 =Wr = W n +
∑r−1

s=0 ∆sW

(3.22)

in which:D
s
ij = Dij

({
Ws

i

}
l∈Bi

)
Lsi =

(
(1+2τ)Ws

i −(1+τ)2Wn
i +τ2Wn−1

i

∆nt(1+τ)

)
+RHS2

({
Ws

j

}
j∈B̄i

) (3.23)

Dij being the matrices of the approximation (3.14) computed, here, through

automatic di�erentiation; r is typically chosen between 1 and 3. Indeed, it

can be shown [32] that only one DeC iteration is theoretically needed to

reach a second-order accuracy, while few additional iterations (one or two)

can improve the robustness.



3.5 CFL condition

The time interval ∆t is de�ned by using the Courant Friedrichs Lewy (CFL)

condition.When explicit time-marching schemes are used low values of CFL

must be used to ensure numerical stability. On the other hand, implicit time-

advancing is stable for much larger values of CFL; therefore, longer time steps

can be used. Neverthless, a too large ∆t could deteriorate the accuracy of the

results. Therefore, it must be checked that the chosen ∆t is small enough to

well resolve all the relevant �ow time scales. For 1D case, the CFL number

is de�ned as follows:

CFL =
λmaxδt

δx
(3.24)

where λmax is the maximum value of the eigenvalues of the Roe Matrix.

As for a two dimensional more general point of view, the CFL condition

can be expressed with the following:

CFL =
ux∆t

∆x
+
uy∆t

∆x
(3.25)

where ux and uy are the velocity components in the x and the y directions

respectively.



Chapter 4

Numerical experiments

The purpose of the next chapters is to investigate how the accuracy limitation

on the implicit time step depends on the Froude number: in particular,

it will be shown how the relation between the parameter Ag, involved in

the considered sediment �ux models, and the CFL condition is a�ected by

varying the Froude value into two ways. To introduce this analysis, a well-

known benchmark is used �rst, which is described in Sec. 3.1.

4.1 Presentation of the 1D Problem

A 1D problem is considered; it is a sediment transport problem in a channel

of length l = 1000 m with a non-constant bottom pro�le. The initial bottom

topography, in the case of Fri =0.1, is given by the hump shape function in

the following:
Z(0, x) =

0.1 + sin2
(

(x−300)π
200

)
if 300 ≤ x ≤ 500

0.1 elsewhere

h(0, x) = 10− Z(0, x)

u(0, x) = 10
h(0,x)

(4.1)

in which all variables are in SI units.

Two di�erent grids are used for the simulations: GRD1, composed by
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100 elements and GRD2, composed by 250 elements. The Grass and the

MPM models are used. Concerning the Grass model four di�erent values

of Ag (see Grass equation 2.15) are considered, viz. 0.001, 0.01, 0.1 and 1,

which correspond to di�erent speed of interaction between the �ow and the

bedload and, as a consequence, to di�erent time scales of evolution of the

bottom topography.

The �rst value correspond to a weak interation, the last to a strong one,

while the other values to intermediate conditions. Then, for the MPM model,

in order to be compared to the Grass model, the values of Ã have been chosen

equal to the ones of Ag, while for each Ã (see MPM equation 2.25), three

di�erent values of the critical velocity are used, namely ũ = 1.02, 1.04 and

1.06 m/s. Indeed, empirical values usually adopted in the literature for the

di�erent quantities involved in the computation of ũ lead to ũ ' 1.04 m/s.

Note that also Ag and Ã are functions of di�erent physical quantities, which

are usually assigned empirically depending on the problem of interest, as e.g.

rocky rivers, sandy bottom. Not all the values adopted herein correspond to

a realistic situation, but they have been considered in order to appraise the

e�ciency of implicit time advancing for varying characteristic time scales

for the bedload evolution. The simulations are advanced in time until an

almost steady state is reached; clearly this implies longer times for problems

involving lower values of Ag and Ã, as shown in table 4.1. All the results and

computational times shown in the following are at the �nal instant of each

simulation.

Ag 1 0.1 0.01 0.001
Simulation time 700 7000 50000 500000

Table 4.1: Final simulation time (seconds) for the considered values of Ag



4.1.1 Comparison between the solutions obtained with

di�erent sediment transport models

The numerical solutions obtained with the two models are reported in the

�gures 4.1-4.8. For brevity, not all the simulations are reported, in partic-

ular we show only these with a threshold velocity of ũ = 1.04 m/s for the

MPM model. From these plots it clearly appears that the choice of the solid

transport discharge model has a strong e�ect on the solution. Due to the

threshold on the motion inception, the bottom shape is less regular for the

MPM model than the one obtained for the Grass ones. The general behavior

in the model comparison does not depend on the grid resolution or on the

variation of the speed of interaction between the bedload and water �ow.

The solutions computed with the implicit schemes, considering an ade-

quate CFL value depending on the speed of interaction between the �ow and

the bedload are pratically overlapping the ones obtained with the explicit

time advancing at CFL = 0.8 for all morphodynamic models.

4.1.2 Explicit vs. implicit time-advancing schemes

The use of an implicit time-advancing allows to avoid the time step limita-

tions due to CFL conditions typical of explicit schemes. Nevertheless, the

accuracy of the results of implicit simulations deteriorates if the time step

is too large. In a precedent study [6], a �rst analysis has been carried out

for the Grass model showing that the CFL number up to which the implicit

solution is not deteriorated depends on the speed of interaction between bed-

load and water �ow. More precisely, the CFL limit for implicit computations

was found to be roughly inversely proportional to the parameter Ag

CFL ' 1

Ag
(4.2)

For instance, for both �rst and second order accuracy, an implicit solution

coinciding with the explicit one is obtained up to CFL = 1000 for the slow

speed interaction (i.e. Ag = 0.001). An addictional gain of e�ciency can be

obtained considering CFL values one order of magnitude larger and 3 DeC



iterations instead of only one (see the �gures below).

CFL ' 10

Ag
(4.3)

Consequently, the implicit time-advancing appears very attractive in terms

of computational costs with respect to the explicit one for weak and inter-

mediate interactions.
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Figure 4.1: Explicit and implicit solutions for the evolution of the bottom
and the velocity pro�les for Grass model for Ag = 0.001
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Figure 4.2: Explicit and implicit solutions for Grass model for the evolution
of the bottom and the velocity pro�les for Ag = 0.01
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Figure 4.3: Explicit and implicit solutions for Grass mode for the evolution
of the bottom and the velocity pro�lesl for Ag = 0.1
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Figure 4.4: Explicit and implicit solutions for Grass model for the evolution
of the bottom and the velocity pro�les for Ag = 1



Concerning the simulations with the MPM model, the following �gures

report some explicit and implicit solutions. It has been found (see [14]) that

for any choice of tested ũ value, as well for the less re�ned grid, the maximum

CFL number allowed to obtain an accurate solution is one order of magnitude

larger for the MPM model than for to Grass one.

CFL ' 10

Ag
(4.4)

As previously done for the Grass model, a possible way to try to improve the

solution accuracy for large values of the time step can be to consider addi-

tional DeC iterations in the implicit numerical formulation. It appears that

1 additional DeC iteration is not enough to stabilize the solution with the

presence of additional �uctuations. Conversely, the useof 2 or 3 additional

DeC iterations gives a rather satisactory solution. Thus, the advantages of

using an implicit approach appear even increased for this model but the use

of additional DeC iterations does not further improve the performances.
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Figure 4.5: Explicit and implicit solutions for MPM model for the evolution
of the bottom and the velocity pro�les for Ag = 0.001
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Figure 4.6: Explicit and implicit solutions for MPM model for the evolution
of the bottom and the velocity pro�les for Ag = 0.01
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Figure 4.7: Explicit and implicit solutions for MPM model for the evolution
of the bottom and the velocity pro�les for Ag = 0.1
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Figure 4.8: Explicit and implicit solutions for MPM model for the evolution
of the bottom and the velocity pro�les for Ag = 1



Summarizing, the e�ciency of implicit time advancing seems not to be

a�ected by the model used for solid discharge �uxes; rather, the largest gains

in computational time have been obtained for the MPM model, which is the

most complex and contains a threshold, as shown in the following two �gures.
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Figure 4.9: Time computational ratios between the explicit and implicit
solutions for the Grass and the MPM models at �rst and second order

4.2 Varying the Froude number

In order to provide a quanti�cation of how the accuracy limitation on the

implicit time step depends on another scale characterizing morphodynamic

problems, i.e. that related to the shallow water dynamics, di�erent values

of the Froude number at the inlet have been analyzed int this way. Two

di�erent approaches are used for changing the Froude number, since it is

given by the following expression:

Fr =
u√
gh

The two parameters we focused on are the velocity u and the height h of

the �ow, so we modi�ed the Froude number varying these one of these two

quantities, and then we compared the following results. The results are shown

and discussed in chapters 5 and 6.



Chapter 5

Variation of the Froude

number by acting on u

First, the inlet velocity was modi�ed for varying the Froude number from

Fri = 0.1 to Fri = 0.7, increasing by steps of 0.1. The computational

domain has been enlarged to −1000 ≤ x ≤ 3000 in order to well describe the

evolution of the bottom. Because of this, the previously re�ned grid made

by 250 cells has become a coarse one: the ∆x of each cell has changed from

4 to 16. Therefore a more re�ned grid of 500 cells has been used.

At increasing values of the Froude number at the inlet, the simulation time

for each simulation was reduced in order to observe signi�cant variations of

the bed pro�le, being far enough from the edge of the computational domain.

An empirical law was used to have a guess of the duration of the simulation:

since in the Grass model the sediment transport �ux is given by Agu
3, we

can expect that the variation of the simulation time is proportional to such

an order. For example, in the case of Froude number equal to 0.3, the

corresponding simulation times were obtained from those at Fri = 0.1 and

then divided by 27, since (0.3/0.1)3 = 27. Tab.5.1 contains all the simulations

times for varying Fri and Ag.

39



Ag = 0.001 Ag = 0.01 Ag = 0.1 Ag = 1
Froudei = 0.1 500000 50000 7000 700
Froudei = 0.2 62500 6250 875 87.5
Froudei = 0.3 18518 1852 260 50
Froudei = 0.4 7812.5 782 120 30
Froudei = 0.5 4000 400 80 25
Froudei = 0.6 2500 250 70 20
Froudei = 0.7 1460 146 45 15

Table 5.1: Final simulation times (seconds) at varying Froude numbers

5.1 E�ciency comparison

As said before for the Fri = 0.1 case, for all the values of Ag, implicit and

explicit solutions give pratically identical results, provided that the implicit

time step remains smaller than a given threshold. The dependency on Ag of

the accuracy limitation on the implicit CFL at Fri = 0.1 was found to be:

CFL =
1

Ag
for DeC=1 while CFL =

10

Ag
for DeC=3 (5.1)

At increasing values of the Froude number, the relation between CFL and

Ag is no more simply inversely linear, since for the accuracy of the implicit so-

lutions lower values of the CFL number have to be used. In order to establish

the maximum value of CFL for the implicit solution giving reasonable results,

we distinguished the solutions evaluating the maximum of the absolute value

of the error and the mean-square error with respect to the explicit solution.

The errors are made nondimensional by using the maximum value of the

initial bed load pro�le and the inlet velocity. We accepted solutions with a

mean-square error lower than the 1% and a maximum of the absolute value

of the error smaller than the 10% for the evolution of the bottom pro�le, and

values lower than 0.3% and 3% respectively for the evolution of the velocity

one. At the end of these simulations, other empyrical relations between the

CFL number and Ag were found at each Fri, and they are shown in Tab.A.

Obviously, lower values than 1 of the CFL are not convenient for an implicit

solution, so once it is reached the e�ciency of the implicit solution can be



no longer improved and therefore the errors with respect to the explicit one

could exceed the boundaries de�ned.
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Table A: CFL dependency on Ag at varying Froude number



5.2 Froude = 0.2

Figures 5.1-5.4 show the simulations computed at Froude = 0.2 for the bot-

tom and the velocity pro�les. The matching of the implicit solutions with

the corrispondent explicit ones is really good provided that the CFL values

for the implicit time advancing remains under some limits, which depend on

Ag, as it is reported in the �gures and it will be discussed in the following.

The form of the pro�les is very similar to that obtained at Froude = 0.1, in

particular it is possible to notice how the variation of velocity become smaller

as the interaction between the bedload and the �ow is faster. Simulations

obtained with the more re�ned grid of 500 cells are also shown (Figs 5.5-5.8):

there is of course a slight modi�cation of the pro�les, but no signi�cant di�er-

ences in terms of CFL values and time computational ratios are obtained, so

for the other values of the Froude number these simulations will be omitted

for brevity.
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Figure 5.1: Bottom and velocity pro�les for Grass model for Ag = 0.001 using
a grid made by 250 cells at Froude = 0.2
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Figure 5.2: Bottom and velocity pro�les for Grass model for Ag = 0.01 using
a grid made by 250 cells at Froude = 0.2
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Figure 5.3: Bottom and velocity pro�les for Grass model for Ag = 0.1 using
a grid made by 250 cells at Froude = 0.2
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Figure 5.4: Bottom and velocity pro�les for Grass model for Ag = 1 using a
grid made by 250 cells at Froude = 0.2
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Figure 5.5: Bottom and velocity pro�les for Grass model for Ag = 0.001 using
a grid made by 500 cells at Froude = 0.2
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Figure 5.6: Bottom and velocity pro�les for Grass model for Ag = 0.01 using
a grid made by 500 cells at Froude = 0.2
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Figure 5.7: Bottom and velocity pro�les for Grass model for Ag = 0.1 using
a grid made by 500 cells at Froude = 0.2
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Figure 5.8: Explicit and implicit solutions for the evolution of the bottom
and the velocity pro�les for Grass model for Ag = 1 using a grid made by
500 cells at Froude = 0.2

5.3 Froude = 0.3

Figures 5.9-5.12 show the simulations computed at Froude = 0.3 for the

bottom and the velocity pro�les. The matching of the implicit solutions with

the corrispondent explicit ones is really good provided that the CFL values

for the implicit time advancing remains under some limits, which depend on

Ag. In particular, the roughly inversely proportional dependency of CFL on

Ag is no longer valid, but it has been decreased of one order of magnitude,

and no signi�cant improvement is achieved by using more DeC iterations.

Besides, clear �uctuations are visible at Ag = 1: as said before, lower values

than 1 of CFL are not taken into consideration so at this point di�erences

with the explicit solution starts to be noticeable, especially for the velocity

pro�les. Simulations obtained with the more re�ned grid of 500 cells are not

reported for brevity.
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Figure 5.9: Bottom and velocity pro�les for Grass model for Ag = 0.001 using
a grid made by 250 cells at Froude = 0.3
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Figure 5.10: Bottom and velocity pro�les for Grass model for Ag = 0.01 using
a grid made by 250 cells at Froude = 0.3
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Figure 5.11: Bottom and velocity pro�les for Grass model for Ag = 0.1 using
a grid made by 250 cells at Froude = 0.3



0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

x

B
ot

to
m

Bottom Ag=1 GRD250

 

 
Exp ord1
Imp ord1 CFL = 1
Exp ord2
Imp ord2 CFL = 1 DeC=1

0 200 400 600 800 1000
2.95

3

3.05

3.1

x

V
el

oc
ity

Velocity Ag=1 GRD250

 

 
Exp ord1
Imp ord1 CFL = 1
Exp ord2
Imp ord2 CFL = 1 DeC=1

Figure 5.12: Bottom and velocity pro�les for Grass model for Ag = 1 using
a grid made by 250 cells at Froude = 0.3

5.4 Froude = 0.4

Figures 5.13-5.16 show the simulations computed at Froude = 0.4 for the

bottom and the velocity pro�les. Again, the matching of the implicit solu-

tions with the corrispondent explicit ones is really good but in this case the

maximum CFL allowed for the implicit solution is 10 for Ag = 0.001, while

one order of magnitude is gained when using 3 DeC iterations. Besides, clear

�uctuations are visible at Ag = 1: as said before, lower values than 1 of

CFL are not taken into consideration so at this point di�erences with the

explicit solution starts to be noticeable, especially for the velocity pro�les.

Simulations obtained with the more re�ned grid of 500 cells are not reported

for brevity
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Figure 5.13: Bottom and velocity pro�les for Grass model for Ag = 0.001
using a grid made by 250 cells at Froude = 0.4
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Figure 5.14: Bottom and velocity pro�les for Grass model for Ag = 0.01 using
a grid made by 250 cells at Froude = 0.4
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Figure 5.15: Bottom and velocity pro�les for Grass model for Ag = 0.1 using
a grid made by 250 cells at Froude = 0.4
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Figure 5.16: Bottom and velocity pro�les for Grass model for Ag = 1 using
a grid made by 250 cells at Froude = 0.4

5.5 Froude = 0.5

Figures 5.17-5.20 show the simulations computed at Froude = 0.5 for the

bottom and the velocity pro�les. The behavior shown by the implicit soul-

tions is very similar to that noticeable for Froude = 0.4, since the maximum

CFL allowable is equal to 10 for Ag = 0.001 at �rst and second order, but

it is possible to reach a value of 100 for the CFL condition by using 3 DeC

iterations. Besides, clear �uctuations are still visible at Ag = 1 but there

is no further deterioration of that seen for the same simulations carried out

for the previous value of the Froude number. Simulations obtained with the

more re�ned grid of 500 cells are not reported for brevity.
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Figure 5.17: Bottom and velocity pro�les for Grass model for Ag = 0.001
using a grid made by 250 cells at Froude = 0.5
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Figure 5.18: Bottom and velocity pro�les for Grass model for Ag = 0.01 using
a grid made by 250 cells at Froude = 0.5
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Figure 5.19: Bottom and velocity pro�les for Grass model for Ag = 0.1 using
a grid made by 250 cells at Froude = 0.5
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Figure 5.20: Bottom and velocity pro�les for Grass model for Ag = 1 using
a grid made by 250 cells at Froude = 0.5

5.6 Froude = 0.6

Figures 5.21-5.24 show the simulations computed at Froude = 0.6 for the

bottom and the velocity pro�les. The matching of the implicit solutions

with the corrispondent explicit ones is good provided that the CFL values

for the implicit time advancing remains under some limits: in this case, the

use of 1 or 3 DeC iterations does not a�ect the maximum CFL allowable,

so a maximum value of 10 is used for implicit solutions at Ag = 0.001, then

the limited value of 1 has been set. The �uctuations are still visible at Ag =

1 and, again, especially for the velocity pro�les. Simulations obtained with

the more re�ned grid of 500 cells are not reported for brevity.
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Figure 5.21: Bottom and velocity pro�les for Grass model for Ag = 0.001
using a grid made by 250 cells at Froude = 0.6
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Figure 5.22: Bottom and velocity pro�les for Grass model for Ag = 0.01 using
a grid made by 250 cells at Froude = 0.6
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Figure 5.23: Bottom and velocity pro�les for Grass model for Ag = 0.1 using
a grid made by 250 cells at Froude = 0.6
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Figure 5.24: Bottom and velocity pro�les for Grass model for Ag = 1 using
a grid made by 250 cells at Froude = 0.6

5.7 Froude = 0.7

Finally, �gures 5.25-5.28 show the simulations computed at Froude = 0.7

for the bottom and the velocity pro�les. In this case, the maximum CFL

allowable for implcit solutions is reduced to 1 at �rst and at second order

when using 1 DeC iteration, and therefore the computational costs for the

implicit solutions exceed those of the corresponding explicit ones for every

value of Ag. Just by using 3 DeC iterations it is possbile to gain one order

of magnitude for Ag = 1 and this allows an equality of the computational

costs of the explicit and the implicit solutions for this value of the speed of

interaction. Fluctuations are still visible at Ag = 1 and, again, especially for

the velocity pro�les. Simulations obtained with the more re�ned grid of 500

cells are not reported for brevity.
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Figure 5.25: Bottom and velocity pro�les for Grass model for Ag = 0.001
using a grid made by 250 cells at Froude = 0.7
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Figure 5.26: Bottom and velocity pro�les for Grass model for Ag = 0.01 using
a grid made by 250 cells at Froude = 0.7
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Figure 5.27: Bottom and velocity pro�les for Grass model for Ag = 0.1 using
a grid made by 250 cells at Froude = 0.7
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Figure 5.28: Bottom and velocity pro�les for Grass model for Ag = 1 using
a grid made by 250 cells at Froude = 0.7

5.8 Concluding annotations

In a �rst analysis of the maximum CFL allowed by the soution accuracy for

implicit time advancing, the CFL has been decreased of steps equals to 10.

Succedely, a more re�ned investigation on the CFL number was made for

those simulations where the explicit solution was found to be more conve-

nient. Given the computational time requested by a speci�c explicit simula-

tion, the corrispondent implicit solution with the similar computational cost

was analyzed in order to understand if this one was acceptable and therefore

if the CFL number could be raised to higher values. In other words, the

CFL has been decreased of steps equals to 1 than to 10 in order to better

appreciate the convenience of implicit solutions. However, this more re�ned

research have not led results in this case.

As expected, at increasing Froude number the allowable value of CFL

becomes smaller; using 3 DeC instead of 1 it is possible to increase the value

of CFL of one order of magnitude, but not in all cases, since, as shown in the

table, for Fri = 0.3 and Fri = 0.6 there is no signi�cant improvement when

using more DeC iterations.

These simulations show another important feature: at increasing values

of the Froude number, the computational time ratio between explicit and

implicit time advancing moves quickly towards values smaller than 1, i.e.

explicit solutions are less expensive than implicit ones. This trend is more



evident at �rst order, where, except for Fr = 0.1, explicit solutions are faster

for the large part of the types of interaction between bed load and water �ow.

At second order this evidence is mitigated, as shown in the following images.
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Figure 5.29: 1st-order
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Figure 5.30: 2nd-order

Ag = 0.001 Ag = 0.01 Ag = 0.1 Ag = 1
Froudei = 0.1 200 10 ≥ 1 1
Froudei = 0.2 6.63 0.672 0.07 0.1
Froudei = 0.3 6.51 0.675 0.086 0.2
Froudei = 0.4 1 0.1 0.1 0.1
Froudei = 0.5 0.716 0.08 0.096 0.182
Froudei = 0.6 0.718 0.083 0.1 0.167
Froudei = 0.7 0.1 0.1 0.1 0.1

Table 5.2: Time computational ratios between explicit and implicit time
advancing at �rst order

Ag = 0.001 Ag = 0.01 Ag = 0.1 Ag = 1
Froudei = 0.1 1400 200 ≥ 1 1
Froudei = 0.2 48.9 4.85 1.42 1
Froudei = 0.3 14.64 1.43 0.5 0.3
Froudei = 0.4 7.5 1 0.25 0.2
Froudei = 0.5 5.1 0.5 0.067 0.095
Froudei = 0.6 1.56 0.15 0.178 0.262
Froudei = 0.7 1 0.1 0.1 0.1

Table 5.3: Time computational ratios between explicit and implicit time
advancing at second order



Chapter 6

Variation of the Froude

number by acting on h

6.1 Simulations for the Grass model

With this second approach, the Froude number has been changed by modify-

ing the height of the �ow. However, it has not been reduced too much, since

a strong reduction of h entails a big decrase of the dimensions of the bed

pro�le as well and then the test case could not be of physycal interest. That

is why the initial Froude number has been increased up to the value of 0.4,

by steps of 0.1 as before. The computational domain has been enlarged as

in the previous case. The total simulation time of every simulation has been

modi�ed even in this case, but since the inlet velocity has not been changed,

a linear way has been used for decreasing it, as shown in the following table.

Ag = 0.001 Ag = 0.01 Ag = 0.1 Ag = 1
Froudei = 0.1 500000 50000 7000 700
Froudei = 0.2 250000 25000 3500 350
Froudei = 0.3 167000 16700 2340 234
Froudei = 0.4 125000 12500 1750 175

Table 6.1: Final simulation times (seconds) at varying Froude numbers

57



6.2 E�ciency comparison

As before, at increasing values of the Froude number, the relation between

CFL and Ag is no more simply inversely linear, since for the accuracy of

the implicit solutions lower values of the CFL number have to be used. In

order to establish the maximum value of CFL for the implicit solution giving

reasonable results, we distinguished the solutions evaluating the maximum of

the absolute value of the error and the mean-square error with respect to the

explicit solution. The errors are made nondimensional by using the maximum

value of the initial bed load pro�le and the inlet velocity. We accepted

solutions with a mean-square error lower than the 1% and a maximum of

the absolute value of the error smaller than the 10% for the evolution of

the bottom pro�le, and values lower than 0.3% and 3% respectively for the

evolution of the velocity one. At the end of these simulations, other empyrical

relations between the CFL number and Ag were found at each Fri, and they

are shown in the following table. Obviously, lower values than 1 of the CFL

are not convenient for an implicit solution, so once it is reached the e�ciency

of the implicit solution can be no longer improved and therefore the errors

with respect to the explicit one could exceed the boundaries de�ned. This

procedure has been applied for both of the models used with this approach;

the new empyrical relations found from the simulations for the Grass model

are contained in table B.
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Table B: CFL dependency on Ag at varying Froude number



6.3 Froude = 0.2

Figures 6.1-6.4 show the simulations computed at Froude = 0.2 for the bot-

tom and the velocity pro�les. Making a comparison with the simulations

carried out with the same Froude number in the chapter before, a good

matching of the implicit solutions with the corrispondent explicit ones is ob-

tained using one order of magnitude larger for CFL values at �rst order, and

this enables greater time computational ratios for this case, as it can seen in

the table for the �rst order at the end of the section for the Grass model.

Instead, for the second order the situation has not been changed. Besides,

even at high values of Ag no signi�cant �uctuations are noticeable. Simula-

tions obtained with the more re�ned grid of 500 cells are omitted for brevity.
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Figure 6.1: Bottom and velocity pro�les for Grass model for Ag = 0.001 using
a grid made by 250 cells at Froude = 0.2
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Figure 6.2: Bottom and velocity pro�les for Grass model for Ag = 0.01 using
a grid made by 250 cells at Froude = 0.2
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Figure 6.3: Bottom and velocity pro�les for Grass model for Ag = 0.1 using
a grid made by 250 cells at Froude = 0.2
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Figure 6.4: Bottom and velocity pro�les for Grass model for Ag = 1 using a
grid made by 250 cells at Froude = 0.2



6.4 Froude = 0.3

Figures 6.5-6.8 show the simulations computed at Froude = 0.3 for the bot-

tom and the velocity pro�les. Looking at what has been found for the same

Froude number in the chapter before, the accuracy of the implicit solutions

with respect to the corrispondent explicit ones is obtained using the same

values of CFL both at the �rst order and at the second one, so it can be

seen how also in this case the maximum CFL allowable is one order of mag-

nitude lower than to the one used for Froude = 0.1. As before, even at high

values of Ag no signi�cant �uctuations are noticeable, instead of what has

been seen for the corresponding case in the previous chapter. Simulations

obtained with the more re�ned grid of 500 cells are omitted for brevity.
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Figure 6.5: Bottom and velocity pro�les for Grass model for Ag = 0.001 using
a grid made by 250 cells at Froude = 0.3
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Figure 6.6: Bottom and velocity pro�les for Grass model for Ag = 0.01 using
a grid made by 250 cells at Froude = 0.3
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Figure 6.7: Bottom and velocity pro�les for Grass model for Ag = 0.1 using
a grid made by 250 cells at Froude = 0.3
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Figure 6.8: Bottom and velocity pro�les for Grass model for Ag = 1 using a
grid made by 250 cells at Froude = 0.3



6.5 Froude = 0.4

Figures 6.9-6.12 show the simulations computed at Froude = 0.4 for the

bottom and the velocity pro�les. As for the case of Froude = 0.2, if we make

a comparison with the corresponding case in the previous chapter, one order

of magnitude larger for the CFL value has been used for implicit simulations

at �rst order, while the second one shows the same behavior. Also, even for

this Froude number the bottom and, especially, the velocity pro�les looks

much more stable at high values of Ag than the corresponding case in the

previous chapter. Simulations obtained with the more re�ned grid of 500

cells are omitted for brevity.
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Figure 6.9: Bottom and velocity pro�les for Grass model for Ag = 0.001 using
a grid made by 250 cells at Froude = 0.4
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Figure 6.10: Bottom and velocity pro�les for Grass model for Ag = 0.01 using
a grid made by 250 cells at Froude = 0.4
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Figure 6.11: Bottom and velocity pro�les for Grass model for Ag = 0.1 using
a grid made by 250 cells at Froude = 0.4
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Figure 6.12: Bottom and velocity pro�les for Grass model for Ag = 1 using
a grid made by 250 cells at Froude = 0.4



6.6 Concluding annotations

As done in the previous chapter, after a �rst analysis of the maximum CFL

allowed where it has been decreased of steps equals to 10, a more re�ned

investigation on the CFL number was made for those simulations where the

explicit solution was found to be more convenient, by decreasing the CFL

values of steps equals to 1 instead of 10. However, also in this case this more

re�ned research have not led results since an unaccetable loss of accuracy has

been found each time the CFL number has been increased even slightly.

As said before, at increasing Froude number the allowable value of CFL

becomes smaller but making a comparison with the same Froude numbers

of the last chapter, at �rst order a better behavior, in terms of maximum

CFL allowed, is shown, while in the second order no particular di�erences are

noticeable with respect to the corresponding cases of the previous analysis.

So these simulations con�rm the trend shown before: at increasing values

of the Froude number, the computational time ratio between explicit and

implicit time advancing moves quickly towards values smaller than 1, i.e.

explicit solutions are less expensive than implicit ones. This is more evident

at �rst order, where, except for Fr = 0.1, explicit solutions are faster for the

large part of the types of interaction between bed load and water �ow. At

second order this evidence is mitigated, as shown in the following images.
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Figure 6.13: 1st-order
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Figure 6.14: 2nd-order



Ag = 0.001 Ag = 0.01 Ag = 0.1 Ag = 1
Froudei = 0.1 200 10 ≥ 1 1
Froudei = 0.2 65.3 6.5 0.68 0.32
Froudei = 0.3 11.2 0.67 0.08 0.14
Froudei = 0.4 6.6 0.67 0.08 0.13

Table 6.2: Time computational ratios between explicit and implicit time
advancing at �rst order

Ag = 0.001 Ag = 0.01 Ag = 0.1 Ag = 1
Froudei = 0.1 1400 200 ≥ 1 1
Froudei = 0.2 49.2 4.9 0.49 0.66
Froudei = 0.3 14.82 1.49 0.173 0.26
Froudei = 0.4 4.9 0.49 0.178 0.26

Table 6.3: Time computational ratios between explicit and implicit time
advancing at second order



6.7 Simulations for the MPM model: e�ciency

accuracy

What has been done for the Grass model is now applied to the MPM one,

since by varying h for increasing the Froude number the threshold condition

on the velocity is preserved. At increasing values of the Froude number, for

the accuracy of the implicit solutions lower values of the CFL number have to

be used and so the previous dependency of CFL on Ag found for this model

at Froude = 0.1 is not valid anymore. As before, in order to establish the

maximum value of CFL for the implicit solution giving reasonable results,

we distinguished the solutions evaluating the maximum of the absolute value

of the error and the mean-square error with respect to the explicit solution.

The errors are made nondimensional by using the maximum value of the

initial bed load pro�le and the inlet velocity. We accepted solutions with a

mean-square error lower than the 1% and a maximum of the absolute value

of the error smaller than the 10% for the evolution of the bottom pro�le, and

values lower than 0.3% and 3% respectively for the evolution of the velocity

one. At the end of these simulations, other empyrical relations between the

CFL number and Ag were found at each Fri, and they are shown in the table

C. Once the CFL reaches a value of 1, it is useless to use implicit simulations

with lower values for this condition from the point of view of computational

costs.
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Table C: CFL dependency on Ag at varying Froude number



6.8 Froude = 0.2

Figures 6.15-6.18 show the simulations computed at Froude = 0.2 for the

bottom and the velocity pro�les. The matching of the implicit solutions

with the corrispondent explicit ones is really good provided that the CFL

values for the implicit time advancing remains under some limits, which

depend on Ag, as it is reported in the �gures and it will be discussed in the

following. As happened for the Grass model, lower values for the maximum

CFL allowed have to be used in order to reach a satisfying accuracy for the

implicit solutions: in this particular case, both at the �rst and at the second

order, an inversely proportional dependency of the CFL on Ag is recovered,

with no changes when using one or more DeC iterations The form of the

pro�les is very similar to that obtained at Froude = 0.1, in particular it

is possible to notice how the variation of velocity become smaller as the

interaction between the bedload and the �ow is faster. Simulations obtained

with the more re�ned grid of 500 cells are omitted for brevity.
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Figure 6.15: Bottom and velocity pro�les for MPM model for Ag = 0.001
using a grid made by 250 cells at Froude = 0.2
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Figure 6.16: Bottom and velocity pro�les for MPM model for Ag = 0.01
using a grid made by 250 cells at Froude = 0.2
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Figure 6.17: Bottom and velocity pro�les for MPM model for Ag = 0.1 using
a grid made by 250 cells at Froude = 0.2
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Figure 6.18: Bottom and velocity pro�les for MPM model for Ag = 1 using
a grid made by 250 cells at Froude = 0.2



6.9 Froude = 0.3

Figures 6.19-6.22 show the simulations computed at Froude = 0.3 for the

bottom and the velocity pro�les. In this case, an important feature can be

noticed. For Froude numbers equal to 0.1 and 0.2, the use of more DeC

iterations was basically useless in achieving higher values of the CFL allowed

for the implicit simulations. Now it appears from these �gures than the use

of 3 DeC iterations enables to mantain the same order of magnitude for the

CFL values of the previous subsection, while using just 1 DeC iteration lower

values have to be used. The �rst order, instead, shows the same behavior of

that seen for the previous Froude number. As for the corresponding case for

the Grass model but in the previous chapter, at high values of Ag signi�cant

�uctuations of the simulations start to be noticeable. Simulations obtained

with the more re�ned grid of 500 cells are omitted for brevity.
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Figure 6.19: Bottom and velocity pro�les for MPM model for Ag = 0.001
using a grid made by 250 cells at Froude = 0.3
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Figure 6.20: Bottom and velocity pro�les for MPM model for Ag = 0.01
using a grid made by 250 cells at Froude = 0.3
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Figure 6.21: Bottom and velocity pro�les for MPM model for Ag = 0.1 using
a grid made by 250 cells at Froude = 0.3
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Figure 6.22: Bottom and velocity pro�les for MPM model for Ag = 1 using
a grid made by 250 cells at Froude = 0.3



6.10 Froude = 0.4

Figures 6.23-6.26 show the simulations computed at Froude = 0.4 for the

bottom and the velocity pro�les. This case shows the same behavior for

the second order of the previous Froude number, while at the �rst order the

maximum CFL value has to be decreased to lower values. The �uctuations

at high values of Ag now are very evident, especially for the velocity pro�les.

Simulations obtained with the more re�ned grid of 500 cells are omitted for

brevity.
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Figure 6.23: Bottom and velocity pro�les for MPM model for Ag = 0.001
using a grid made by 250 cells at Froude = 0.4
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Figure 6.24: Bottom and velocity pro�les for MPM model for Ag = 0.01
using a grid made by 250 cells at Froude = 0.4
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Figure 6.25: Bottom and velocity pro�les for MPM model for Ag = 0.1 using
a grid made by 250 cells at Froude = 0.4
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Figure 6.26: Bottom and velocity pro�les for MPM model for Ag = 1 using
a grid made by 250 cells at Froude = 0.4

6.11 Concluding annotations

The more re�ned investigation on the CFL number has led some results in

this case. In fact, for Froude numbers equal to 0.3 and 0.4, at values of Ag

of 0.1, values of CFL of 21 and 22 respectively have been used. For this

cases, the computational cost of the implcit solutions is of the same type of

the corresponding explicit ones, and this explains the values equal to 1 in

the time computational ratios tables shown in the following tables for those

cases.



Anyway, the MPM model shows the same trend of the Grass one, i.e. at

increasing Froude number the allowable value of CFL becomes smaller and

making a comparison between the �rst and the second order it is shown how

implicit solutions are still good for a large number of cases for the second

order. Overall, this model shows a better behavior in terms of maximum

CFL allowed with respect to the Grass one.
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Figure 6.27: 1st-order
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Figure 6.28: 2nd-order

Ag = 0.001 Ag = 0.01 Ag = 0.1 Ag = 1
Froudei = 0.1 5360 185 2.73 2
Froudei = 0.2 60.98 6.3 1.81 0.1
Froudei = 0.3 63.64 6 0.69 0.1
Froudei = 0.4 6.56 0.65 0.08 0.16

Table 6.4: Time computational ratios between explicit and implicit time
advancing at �rst order

Ag = 0.001 Ag = 0.01 Ag = 0.1 Ag = 1
Froudei = 0.1 4030 403 40.9 4
Froudei = 0.2 135.5 14 1.42 0.1
Froudei = 0.3 46.14 4.61 1 0.26
Froudei = 0.4 48 4.58 1 0.26

Table 6.5: Time computational ratios between explicit and implicit time
advancing at second order



Chapter 7

Application to a contracting

channel

The last part of this work focuses on checking the accuracy of implicit solu-

tions by a comparison with the results of [1] over a 2D contracting channel.

7.1 The test case

The channel is 2000 m long and 500 m wide with a contraction zone in the

centre fo the channel as depicted in �g.7.1 . The upper curvature yt and the

low curvature yb for the contracting channel are de�ned by:

yt(x) = 500− 125exp
(
−(x− 1000)2

2502

)
, yb(t) = 125exp

(
−(x− 1000)2

2502

)
(7.1)

Initially the bed is �at and the water level and velocity �eld are as follows:

h(0, x, y) = 10m, u(0, x, y) =
Q

h(0, x, y)
, v(0, x, y) = 0, (7.2)

where Q is a constant discharge. The water density ρw = 1000 kg/m3,

the porosity p = 0.4 and the water discharge Q = 10 m2/s. As boundary

conditions we �xed the discharge in x-direction to 10 m2/s at the upstream

boundary and on all remaining boundaries we used the free �ow conditions.

77



Figure 7.1: Domain of the contracting channel �ow.

In all the simulations carried out in [1] explicit time advancing was used with

a CFL equal to 0.8, while three kinds of meshes were considered: an adaptive

one, a �xed coarse one and a �xed �ne one, with the lat two depicted in �g.

7.2. The study in [1] used both the Grass model and the MPM one to model

Figure 7.2: Coarse mesh (left) and �ne mesh (right) used in [1]

discharge, while in this work only implicit solutions for the Grass formula

have been carried out. The Ag parameter is set to 0.001 resulting in a slow

interaction between the bedload and the water �ow, while, as it is possible to

obtain from the data given before, the Froude number Fr =
√
u2 + v2/

√
gh

is about 0.1.

7.2 Mesh de�nition

In order to apply the numerical method of this work to the previous test

case, the �rst step has been building the grid. The code developed in [4] uses

the Grass model for sediment transport and discretizes the system with the



MR scheme. The mesh �le request is an .amdba �le, which is composed as

follow:

• �rst line a b (where a is the number of the nodes and b the number

of the triangles)

• a lines node table (number of the node - x coordinate - y coordinate

- label)

• b lines connectivity table (number of the triangle - node 1 - node 2 -

node 3 - label)

The label indicates where the vertex is located:

• 0 for a point in the �ow �eld;

• 1 for a point on the wall;

• 2 for a point on the outlet line;

• 3 for a point on the inlet line.

Thus, it is necessary to create the mesh and to assign to each node the

corresponding label. The mesh �le is obtained with MATLAB, using the

function pdepoly. Three kinds of mesh have been considered: a coarse one

and two �ne meshes. In the following, these meshes will be addressed asMesh

1, Mesh 2 and Mesh 3 respectively. The more re�ned meshes show a larger

number of nodes and cells in the central zone, especially for Mesh 3 and near

the domain boundaries where, according to the reference study, the higher

variations of the bed pro�le take place. In order to do this, a particular

setting of the pdepoly toolbox has been modi�ed: the growth of the cell

dimensions has been changed from the standard value of 1.3 to closer values

to 1, obtaining also cells with very similar dimensions. Using a graphical

interface the .amdba �le is created. Table 7.1 resumes the characteristics for

each mesh, which are also shown in the �gures 7.3-7-5.

As for the bathymetry, it has been set costant and equal to 10 m.
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Figure 7.3: Mesh 1 with the highlighted contour, inlet, outlet and �uid points
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Figure 7.4: Mesh 2 with the highlighted contour, inlet, outlet and �uid points
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Figure 7.5: Mesh 3 with the highlighted contour, inlet, outlet and �uid points



Mesh Contour points Nodes Triangles
Mesh 1 312 3479 6616
Mesh 2 340 4792 9208
Mesh 3 368 5877 11388

Table 7.1: Mesh chacteristics

7.3 Results and discussion

Once the meshes have been set, two dimensional implicit 2nd order simula-

tions were carried out setting the same parameters of the study of interest.

As for the CFL number, two values were used: a value of 1000, according

to the linear inversely relation with the Ag parameter for Fr = 0.1, and one

of 100. Second-order accurate simulations were carried out, in which that

independence of the time step was reached. The number of DeC iterations

was set to 1. Then to have an overview of the results and compare them

to those of PARAVIEW, an open source multiple-platform application for

interactive, scienti�ic visualization, has been used.
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Figure 7.6: Height of the �ow (right) and modulus of the velocity (right) at
t = 10 h for implicit solutions with CFL = 100 using Mesh 1.

Figure 7.6 shows what happens in the channel when the �uid �ows in

it: an acceleration of the �ow takes place in the centre of the channel, while

the height of the �ow increases immediately before the contraction and then

decreases after the middle section of the channel. Figures 7.7-7.12 display

the comparison of the snapshots for the bedload at times t =10, 25 and 50



h between the implicit simulations carried out here and those obtained in

the reference study. Figures 7.7-7.9 show the bedload obtained at di�erent

simulation times on Mesh 1 with both CFL = 100 and CFL = 1000. Figures

7.10-7.12 show the same plots for Mesh 2.These �gures can be compared with

Fig 4 of [1]. Since the results carried out with Mesh 3 are very similar to

those of Mesh 2, these are not reported in the following for the sake of brevity.

The time computational ratios are reported in the following tables: for Mesh

3 only simulations with CFL = 103 were carried out since no di�erences have

been noticed when using a smaller value of CFL, as shown in the �gures 7.7-

7.12. Tables 7.5 shows the CPU times of the explicit simulations carried out

in [comparison]: the computational gain obtained with implicit simultations

is considerable by looking at these tables.

10h 25h 50h
IMP CFL= 103 209,76 528,68 1070,64
IMP CFL= 102 528,13 1442,09 3075,75

Table 7.2: CPU times (s) for the Mesh 1

10h 25h 50h
IMP CFL= 103 433,17 1097,44 2358,3
IMP CFL= 102 1226,98 3220,02 6774,72

Table 7.3: CPU times (s) for the Mesh 2

10h 25h 50h
IMP CFL= 103 474.342 1267,14 2296.63

Table 7.4: CPU (s) for the Mesh 3



10h 25h 50h
Coarse �xed mesh 5100 7560 11280
Fine �xed mesh 42540 74520 124980
Adaptive mesh 18540 38760 52200

Table 7.5: CPU times (s) for the three meshes used in [1]

Figure 7.7 shows the evolution for the bottom pro�le at t = 10 h; we

observe that the bed reveals erosion in the converging part of the channel

and develops a mound in the diverging part of it. The erosion e�ects are

due to the increase of the water velocity in the contraction area, as shown

in �gure 7.6, and in regions with small velocity �eld no sediment transport

is produced. Indeed, this can be interpreted by the fact that the velocity

�eld is not entirely uniform across the channel with high-amplitude velocities

occurring in the contraction area. Next �gures show the evolution at the

following times steps for di�erent meshes.
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Figure 7.7: Bedload evolution at t = 10 h for implicit solutions with CFL =
100 (left) and CFL = 1000 (right) using Mesh 1.
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Figure 7.8: Bedload evolution at t = 25 h for implicit solutions with CFL =
100 (left) and CFL = 1000 (right) using Mesh 1.
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Figure 7.9: Bedload evolution at t = 50 h for implicit solutions with CFL =
100 (left) and CFL = 1000 (right) using Mesh 1.
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Figure 7.10: Bedload evolution at t = 10 h for implicit solutions with CFL
= 100 (left) and CFL = 1000 (right) using Mesh 2.
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Figure 7.11: Bedload evolution at t = 25 h for implicit solutions with CFL
= 100 (left) and CFL = 1000 (right) using Mesh 2.
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Figure 7.12: Bedload evolution at t = 50 h for implicit solutions with CFL
= 100 (left) and CFL = 1000 (right) using Mesh 2.

Then, in order to appreciate better the evolution of the bedolad, the

bottom pro�les at the center of the channel are reported in the following

�gures: the pro�les from the �ne �xed mesh and the adaptative one of [1]

and those obtained with the three meshes studied here are compared. For

the sake of brevity, just the bottom pro�les achieved using the maximum

allowable value of CFL are reported since negligible di�erences are observed

for the lower CFL.

7.4 Concluding remarks

From the results shown in the previous pages some considerations can be

made. First, the di�erences between the implicit simulations using various

CFL numbers are very small, so these tests validate the use of a inversely

proportional value of CFL with respect to that of Ag as provided from the

1D studies. However, by making a comparison with the simulations carried

out in [1], some dissimilarities can be noticed. The evolution of the bottom
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Figure 7.13: Comparison for the bottom pro�les in the middle section at
times t = 10h (top left), t = 25h (top right) and t = 50 h (bottom)

is slightly shifted to the right here, i.e. the lower values for the bedload

are reached somewhat before the centre of the channel, and this appears

more evident when looking to the bed evolution pro�les displayed for the

middle of the channel. It is possible to see how in [1] the lower values of

the bottom pro�le are basically reached in the middle of the sections, while

in the simulations carried out in this work these peaks are obtained slightly

before, and therefore the bottom pro�les at the center of the channel show

higher values. The use of the �ne mesh mitigates this di�erence, since the

results are closer of those of [1]. It has seen how at increasing time steps the

pro�les obtained with the implicit simulations are more close to those of the

study.

This can be explained by considering di�erent grid resolution used in the

present study compared to [1] and the fact that in our grids to models do

not exactly lay on the channel cetreline. Therefore, the variable values on

the centreline are obtained by linear interpolation and this may introduce

additional errors. However, the main reason of such a disparity of results is



the use of a di�erent numerical method.

Neverthless, in other references [30, 40] in which a similar test example has

been studied by using discontinuos Galerkin methods as numerical shemes

the evolution of the bottom pro�le shows a better agreement with the results

of this work, proving the good accuracy that can be reached using implicit

simulations.



Chapter 8

Conclusions

The present work has given a contribution to the assessment of the accuracy

and e�ciency properties at an implicit time-advancing strategy previously

developed for morphodynamic Shallow-Water problems. A 1D test-case has

been �rst considered and the investigation has been carried out for di�erent

models, speeds of interactions and for di�erent values of the Froude number.

In particular, the relationship between the maximum CFL number allowed

and the parameter giving the speed of interaction between the bed and the

�ow, Ag, has been object of this study at increasing Froude numbers. The

sediment transport models taken into consideration are the Grass model and

the Meyer-Peter Müller one, while to discretize the coupled system com-

posed by the Exner equation, used to describe the bed evolution, and the

hydrodinamical part composed by the classical Shallow Water equations, the

Modi�ed Roe scheme was used.

Given a Froude number, there are two ways to increase its value: by

raising the velocity of the �ow or by reducing its height. Then, implicit sim-

ulations with both of the models were carried out using these di�erent values

of the Froude number. However the MPM model cannot give interesting

results when increasing the velocity of the �uid since it is based on a critical

velocity threshold. Therefore for the MPM model simulations were carried

out only by varying the height. Using a Froude number equal to 0.1, it was

found that implicit simulations are extremely convenient from the point of
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view of computational costs at weak-intermediate values of the speed of in-

teraction between the �ow and the bedload and they stay competitive with

the explicit simulations even when this speed reaches high values. When aug-

menting the Froude number, implicit solutions become less promising since

the maximum CFL number allowable decreases, and using more DeC itera-

tions can just partially mitigate this circumstance. Therefore, for the larger

considered Froude numbers implicit time advancing remains interesting only

for low values of Ag. Making a comparison between the two models, the

MPM model shows higher values of CFL allowed by the solution accuracy,

con�rming what was found in a previous study. However, also for this model,

a decrease of the CFL with increasing Froude has been found. The Ag − Fr
value couples for whom the implicit simulations are convenient have been

identi�ed for each case and model analyzed.

The last chapter focuses on the application of implicit simulations to a

2D problem modelling the bedload evolution in a contracting channel, a test

case that has been object of interest in many studies [1, 30, 40]. Making

a comparison to the results of [1] it is possible to notice a good agreement

of the results that proves the accuracy of implicit simulations, but some

di�erences were also found. Looking at the bedload evolution in the middle

of the channel for di�erent times steps, the results carried out with implicit

solutions here show lower peaks than those of [1]: this has due to the di�erent

grid resolution and to the use of a di�erent numerical method. In fact, in

other references in which a similar test case has been studied the bottom

evolution shows a better agreement with the results of this work.



Appendix A

Sediment transport formulae

• Van Rijn formula [10, 17, 26, 27]: in this formulation, used expecially

for rivers, the interaction between �uid forces and sediment grain weight

produces bedload and saltation:

qb = cbubδb (A.1)

where cb is sediment concentration for bedload, ub grain velocity and δb

the dimension of the layer where sediments are transported. An other

formulation proposed by Van Rijn that includes Shields parameter is:

qb√
(G− 1)gd3

50

=
0.005

C1.7
d

(d50

h

)0.2(√
θ −

√
θcr
)2.4√

θ (A.2)

while for the suspension load there is the expression:

qs =

∫ h

0

vcdz = cūhF (A.3)

where c is the solid concentration, ū is the mean velocity in the �eld,

F is an integral function of the problem and h is the height of the �ow.
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• Parker formula [29, 33] has this expression:

qb = 0.00218 θ3/2G(ξ)

√
g∆D3

s

(1− λp)
, ξ =

θ

θr
, θr = 0.0386 (A.4)

with

G(ξ) =


5474(1− 0.853/ξ)4.5 ξ ≥ 1.59,

exp[14.2(ξ − 1)− 9.28(ξ − 1)2] 1 ≤ ξ ≥ 1.59,

ξ14.2 ξ < 1

(A.5)

• In Camenen and Larson formulation [10, 38] the bedload sediment

transport has the following expression:

|qb| = Cτ 1.5
c exp

(
−4.5

τcr
τc

)
(A.6)

where τc is the shear stress at the bottom due to the current, τcr is the

critical shear stress computed by the critical Shields theory and C is a

constant given by:

C =
12

g
√
ρ(ρs − ρ)

(A.7)

where ρ and ρs are the water and sediment density.
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