
UNIVERSITA DEGLI STUDI DI PISA 
FACOLTA’ DI INGEGNERIA 

 
Dipartimento Ingegneria Aerospaziale 

Laurea Specialistica in Ingegneria Aerospaziale 
Curriculum Aeronautico/Aerodinamico 

 
 
 
 

Sediment transport models for 
Shallow Water equations 

  
 
 
 
 
 

Anno Accademico 2011/2012 
 
Candidato:                                                                         Relatore: 
Cinat Paolo                                                                  M.V. Salvetti 

H. Guillard 
M. Bilanceri 



 



 

 

 

 

 

 

 

 

 

 

 

 

 

A mio zio Angelino. 

 
 
 
 

Non è possibile riprodurre i nostri pensieri in parole,  
queste rimangono troppo rapidamente indietro,  

come ombre, dietro le sensazioni. 
[Friedrich Nietzsche]  



Abstract

The numerical simulation of sediment transport problems is considered. The physical
problem is modeled through the shallow-water equations coupled with the Exner equa-
tion to describe the time evolution of the bed profile. Three different models of solid
transport discharge are considered. The spatial discretization of the governing equations
is carried out by a finite-volume method and a modified Roe scheme designed for non-
conservative systems. Linearized implicit schemes for time advancing are built through
a recently proposed strategy, based on automatic differentiation to compute the flux Ja-
cobians and on the defect correction approach to reach second-order accuracy. Explicit
schemes for time advancing are compared with implicit ones in one-dimensional sediment
transport problems, characterized by different time scales for the evolution of the bed.
It is shown that, independently of the model used for the solid transport discharge, for
slow and intermediate speeds of interaction between the bedload and the water flow, for
which the use of large time steps is compatible with the capture of the bed evolution,
implicit time advancing is far more efficient than explicit one with a CPU reduction up
to more than four orders of magnitude. In the last part, a realistic test is proposed,
concerning the sediment transport in Tunis Lake. This lake is divided into two main
parts, the North Lake and South Lake. The simulations are performed setting input
values to be consistent with reality, in order to have a good representation of sediment
transport in Tunis Lake.
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List of Symbol

Ag sediment constant which expresses the fluid-sediment interaction for Grass model.

Ad sediment constant which expresses the fluid-sediment interaction for modified Grass
model.

Ã sediment constant which expresses the fluid-sediment interaction for MPM model. It
is the same as Ag.

Ãd sediment constant which expresses the fluid-sediment interaction for modified MPM
model. It is the same as Ad.

a constant introduced in MPM simplification, which is 8 for MPM e 5.7 for FLV model.

ã the same as Ψ

C express the linear connection between shear stress and the square of velocity (Chezy
form). It can be calculated with different theories (Chezy, Manning, etc.)

C Chezy constant for shear stress.

cs = cs
c ratio between the volume occupied by the sediment and the water.

d grain diameter.

d50 mean grain diameter for a sediment cluster.

Fr Froude number.

G = ρs
ρ ratio between the sediment density and the fluid density.

g gravity constant

H indicates the depth. It is taken positive from the reference level too the bottom. [7]
[8]

h indicates the water column height. It is taken positive from the reference level too
the bottom. [7] [8]

K = (G− 1)gd50 constant used to simplify MPM model

Lref indicates a reference level. [7] [8]

mg Grass model exponent.



List of Symbol VI

Np number of particle which fall from a fixed area.

Ns number of particle which separate from a fixed area.

p porosity.

pr transport probability .

p̃ separation probability for sediment particles in a fixed area.

q global sediment flow rate.

qb bedload sediment flow rate.

qf mass flow rate.

qs suspension and saltation sediment flow rate.

Rh hydraulic radius.

u velocity on x direction. [7] [8]

ũ critical velocity which express the Shield condition assuming the shear stress expressed
in Chezy form.

V volume occupied by water.

Vs volume occupied by sediment.

v velocity on x direction. [7] [8]

ws sediment falling velocity settling velocity.

Z bed slope. Using the same notation as in [7] [8], it is expressed as Z = Lref −H.

ρ fluid density.

ρs sediment density.

γ specific water weight.

γs specific sediment weight.

η Manning coefficient.

Φ intensity of sediment load.

Ψ load threshold for sediment transport.

θ non dimensional shear stress.

θcr Shields parameter, which expresses the non dimensional critical shear stress (Shields
theory).

τ shear stress at the bed.

τcr critical shear stress.

ξ porosity factor 1
1−p .

ζ distance between the free surface and the reference level. Using the same notation as
in [7] [8], it is expressed as ζ = h−H.



 



Introduction

The numerical simulation of bedload sediment transport processes caused by the move-
ment of a fluid in contact with the sediment layer is of significant interest for many
environmental and engineering problems. The hydrodynamic part is usually modeled
through the classical shallow-water equations coupled with a continuity or Exner equa-
tion, expressing the conservation of the sediment volume, in which the solid transport
discharge is provided by a closure model. Many different models of solid transport dis-
charge are available in the literature (see, e.g., [7] [32] for a review). Moreover, a huge
amount of work has been done in the last decades to develop numerical methods for
the simulation of sediment transport problems (see, e.g., the references in [19] [7]). In
previous works executed by Aerospace Engineering Department of Pisa, in collabora-
tion with INRIA Sophia, they focused on the development and on the validation of a
strategy for implicit time advancing of the the shallow-water equations coupled with the
Exner equation, based on a defect-correction approach and on a time linearization, in
which the flux Jacobians are computed through automatic differentiation [36] [31] [28].
This time advancing strategy was coupled with two different finite-volume methods for
space discretization, viz. the SRNH predictor-corrector scheme [19] and a modified Roe
scheme for non-conservative systems of equations [7]. The Grass expression [16], which
provides one of the most popular and simple models for solid transport discharge, was
used. Different 1D and 2D numerical experiments showed that, if the time scales char-
acterizing the evolution of the hydrodynamic and morphodynamic components are not
too small, implicit time advancing leads to large reductions of the computational costs
with respect to those of explicit schemes, while preserving the result accuracy.

The aim of the present work is to investigate the behavior of the proposed implicit
time advancing strategy, in terms of accuracy and efficiency, when the model of solid
transport discharge is varied.

As a first step, it is considered a correction of the Grass model [10], to improve the
accuracy of the physical model. The Grass model describes bedload as a function of
the water velocity, considering an incompressible fluid in a 1D channel. For the Grass
model, the maximum discharge value is where the fluid velocity reaches its maximum,
i.e. near the free water surface. This is not in agreement with the physical reality,
for which bedload is manifested at the bottom. The same correction proposed in [10]
is investigated in this work, considering the water column, with good results from the
numerical point of view.

Moreover, in addition to the Grass model, it is considered herein the Meyer-Peter-
Müller (MPM) model [35], which is also widely used in numerical simulations of this
type of problems. The main difference with respect to the Grass model is that the
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MPM model takes into account the fact that the bottom movement starts when the
shear stress exceeds a given critical value, as from a numerical viewpoint, the presence
of a threshold in the bottom evolution may be a source of stiffness and, therefore, it
is interesting to investigate whether and to which extent the efficiency of the proposed
implicit linearized schemes is affected. Note that automatic differentiation together with
the defect-correct approach allow the numerical method to be easily adapted to changes
in physical modeling in general, and, in particular, in the modeling of the solid transport
discharge. As for numerical discretization in space, the present study is limited to the
modified Roe scheme. This is motivated by the fact that in a previous studies indicated
that overall performance of the implicit time advancing is practically independent of the
space discretization scheme to which it is coupled [37] [31]. Furthermore this analysis is
completed investigating what happens varying the intensity of the threshold, considering
3 different value of the velocity magnitude.

Finally, the same correction analyzed for Grass model is proposed to MPM model, to
investigate if this leads an overall improvement in computational efficiency and physical
accuracy. Also in this case, results were compared between implicit and explicit scheme,
varying the threshold magnitude.

The different time advancing schemes and physical models are appraised in the nu-
merical simulation of one-dimensional test problems, characterized by different time
scales for the interaction between the water flow and the the bed evolution. The same
numerical schemes used in the 1D case are finally applied to 2D simulations of realistic
sediment transport problems. As a first step, the Grass model it is used to study the
sediment transport in the North and South Tunis lake.



Part I

Sediment transport problem
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Chapter 1
Physical Model

Sediment transport model in a depth of water is solved coupling a morphodynami-
cal component and an hydrodynamical component. The hydrodynamical component is
modeled by Shallow Water equations, described in Sec. 1.1. The morphodynamical com-
ponent is modeled by Exner equation, described in Sec. 1.2, where also some sediment
transport model are presented.

1.1 Shallow water equations
Shallow Water equations are used to study fluid movement in rivers, channel and coastal
areas. They are a set of hyperbolic partial differential equations which describes the fluid
motion in a depth of water. The general characteristic of shallow water flows is that the
vertical dimension is much smaller than the typical horizontal scale. The name shallow
derives from that characteristic. The Shallow Water equations are derived from the
Navier-Stokes equations, which describes the motion of fluids, presented in system (1.1).
In an inertial frame of reference, the general form of the equations of fluid motion is:{

∂ρ
∂t + div(ρ~u) = 0
∂(ρ~u)
∂t + div(ρ~u~u) = ρ~b+ ¯̄T

(1.1)

where ~u is the flow velocity, ρ is the fluid density, ¯̄T is the Cauchy stress tensor and ~b
represents body forces acting on the fluid. Energy equation is omitted. Gravity forces
are negligible if the fluid is a gas. For water, these forces should be considered. The
notation used herein is the one proposed by Castro in [7] and presented in Fig (1.1),
where:

Lref is the reference level

H is the bathymetry

h is the water column height

Z is the bed slope, expressed as Z = Lref −H

Generally, the fluid flow is taken as incompressible. Also, salinity and temperature can
be assumed as constant. So, fluid density ρ is constant in all the domain. Cauchy stress

4



CHAPTER 1. PHYSICAL MODEL 5

tensor is it divided in two parts: an isotropic one, with pressure terms, and a deviatoric
part, which consider shear stress. After those consideration, system (1.1) can be written
as: {

div(~u) = 0
∂(ρ~u)
∂t + div(ρ~u~u) = ρ~g +−∇p+ ∆~τ (1.2)

According to the hypothesis of shallow water, conservation of mass implies that the
vertical velocity of the fluid is small. The momentum conservation in the z direction is
expressed as:

∂p

∂z
= ρg (1.3)

So, according to Fig. (1.1), pressure variation in the z direction is:

p(z) = ρgh+ p0 (1.4)

The vertical pressure gradients are nearly hydrostatic and the horizontal pressure gra-
dients are expressed as: {

∂p
∂x = ρg
∂p
∂y = ρg

(1.5)

So, with this pressure distribution, equation (1.5) can be integrated in the z direction
with appropriate boundary conditions. On the free surface, i.e. for z = ζ = h − H,
which indicates the distance between the free surface and the reference level, must be
specified the reference value of the pressure. Furthermore, it is not present normal mass
flow and the shear stress remain on the free surface. So, for z = ζ, conditions are:

• p0 = patm

• ∂ζ
∂t + u ∂ζ∂x + v ∂ζ∂y = 0

• - τxx ∂ζ∂x − τxy
∂ζ
∂y + τxz = τζx

At the bottom, no-slip condition must be imposed. For z = H, conditions are:

• u = v = 0

Figure 1.1: Physical variables considered for Shallow Water equations.
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• ∂H
∂t + u∂H∂x + v ∂H∂y = 0

• - τxx ∂H∂x − τxy
∂H
∂y + τxz = τHx

So, integrating system (1.2) with respect to z, from z = H to z = ζ, it is obtained:
∂h
∂t + ∂hu

∂x + ∂hv
∂y = 0

∂(hu)
∂t + ∂

∂x (hu2 + gh2) + ∂huv
∂y = −ρg ∂Z∂x

∂(hv)
∂t + ∂huv

∂x + ∂
∂v (hv2 + gh2) = −ρg ∂Z∂y

(1.6)

System 1.6 are Shallow Water equations system for 2D case. To obtain Shallow Water
equations for 1D case, it should be noted that partial derivate ∂

∂v is zero:{∂h
∂t + ∂hu

∂x = 0
∂(hu)
∂t + ∂

∂x (hu2 + gh2) = −ρg ∂Z∂x
(1.7)

System 1.7 are Shallow Water equations for 1D case.

1.2 Exner equation. Theory of incipient motion
In the case of mobile bed, it is necessary to describe the movement of the granular
sediment with an appropriate equation. The solid concentration is defined as:

c = Vs
V

(1.8)

where Vs is the solid volume and V the total volume. According to Castro notation in
Fig. (1.1), the solid mass conservation is written as:

(1− p)∂Z
∂t

+ ∂q

∂x
= ∂(cρs)

∂t
(1.9)

Z = Z(x, n) is the function defining the slope of the depth and q is the sediment flux.
The first term indicates the variation of solid mass flow caused by movement at the
bottom of the channel from x2, while the second indicates the variation of the flow range
between x1 and x2. The term on the right side of the equation defines the variation of
the solid material concentration in the control volume, where ρs is the sediment density.
Assuming that the solid concentration is constant, the system becomes:

(1− p)∂z
∂t

+ ∂q

∂x
= 0 (1.10)

is known as Exner equation and connects the sediment flux with the depth form. Gen-
erally it is defined a porosity factor as ξ = 1

1−p , and Exner equation became:

∂z

∂t
+ ξ

∂q

∂x
= 0 (1.11)

The Exner equation needs a closure model for the sediment transport q, a matter studied
by Shields (1936), who developed the theory of incipient motion. According to this
theory, the movement begins when the shear stress exceeds a critical shear value. Above
this value, the current is able to transport the granular sediment. Various physicals
parameters should be considered:

• shear stress at the bottom τ
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• sediment density ρs and fluid density ρ or their ratio G = ρs
ρ

• diameter of the sediment d

• characteristics of fluid dynamic motion

As it is possible to understand, the problem is complex because it is affected by local
phenomena. Shields studied an average depth, composed of granular and non-cohesive
sediments. This allowed him to avoid the influence of local phenomena. Thus, he im-
posed the balance of forces on a generic sediment particle, observing that the movement
starts when the shear stress exceeds a given critical shear stress τc. Literature also shows
different approaches to determine the incipient movement condition, based on a critical
Froude number or a critical mass flow or a given mean speed of the fluid. This limit is
obtained through several experiments, carried out on larger grains and then extrapolated
for smaller cases. The shear stress is written as [7] :

τ = γsRH |SF | (1.12)

γS is the specific water weight, RH is the hydraulic ratio, usually equal to the water
column h, and the form factor is defined according to the Manning Theory [7]:

SF = gη2
0u|u|

R
4
3
H

(1.13)

η0 is the Manning coefficient and u is the fluid speed at the bottom used to calculate the
fluid-dynamic forces. After several experiments, Shields obtained an incipient motion
diagram (1.2), through the non-dimensional shear:

θ = τ

(γs − γ)d (1.14)

where γ is the specific water weight. The incipient motion condition is expressed as:

θ > θcr (1.15)

where:
θcr = τcr

(γs − γ)d (1.16)

Figure 1.2: Motion condition according to the Shields theory. The line represents the
incipient movement condition, with respect to the Reynolds Number at the bottom.
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θcr is known as Shields number, which varies between 0.03 and 0.06. Therefore, Shields
number could be imposed according to different theory, based on the physics of the
problem. The diagram in Fig. 1.2 shows that a considerable amount of data is scattered
but, after a given Reynolds, the Shields number is almost constant (' 0.04÷ 0.06). The
non dimensional shear stress can still be written following the non-dimensional form
proposed by Chezy:

θ = Cτ
u2

(G− 1) gd50
(1.17)

where Cτ is called Chezy parameter which is generally of the order of 10−2. It can be
chosen depending on the specific case and is very often used in practice. Furthermore, θ
is defined according to the mean diameter d50, but it can also be expressed with respect
to other characteristic parameters (e.g. the diameter of a similar particle with a higher
weight).

1.3 Sediment transport models
Generally, the sediment transport is usually divided into three mechanisms, as Fig. 1.3
shows:

• Bedload: sediment grains roll or slide along the bed

• Suspension: fluid flux transports sediment grains over the bed, which lose contact
with the bed

• Saltation: single grains jump over the bed

Generally, the Sediment falling velocity ws (or Settling velocity) permit to differentiate
between different cases [12]. It describes the ability of the sediment particle to move
across the fluid: the maximum value is

√
2gh, obtained imposing the conservation of

the energy in the channel. This value express the velocity with which a particle falls
in a channel of height h, for sediment particle with an higher density value than water
one. Settling velocity it is used to classify the sedimentation process, considering if its
magnitude value remains constant or varies. Therefore, the solid flux q is divided into
two portions:

q = qs + qb

and qb is the transport terms related to bedload, and qs is the suspensions terms including
saltation, which is generally negligible. This distinction is not clear and it is difficult in

Figure 1.3: Sketch of sediment transport mechanism.
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various cases. For example, in sandy areas the suspension term prevails, but bedload
is also important and it could be difficult to define an accurate global model. Various
deterministic or probabilistic approaches to model the sediment flux q are discussed
in literature, in which different transport terms are developed. The models could be
divided in in two types: empirical and hybrid model. All this model are obtained
studying the sediment discharge in specific environmental conditions. The difference
is between the form of model utilized. Some equations are obtained empirically based
on the probabilistic theory of Einstein. These models have a well defined shape in the
equation, derived from this theory, but they do set the parameters according to various
studies. The principal issues of hybrid model are the consideration of a global discharge:
Einstein introduce a new subdivision in sediment transportmechanism, the alveum.

1.4 Empirical sediment transport models
This model are empirically derivates, with some experiment conducted by the authors.
Model are obtained for qb or qs singly, considering this mechanism as separate and
independent. Below, the models are presented in chronological order.

1.4.1 Du Boys relation
The first sediment flux model was proposed by Du Boys in 1879, but it is not much
used today. Du Boys divided the upper stream of the depth in N parts of height δ, with
Colombian stress between these parts. After imposing the balance of shear stress of the
control volume in each stream, he found:

N = τ0
τc

(1.18)

where is the shear stress at the upper side and τ0 is the shear stress at the lower side.
Obviously, the velocity field decreases moving down, and defining vs as the maximum
velocity at the upper side, the Du Boys relation is:

q =
(
δvs
2τ2
c

)
τ0 (τ0 − τc) (1.19)

where ( δvs2τ2
c

) = f(d50) = 0.54 1
γs−γ (Schoklitsch, 1914).

1.4.2 Exner model
Exner, in 1925, as presented in [23], simplified his conservation sediment equation, ob-
serving that:

1. fluid mass flow rate is constant

qf = hu = const

2. ζ � h −→ h = H − Z waves are lower than water level

3. the solid flux is linear with fluid velocity: q = αu

Therefore, Exner equation became only function of the depth slope:

(1− p)∂Z
∂t

+ ∂f (Z)
∂x

= 0 (1.20)
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where f (Z) = αqf
h−Z . Exner developed a solution for a continuous and discontinuous

slopes. For the continuous solution Exner added a diffusion term:

(1− p)∂Z
∂t

+ ∂f (Z)
∂x

= ε
∂2Z

∂x2 (1.21)

The diffusion term ε is usually determined experimentally. A similar model is discussed
in [1], investigating coupled solution of SWE system and Exner equation. The used
expression is:

∂Z

∂t
+ c

∂Z

∂x
= 0 (1.22)

where Z = Z
D0

, where D0 is a typical length of the water level, is non-dimensional
seabed slope and c is the non-dimensional migration speed, or celerity, of the bed form:

c = m

(1− η)m+1
A∗s

1− pFr (1.23)

where A∗s and m are constants depending on the problem, V0 is a velocity-scale and Fr is
the Froude number expressed as Fr = V0√

gD0
. It is expected c� Fr. That model is used

only for the simplicity of the solution, but is not considered a valid solution of Exner
equation: it introduces various physical parameters which are difficult to determine,
occurring in several errors.

1.4.3 Meyer-Peter - Müller model
The MPM model is one of the most known relations for the solid discharge. After a series
of experimental texts, conducted in Zurich in 1948, Laboratory of Hydraulic Research,
Meyer-Peter and Müller [35] proposed the following relation between sediment flux and
shear stress:

qb√
(G− 1)gd3

50
= 8sgn(u)(θ − θcr)

3
2 (1.24)

Typically, it describes the sediment transport for rocky rivers, rather than for sandy areas
as in Grass model (1.28). It is important the choice of the model for the shear stress τ ,
to well define the Shields condition. Generally, the motion condition is θcr = 0.047 [35],
according to the Bathurst theory. For different cases this value could be changed. This
formula is set for coarse sediments (d50 = 0.4429 mm), useful for coarse stream-beds and
for depth inclination of less than 2. For higher inclinations, MPM formula overestimates
sediment discharge [35]. Efficiency of relation (1.24) is significant, because it is based
on a large experimental data set and it takes into account only the mean characteristic
of the flow. In [30] an interesting correction of the MPM model is investigated:

qb√
(G− 1)gd3

50
= 8sgn(u)(θ − γ∇η − θcr)

3
2
θ − γ∇η
‖θ − γ∇η‖

(1.25)

where γ is a non-dimensional parameter, related to the bottom slope effects. The slope
of the depth appears by its gradient, expressing the stabilizing effect of the seabed
reshaping. In [30], the formula is used to investigate bedload in the case of significant
breaking wave height (see Camenen Model). This correction is considered one of the
best closure models of the Shallow Water equations system by the authors in [30].
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1.4.4 Fernandez Luque - Van Beek model
FLV [7] proposed a similar model to MPM model (1.24):

qb√
(G− 1)gd3

50
= 5.7sgn(u) (θ − θcr)

3
2 (1.26)

Only a coefficient varies between the two equation. Equation (1.26) is set for bigger
grains than (1.24).

1.4.5 Grass model
Grass [16] proposed non linear expression, like:

qs = αun. (1.27)

Shields theory was avoided by Grass, who proposed a non-linear relation for q, expressed
as:

qb = Ag
qf
h

∥∥∥qf
h

∥∥∥mg−1
(1.28)

where 1 ≤ mg ≤ 4 (generally 3) and 0 < Ag < 1, usually determined experimentally.
This term takes into account the dimension of the grain and fluid viscosity, and is smaller
when there is a weak sediment-fluid interaction. Barry [22] (2004) proposed a similar
solution, function only of fluid flow:

qb = αqβf (1.29)

where α and β are empirical coefficients.

1.4.6 Modified Grass model
Hogg (2005) proposed a correction with water column h, observing that, in Grass Model,
the maximum of sediment mass flow is on the upper side of the water, where qf = 0.
Authors in [10] investigated a linear relation between q and h, with good results. Thus
resulted in the following model:

qb = Adhu ‖u‖2 (1.30)

where Ad is a constant which depends on sediment features, and is usually determined
experimentally. This model is more accurate that Grass Model and also with more
complicated ones [10]. That model is compared to 1.24, one of the most used and
accurate relation used today. Results are similar if θ < θcr for few time. This model
allows to correct an intrinsical error of Grass model, for which the sediment mass flow
qb depends only on the water velocity. So, in a simplified model, the maximum velocity
value is on the free surface, where h = 0, according to Castro notation. This is not
physically correct, because the Grass model simplifies bedload transport, which occurs
mainly on the bottom. Thus, introducing the state h, it is possible to correct this
impropriety, expecting then a maximum value of the sediment flow at the bottom, where
h is maximum, consistent with the physical reality.

1.4.7 Nielsen model
Nielsen [34] proposed a model to similar (1.24):

qb√
(G− 1)gd3

50
= 12sgn(u) (θ − θcr)

√
θ (1.31)

with θcr = 0.05, generally. Equation (1.31) is set for smaller grains than the MPM one.
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1.4.8 Camenen model
Camenen [29] proposed a formula for only suspended load:

qs = uCr
ε

ws
[1− exp(−wsd

ε
)] (1.32)

where ε = kd
(
D
ρ

) 1
3 is the sediment diffusivity and D is the total dissipation in the water

flux. The Sediment ratio Cr is:

Cr = ACrθT exp(−θM
θcr

) (1.33)

where θT is the mean non-dimensional stress and θM the maximum stress at the bed.
Acr is a parameter depending on grain dimension. It is difficult to define Cr, which
depends also on the characteristics of waves and currents. Therefore, relation is often
used because it matches accurately the problem of suspension load. In [30], this model
is used to investigate suspension load in the case of significant breaking wave height,
comparing global transport with experimental data obtained in [3]. Bedload is expressed
by eq. 1.25. Results are very accurate.

1.5 Hybrid sediment transport models
In this section are considered model which consider a different subdivision in sediment
transport mechanism. Those model consider the transport as an unique item, according
to the alveum theory proposed by Einstein [13]. The discharge is approached with a
probabilistic idea, and a generical expression of sediment global flux it is found. This
formula it is used by different authors. setting parameter differently. Also are considered
model which takes into account the alveum theory. Below, the models are presented in
chronological order.

1.5.1 Einstein approach
Einstein proposed a new approach for sediment transport discharge, by a probabilistic
model [13]. He also avoided the distinction between bedload and suspended load, defining
a streambed structure (alveum). The transport probability in the stream varies from
0 to 1: there is no threshold imposed directly to the discharge, so Einstein does not
take into account Shields theory. There is probability on motion condition, connected
to the Shields theory, but is related to the force which produce the movement of the
particle. This is in contrast with most bedload formulas, both preceding and following
Einstein approach, which are based on Shields Theory of incipient motion and formulas
are obtained empirically through experimental field data. Einstein’s theory considers a
grain diameter di, a number of particles Np which separate from an area Ω (long L the
mean shift of the particle), a number of particles Na which fall in Ω. Einstein imposed
that number of the particles which fall in Ω are the same of those which separates:

Np = Na (1.34)

and observed that solid discharge must overrun a threshold ã. For simplicity, this pa-
rameter is connect to the Shields parameter but has not the same physical meaning:

ã = 1
θcr

= Ψ (1.35)
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Figure 1.4: The Einstein Theory of sediment transport.

Therefore, taking into account a mean normal force and a fluctuating force as L = L+L′,
where r = L

L̄
, Einstein defined the transport condition as:

r > a (1.36)

The solid transport happens with a probability pr, defined as:

pr =
∫
f (r) dr [−∞, a− 1] (1.37)

where f(r) is a Gauss function for the force. Therefore, the separation probability p̃ of a
sediment grain is p̃ = 1−pr. The number of particles Np which separate from the bottom
is equal to the percentage of particles of diameter di in Ω multiplied by the separation
probability p̃. Einstein proposed this relation for the total sediment transport:

q

gρs
√

(G− 1)gd3
50

= Ib
Is

αLα2
α1α3

p (1.38)

where parameters in α represent geometrical features of the grain, Is is the percentage
of particles of diameter di which cross a unit area normal to Ω and Ib is the percentage
of particles of diameter di which breaks off from Ω [5]. Einstein defined the intensity of
sediment load as:

Φ = q

gρs
√

(G− 1)gd3
50

(1.39)

which is called Einstein parameter. He also defined A′ = λα2
α1α3

. , B∗ = 1
σ
√

2 = 1
η0

,
Φ′ = Φ Ib

Is
, ξ = r−1

σ
√

2 (σ is the variance of f(r)). It could be shown as αL = λ
1−p , where λ

is derived experimentally. Einstein obtained the following integral expression:

A′Φ′
1 +A′Φ′ = p = 1− 1√

π

∫
exp

(
−ξ2) dξ [−(B∗Ψ+ 1

η0

)
;B∗Ψ− 1

η0

]
(1.40)

This relation was developed in the following years and inspired other probabilistic theo-
ries such as Kalinske’s one [2]. A solution proposed by Einstein was obtained supposing
Φ′ as a constant, where the separation probability p is known. Therefore, Einstein
expression is:

q = Φ′ Is
Ib
ρsg
√

(G− 1) gd3
50 (1.41)
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Furthermore, when sediment grains are regular, it results that Ib = Is = 1. In this
form, the equation 1.41 is similar to 1.24. Otherwise, Einstein and Brown [6], in 1950,
proposed the following solution:

Φ =
{

K
0.465 exp(−0.391

θ )
40Kθ3

θ < 0.182
θ > 0.182

(1.42)

where K =
√

2
3 + 36

d3
0
−
√

36
d3

0
and d0 = d

[
(G−1)g
ν2

] 1
3 is the non-dimensional diameter.

1.5.2 Engelund - Hansen model
The EH model [1], the total sediment load is calculated as:

q = u0.05Cτ
τ2
b,c

(G− 1)2
d50ρ2g

5
2

[
1 + 1

2

(
ξ
u0
u

)2
]

(1.43)

this formula is set for smooth sediment grains and is derived calculating an energy
balance for waves and tidal current. The average velocity of water flux is u, and u0 is
the velocity of waves at the free surface. The shear stress due only to current effect is
τb,c, where ξ is a damping coefficient. The shear stress due to current and wave effect
is:

τb,wc = τb,c

[
1 + 1

2

(
ξ
u0
u

)2
]

(1.44)

1.5.3 Bijker model
Bijker formula is one of the earliest for global discharge for waves and tidal currents
[14]. It is based on Kalinske probabilistic theory of sediment transport [2]. Bijker
divided bedload, which depends on bottom shear stress, and suspension, which depends
on the integral of velocity shape and sediment concentration, without considering Shields
Theory. Bedload is expressed as:

qb = Ad50
u

Cτ

√
g exp

[
−0.27(G− 1)d50ρg

µτb,wc

]
(1.45)

where A is an empirical coefficient depending on waves typology, u the mean current
velocity, µ depends on wave shape. All those coefficients are expressed in [32]. The
first part of the formula 1.45 represents a transport term and the second part a mixing
term. The suspension formula is calculated assuming that bedload is confined in a little
layer, at constant concentration. The dimension of this layer is proportional to depth
roughness κ. Integrating in water height:

qs = 1.83qb
[
I1 ln

(
33h
κ

)
+ I2

]
(1.46)

where I1 and I2 are Einstein Integrals, explained in [27].

1.5.4 Ackers and White model
Ackers and White [39] developed a solution for smooth or coarse sediments, in the case
of multidirectional currents. Bedload is only considered for coarse sediments, depending
on the shear stress at the bottom. Suspension is only considered for smooth sediments,
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depending on the turbulent flow. In the first model proposed by AW (1967), only the
effects of tidal current are considered:

q = u
1

1− pd35

(
u

u∗

)n
Cd,gr
Am

(FC −A) (1.47)

where d35 is the grain diameter of a particle added of the 65% of weight, u∗ the stream
velocity at the bottom and n, m, Cd,gr, A are non-dimensional parameters depending on
grain diameter [39]. Fc is the sediment mobility number. All parameters are expressed
in [32]. In [17], an expression including waves effects is proposed and is identical to
relation 1.47, but the velocity term u is expressed as:

uwc = u

√
1 + 1

2

(
ξ
u

u

)2
(1.48)

while the same expression is used for u∗.

1.5.5 Engelund - Fredsoe model
The EF formula [20] is a deterministic sediment discharge model, which takes into ac-
count Einstein model:

Φ =
{

0
18.74 (θ − θcr)

(√
θ − 0.7

√
θcr

) θ < θcr

θ > 0.182
(1.49)

In [18], an interesting correction of Shields parameter is investigated, proposed by Brors
(1999) and reshaped for 3D case:

θcr = θcr0
sin
(
α− sgn(~τ · ~S)ϑ

)
sinα (1.50)

These parameters define the dune geometry. Furthermore, bedload is divided into dif-
ferent directions as Brors relation:

qi = q
θi
‖θ‖
− C ‖q‖ ∂ηi

∂xi
i = 1, 2] (1.51)

The constant C, introduced by Brors, which varies from 1.5 to 2.3, takes into account
the slope of the dune.

1.5.6 Bailard and Inman approach
Bailard and Inman [11] developed a relation based on Bagnold theory [9], for which the
global work for sediment transport is equal to the total energy dissipation in the water
mass flow. This formula became very frequently used in engineering issues because of
its accuracy and simplicity in computational solution. For smooth depth, considering
wave and tidal currents effects, the proposed relation is the following:

q = 1
2fw

u3
0

(G− 1)

[
eb

tan γ

(
δv
2 + δ3

v

)
+ es
ws

(δvu∗3)
]

(1.52)

where eb and es are generally constant, depending on the shear stress at the bottom
and the particle diameter. The first term is related to bedload while the second term
is related to suspension load. The two efficiency parameters δv and u3 are expressed in
[32], which contains an extended version of formula 1.52, in vectorial form.
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1.5.7 Van Rijn model
Taking into account experimental data, Van Rijn [25] [24] [26] proposed a very important
sediment transport model for rivers. In fact, this model is one of the most used together
with the MPM equation. According to Bagnold theory [9] [25], in Van Rijn model
the interaction between fluid forces and sediment grain weight produces bedload and
saltation:

qb = cbubδb (1.53)

where cb is sediment concentration for bedload, ub is grain velocity and δb the dimension
of the layer where sediments are transported. Analytical expressions are available in
[32]. Otherwise, Van Rijn proposed a simpler model for bedload which includes Shields
parameter [27]:

qb√
(G− 1)gd3

50
= 0.005

C1.7
d

(
d50
h

)0.2 (√
θ −

√
θcr

)2.4√
θ (1.54)

that is easy to solve but also accurate, as most author have shown [32] [7] [30]. If
bedload is expressed as the flux of sediment in a little layer, suspension load is expressed
similarly, integrating the average solid concentration c in the water height:

qs =
∫ h

0
vcdz = cuhF (1.55)

u is a mean velocity in the field, F is an integral function of the problem, expressed
with empirical coefficients as in [33]. These relations are often use because the empirical
coefficient can be set according to the problem.

1.5.8 Watanabe approach
The total sediment discharge for Watanabe depends on waves and tidal currents and
starts after the Shields threshold [4]. The total sediment load is transported by the
mean flow as:

q = AW (G− 1) (θ − θcr)u (1.56)

This relation is typically used to investigate coastal evolution, shipping channels and
harbor. The parameter is a coefficient function of the wave. Generally, it is set constant,
but Aw varies according to waves and grain typology, as it was observed experimentally
[4].

1.5.9 CERC, Inman - Bagnold and Kamphuis approaches
In [32], some formulas presented here are compared with a series of experimental field
data such as Duck85, SuperDuck and SandyDuck. These data were obtained by the U.S.
Army in Duck harbor, North Carolina, where sediment discharge of d50 > 0.1mm grain,
was investigated in relation with waves and tidal current. The U.S. Army proposed the
following relation, known as CERC:

q = 1
16

K0
(1− p)

√
g
γb

(G− 1)H̃
2.5 sin 2θb (1.57)

where global load is proportional to the energy of waves, while K0 is a constant. This
happen because γb, θb and H̃ are indeed coefficients related to waves. In particular, θb,
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not to be confused with Shields parameter, indicates a medium angle of wave brake.
This expression were modified by Inman-Bagnold, which proposed the following

q = Kb

(1− p)
CgbEb

(ρs − ρ)

(
u

umax

)
cos θb (1.58)

where Cgb, Eb and umax are still coefficients related to waves, while Kb is a constant. The
relation (1.58) was also verified by U.S. Army in various areas of America and Japan.
These two field experiment were then developed in 2002 by Kamphuis, who proposed
the following relation:

q,t = 2.27
4
√
d50

T 1.5
p m0.75

b H2 sin0.6 (2θb) (1.59)

expressed in unit time. Tp is the peak time of waves, mb is the coastal slope. Relations
(1.57), (1.58) and (1.59) are developed for strong breaking waves. In fact, Duck85, Su-
perDuck and SandyDuck databases [38] are obtained in surf zones, where the suspension
term prevails.

1.5.10 CHSH Approach
The Defense Chinese Minister proposed, analogously to the U.S. Army, the Code of
Hydrology for Sea Harbor of China (CHSH) for total sediment transport in harbors:

q = 0.05059K ′(Hrms)2Cgb sin θb (1.60)

This formula is similar to (1.57). K ′ is a parameter depending on the mean diameter of
a sediment grain d50. In [21] relation (1.60) and (1.57) in were applied to investigate the
sediment transport in the Shijiu harbor. This harbor have got a particular conformation,
where sediment load is bidirectional and the mean grain dimension are smaller than
other cases, about d50 ∼= 0.12 mm. Formulas are tested comparing simulation with
experimental data. CHSH relation results more accurate than CERC from the analysis.
In fact, CHSH is set for mean value of the sediment grain and waves. Therefore, that
model produce a smaller error because K ′ varies considerably with d50, not as for K in
CERC model. For an accurate analysis, it should be investigated the two formulas for
bigger grains.

1.5.11 Yang and Liu approach
Following Einstein, Yang and Liu developed in 2005 a formula for the global load [18]:

Φ = 1.25
√

1
G− 1T0 (1.61)

where T0 = τ0(u2
∗−u

2
∗c)

(γs−γ)ws
√
gd3

50
is a non-dimensional parameter, function of the fluid-dynamic

characteristics. All those parameter are available in [18], where different terms of T0 are
presented and authors applied this model in various scenarios, like rivers or tidal currents.

1.5.12 Bayrman Model
In 2007, Bayrman proposed a formula [17] for global transport discharge, adding more
recent databases (1993-2004) to the studies which define formulas (1.57), (1.58) and
(1.59). Bayrman assumed that the work W done by waves keeps the solid suspension
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concentration at a constant value. He defined an efficiency parameter ε which he sup-
posed to be a universal constant:

W = Fε

where F is the energy flux of waves. Bayram expressed W as the energy required to
avoid the sediment fall:

q = εFu

(ρs − ρ) (G− 1)ws
(1.62)

This expression aims to incorporate most of the physical parameters involved, such as
tidal currents, sediment influence (in the falling velocity ws) and effects of interaction
fluid-sediment. Furthermore, u is the mean flow velocity, which takes into account waves,
currents and harbor slope. This relation is even simpler than CERC (1.57): its results
one more accurate for strong winds and tsunamis, as Bayrman shows in [17].

1.6 General remarks on sediment transport models
Einstein’s conception of the streambed structure permits to bypass the distinction be-
tween bedload and suspension. Therefore, the sediment transport is considered as a
single unit and can be useful in the case of a granular smooth seabed. It is to be noted
that the expression of parameter Φ proposed by Einstein is maintained in other rela-
tions. For example, MPM and Van Rijn models are more suitable for sediment transport
in rocky rivers, although they are often used in coastal environment, because they are
simpler to solve. In the case of sandy areas, Shields parameter θcr can be neglected and
the use of simple models which do not take the incipient motion theory into account
can be satisfying. As shown in [7], considering θcr = 0, MPM equation can be written
as the Grass model. Van Rijn’s model provides a lower scatter compared to different
fields measurement [32], although it does not represent a specific case, while other for-
mulas (EF, EH, Watanabe, AW, Bijker) analyzed do. Bayrman’s analysis shows that the
Van Rijn equation is also effective in the case of tidal currents and strong waves (surf
zones), although it is less accurate than the CERC relation (1.57) and the Bayrman
model. MPM model (1.24) is commonly used and effective only for bedload, also when
grains are smoother than those for which it was set. The correction model proposed
in (1.25), in which bedload depends on the shape of the depth, is very interesting for
practical applications. Watanabe model seems to guarantee simplicity and accuracy to
describe global sediment transport. Among all the models analyzed, two were chosen to
be implemented to analyze the transport in the case 1D. The first is the modified Grass
model because it introduces a small modification in the already available Grass model,
but ir has benne shown in [10] that thus may lead to substantial differences in sediment
motion. Secondly, the Meyer-Peter Muller model was chosen for several reasons. In the
first place for the introduction of a threshold in the sediment motion, in order to ana-
lyze the computational efficiency of the implicit time advancing in this case. Moreover,
there are several example in the literature which shows his accuracy of MPM model. In
this case it is necessary to define the model of the shear stress: for simplicity a linear
relationship with the square of the speed is chosen. In this way the model MPM can be
rewritten in a manner similar to that of Grass. Also in this case, the same correction
proposed for the model of Grass is implemented.



Chapter 2
Modified Roe Scheme for Shallow
Water

According to Castro notation, the system composed by Shallow Water equations and
Exner equation is presented in the following section for 1D case (2.1) and for 2D case
(2.2). The mathematical problem is solved with a finite volume approach (2.2) proposed
by Castro [7] [8], according to the modified Roe scheme (MR). The time advancing is
defined whit the Courant number (CFL)(2.4). Bilanceri in [28] implemented the Grass
model (1.28) to solve Exner equation. Three additional sediment transport model are
chosen and implemented in the present work. The implementation in the code is done
by changing the partial derivates in the last line of the Roe Matrix.

2.1 Shallow water coupled system for 1D and 2D case
According to the simplified Navier Stokes system (1.7) and Exner equation (1.10), the
Shallow water system for 1D case is:

∂h
∂t + ∂hu

∂x = 0
∂(hu)
∂t + ∂

∂x (hu2 + gh2) = −ρg ∂η∂x
∂z
∂t + ξ ∂q∂x = 0

(2.1)

where the porosity factor ξ = 1
1−p . The 2D solution scheme proposed by Castro in

[8] is the same presented for 1D solution scheme. The Shallow Water equations for
bi-dimensional condition is presented as follows:

∂h
∂t + ∂hu

∂x = 0
∂(hu)
∂t + ∂

∂x (hu2 + gh2) = −ρg ∂η∂x
∂(hv)
∂t + ∂

∂y (hv2 + gh2) = −ρg ∂η∂x
∂z
∂t + ξ ∂qx∂x + ξ

∂qy
∂x = 0

(2.2)

The solution scheme solve together Exner and SWE, coupling both systems. A different
approach is obtained decoupling both equation. First, the fluid part is solved and, after
that, the bed slope is upgraded according to the fluid dynamic solution.

19
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2.2 Finite volume approach
The numerical methodology proposed in this work is based on a standard finite volume
formulation. The computational domain [a, b] is divided into the cells Ci, i = 1, ...., Nc
which are defined by

[
xi−1/2, xi+1/2

]
. The barycenter of each cell is denoted by xi and

its length is defined by ∆xi = xi+1/2 − xi−1/2. Finally Wi(t), the mean value of the
solution over each control volume, is defined as follows:

Wi(t) = 1
∆xi

∫ xi+1/2

xi−1/2

W(x, t)dx (2.3)

while Wn
i , which denotes a generic unknown of the fully discretized problem, is an

approximation of Wi at time t = tn.

A Roe-like scheme for non-conservative systems

The numerical scheme proposed in [7] is used herein for space discretization. This
approach is based on the following non-conservative form of the system of equations
(??):

∂W
∂t

+ A(W)∂W
∂x

= 0 where A(W) = ∂F(W)
∂W −B(W) (2.4)

and{
W = ( h, hu, H )T

F(W) = ( hu, hu2 + 1
2gh

2, −ξqb )T ; B(W) =

 0 0 0
0 0 c2

0 0 0

 (2.5)

in which c =
√
gh, H = Lref − Z is the bathymetry function with respect to a fixed

reference level Lref and the matrix A is expressed as:

A =


0 1 0

c2 − u2 2u −c2

−ξ ∂q∂h −ξ ∂q
∂hu 0

 (2.6)

In [7] [8] a Roe-like scheme for the non-conservative system (2.4) is proposed leading to
the following semi-discrete formulation:
∂Wi

∂t
= 1

∆xi

(
Fni−1/2 −F

n
i+1/2 + 1

2B̃i−1,i
(
Wn

i −Wn
i−1
)

+ 1
2B̃i,i+1

(
Wn

i+1 −Wn
i

))
(2.7)

in which the Roe-like numerical flux function F(Wn
j ,Wn

i ) for j = i± 1 is expressed as:

Fni+j
2

= F(Wn
i ,Wn

j ) = 1
2

(
F(Wn

i ) + F(Wn
j )
)
− 1

2 |Ã|(W
n
j ,Wn

i )
(
Wn

j −Wn
i

)
(2.8)

where |Ã| = R̃
∣∣Λ̃∣∣ R̃−1, R̃ being the right eigenvector matrix of Ã and

∣∣Λ̃∣∣ the diagonal
matrix whose diagonal coefficients are the absolute values of the eigenvalues of Ã. More-
over, Ã, the generalized Roe matrix and B̃, the matrix associated to the non-conservative
term involved in (2.7) and (2.8), are expressed as:

Ã(WL,WR) =

 0 1 0
c̃2 − ũ2 2ũ −c̃2

ã31 ã32 0

 B̃(WL,WR) =

 0 0 0
0 0 gh̃
0 0 0

 (2.9)
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WL and WR being two generic states while h̃, ũ and c̃ are the Roe averages for the
Shallow Water equations, i.e.

h̃ = hL + hR
2 , ũ = uL

√
hL + uR

√
hR√

hL +
√
hR

, c̃ =
√
gh̃

Apart for simple models as the Grass one, the definition of the terms ã31 and ã32 to
obtain a Roe linearization of system (2.4) can be challenging, and thus, as done in [7]
[8], an approximated Roe-like matrix is considered by taken the partial derivatives of
Qb computed at the Roe average state, i.e.:

ã31
.= −ξ ∂qb

∂h

∣∣∣∣
(h̃,ũ)

ã32
.= −ξ ∂qb

∂hu

∣∣∣∣
(h̃,ũ)

Second-order extension

Following [7] the second-order extension considered in this work is based on the intro-
duction of a reconstruction operator Pi(x) which depends on the solution on Ci and on
its adjacent cells. The following second-order semi-discrete formulation of (2.4) is then
proposed:

∂Wi

∂t
= 1

∆xi

(
F(W−

i−1/2,W
+
i−1/2)−F(W−

i+1/2,W
+
i+1/2) + 1

2B̃i−1,i

(
W+

i+1/2 −W−
i+1/2

)
+1

2B̃i,i+1

(
W+

i+1/2 −W−
i+1/2

))
− 1

∆xi

∫ xi+1

xi

B(Pi(x))dPi
dx dx (2.10)

where W±
i±1/2 are the extrapolated values of the solution at the cell interfaces defined,

for instance, for the case of the interface between cells Ci and Ci+1 by

W−
i+1/2 = lim

x→xi+1/2
Pi(x), W+

i+1/2 = lim
x→xi+1/2

Pi+1(x)

Due to the non-conservative formulation, the second-order approach is not only a func-
tion of the extrapolated values of the solution at the cell interfaces, but also function of
the solution values inside the cells through the reconstruction operator Pi(x). The order
of the numerical formulation depends on Pi(x) and on its derivative as well as the order
of the quadrature formula used to approximate the integral in (2.10). Consequently,
in order to maintain a second-order accuracy, the integral term has been approximated
through the barycentre quadrature formula, that is:∫ xi+1/2

xi−1/2
B(Pi(x))dPi

dx dx ' ∆xi B(Pi(xi))
dPi
dx

∣∣∣∣
xi

(2.11)

while a MUSCL-type reconstruction operator is used:

Pi(x) = Wi +∇Wi (x− xi) (2.12)

where the gradient ∇Wi is computed by using the standard minmod limiter.

2.2.1 Discretization in time
First and second order explicit time advancing

A simple fully discretized formulation for system (2.4) can be obtained through the
use an explicit Euler method for time advancing. The resulting first-order accurate
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numerical scheme is expressed as

Wn+1
i = Wn

i + ∆ntRHSn1 (2.13)

in which RHSn1 corresponds to the right hand side of (2.7) and ∆n(·) = (·)n+1 − (·)n.
Moreover, in order to obtain an explicit scheme second-order accurate in time, the

time discretization is carried out by using a second-order TVD Runge-Kutta method
[15]. Thus, the following space and time second-order accurate numerical scheme is
obtained:  Wn+1/2

i = Wn
i + ∆tn RHSn2

Wn+1
i = Wn+1/2

i + Wn
i

2 + 1
2∆tn RHSn+1/2

2
(2.14)

RHSn2 and RHSn+1/2
2 being the the right hand side of (2.10) considering the solution at

time tn and the one of the first Runge-Kutta stage respectively.

2.2.2 Linearized implicit time advancing: a first-order accurate
approach

Generally speaking, the implicit counterpart of a first order explicit Euler method is
obtained by considering the right-hand-side term as a function of the solution at time
n+ 1 instead of n. Hence, a fully implicit first-order version of the scheme 2.13 can be
obtained by using the following backward Euler method:

Wn+1
i −∆ntRHSn+1

1 = Wn
i (2.15)

However, from a practical point of view this would require the solution of a large non-
linear system of equations at each time step. The computational cost for this operation is
in general not affordable in practical applications and, in general, significantly overcomes
any advantage that an implicit scheme could have with respect to its explicit counterpart.
A common technique to overcome this difficulty is to linearize the numerical scheme,
that is to find an approximation of RHSn+1

1 in the form:

RHSn+1
1 ' RHSn1 +

j=i+1∑
j=i−1

Dnij∆nWj (2.16)

where Dnij are matrices depending on the solution in cells Ci and Cj . Using this approx-
imation, the following linear system must be solved at each time step:

1
∆nt

∆nWi −
j=i+1∑
j=i−1

Dnij∆nWj = RHSn1 (2.17)

The implicit linearized scheme is completely defined once a suitable definition for the
matrices Dnij is given. If the right hand side is differentiable, a common choice is to use
the Jacobian matrices, hence:

Dnij '
∂RHSn1
∂Wn

j

(2.18)

Nevertheless, it is not always possible nor convenient to exactly compute the Jacobian
matrices. This problem has been solved herein through the use of the automatic differ-
entiation software Tapenade. The operational principle of an automatic differentiation
software is as follows: given the source code of a routine which computes the function
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y = F (x), the automatic differentiation software generates a new source code which com-
pute the analytic derivative of the original program. In practice, each time the original
program performs some operation, the differentiated program performs additional opera-
tions dealing with the differential values. Through an automatic differentiation software
it is possible to quickly implement an implicit linearized scheme of the form 2.17, once a
routine which computes the explicit flux function is available. As a consequence using an
automatic differentiation tool, starting from a first-order explicit method, it is possible
to automatically compute the matrices Dnij and then implement the linearized implicit
methods 2.17 without additional modifications. Note that the use of an automatic dif-
ferentiation tool is also convenient in the context of the study of sediment transport
fluxes modeling since the increase of complexity for models does not give additional
implementation difficulties for the implicit formulation.

A space and time second-order accurate linearized implicit formulation

A second-order implicit scheme is obtained, here, through the use of a second-order
backward differentiation formula in time:

(1 + 2τ)Wn+1
i − (1 + τ)2Wn

i + τ2Wn−1
i

∆nt (1 + τ) − RHSn+1
2 = 0 (2.19)

where τ = ∆nt

∆n−1t
. Similarly to the first-order case, a linearization of RHSn+1

2 must
be carried out in order to avoid the solution of a nonlinear system at each time step.
Clearly, the same approach as for the first-order scheme that is to find an approximated
linearization of RHSn+1

2 , could be considered.
However, the linearization for the second-order accurate fluxes and the solution of

the resulting linear system implies significant computational costs and memory require-
ments. This is a consequence of the more complex expression of second-order schemes
with respect to their first-order counterparts and of the larger stencil of the second order
flux function. In order to reduce the computational costs, an alternative approach is to
use a defect-correction (DEC) technique. The DEC iterations write as:

W0 = Wn

Lsi∆sWi −
j=i+1∑
j=i−1

Dsij∆sWj = Csi s = 0, · · · , r − 1

Wn+1 =Wr

(2.20)

in which: 
Lsi = (1 + 2τ)

∆nt (1 + τ) I −D
s
ii

Csi = −
(

(1 + 2τ)Ws
i − (1 + τ)2Wn

i + τ2Wn−1
i

∆nt (1 + τ)

)
+ RHSs2

(2.21)

Dsij being the generic matrices of the approximation (2.16) in which are involved the
intermediate solutionsWs. Thus, even if the flux function is computed using the second-
order accurate numerical method, the linearization is based on the first-order flux func-
tion. In the basic approach, only one DEC iteration is used, i.e. r = 1, since only one
defect-correction iteration is theoretically needed to reach a second-order accuracy ([28]).
Nevertheless, form a practical point o view, the use of few additional DEC iterations
(one or two) can improve the robustness.
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2.3 Modified Roe Scheme for 2D solution
The 2D solution scheme proposed by Castro in [8] is the same presented for 1D solution
scheme. So, the system (2.2) it could be reduced in the non conservative form as:

∂W

∂t
+ A1

∂W

∂x
+ A2

∂W

∂y
= 0 (2.22)

in the non conservative form. The matrix A1 and A2 are the Jacobian of the Shallow
Water equations expressed by:

A1 =


0 1 0 0

u2 + gh 2u 0 0
−uv v u 0
−ξ ∂qbx∂h −ξ ∂qbx∂qx

−ξ ∂qbx∂qy
0

 (2.23)

A2 =


0 0 1 0
−uv v u 0

v2 + gh 0 2v 0
−ξ ∂qby∂h −ξ ∂qby∂qx

−ξ ∂qby∂qy
0

 (2.24)

The Roe-like Matrix in the 2D dimensional case is expressed following eq. (2.22), as
shown in [8], introducing the Roe averages as the 1D case. The expression of those
averages are more complex than 1D case. The Roe-like Matrix A1 and A2 are defined for
the right and the left cell and a Roe-like Matrix Ã(WL,WR, nLR) is defined as follow:

Ã(WL,WR, nLR) = nx,LRA1 + ny,LRA2 (2.25)

Finally, introducing the diagonal matrix |Λ|, composed by the absolute values of the
eigenvalues of Ã = R|Λ|R−1, and Fn = nxF1(W ) + nyF2(W ), the Roe-like numerical
flux function F(Wi,Wj , nLR) is introduced:

F(Wi,Wj , nLR) = 1
2(Fnij (Wi)− Fnij (Wi))−

1
2 |Λ|(Wj −Wi) (2.26)

2.3.1 Explicit solution
The complete formulation of MR scheme it could be expressed after the definition of
the Roe-like numerical flux function 2.26. It is possible to write the non-conservative
system (2.22) as:

∂W

∂t
= R̂HS(F) (2.27)

where R̂HS(F) is a function of the Roe-like numerical flux function, which dependence
will be omitted for simplicity (2.26) (for the complete formulation see [28]). The time
discretization for the explicit Euler scheme is:

Wn+1 = Wn + (∆tn)R̂HS (2.28)

This formulation express the solution for Shallow Water equations solved with the MR
scheme. The second order extension is obtained introducing a reconstruction operator
for each cell. Nevertheless, once (2.12) is defined, it is possible to extend the MR scheme
to the second-order accuracy. The MR scheme presents for the second order extension
is defined:

Wn+1 = Wn + (∆tn)R̂HS2 (2.29)
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It is considered a MUSCL-like reconstruction operator which at time tn can be expressed
as:

Pi(x;Wn
j ) = Wn

i + ∆̂Wn
i (x−Gi) (2.30)

where ∆̂Wn
i is an approximation of the gradient in the ith-cell, possibly taking into

account flux-limiters. The same technique described in [8] is considered for the compu-
tation of ∆̂Wn

i . A linear approximation of the gradient in each triangle Tj is considered,
considering the barycentric coordinate λj associated for each kth vertex of the jth tri-
angle. The gradient is approximated as:

∆̂Wn
i '

∑
j |Tj |∆WTj∑

j Tj
(2.31)

In [8] is showed as eq. (2.31) is, for regular solution, a first-order approximation of ∆W
shows [28].

2.3.2 Implicit solution. DEC correction
The implicit counterpart of a first order explicit method is obtained by considering the
right-hand-side term as a function of the solution at time n+1 instead of n. It is possible
to obtain a implicit method from an explicit using the following backward Euler method:

Wn = Wn+1 − (∆tn)R̂HS (2.32)

However, from a practical point of view this would require the solution of a large non-
linear system of equations at each time step. A common technique to overcome this
difficulty is to linearize the numerical scheme, that is to and an approximation of R̂HS:

R̂HSWn+1 ' R̂HSWn +
∑

Dij∆nW (2.33)

where Dij is a matrix depending on the solution in the ith and the jth- cell. Using this
approximation, the following linear system must be solved at each time step for the MR
scheme:

∆nW

∆tn −
∑

Dij∆nW = R̂HS (2.34)

The implicit linearized scheme is completely defined once a suitable definition for the
matrices Dij is given, similar at the one for the 1d case (2.18). If the right side is differ-
entiable, a common choice is to use the Jacobian matrices, but it is not always possible
or convenient to exactly compute the Jacobian matrices. In fact, it is not unusual to
have some lack of differentiability of the numerical flux functions or in the source term.
The implicit scheme is obtained using the automatic differentiation software Tapenade.
Through an automatic differentiation software it is possible to quickly implement an im-
plicit linearized scheme of the form 2.34, once a routine which computes the explicit
flux function is available. The implicit code is obtained from the explicit Roe solution.
Therefore, the application of this method would require the solution of two non linear
systems of equations at each time step, thus dramatically increasing the computational
costs with respect to the explicit version. An alternative approach, generally more effi-
cient in terms of computational costs, is to use a second-order backward differentiation
formula in time:

(1 + 2τ)Wn+1 − (1 + τ)2Wn + τ2Wn−1

∆nt(1 + τ) − R̂HS2 = 0 (2.35)
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where τ = ∆nt
∆n−1t Similarly to the 1rst-order case, a linearization of R̂HS2 must be carried

out in order to avoid the solution of a nonlinear system at each time step, using the same
approach for 1D solution of DEC correction (2.16). Indeed, it can be shown that only
one defect correction iteration is theoretically needed to reach a second-order accuracy,
while few additional iterations (one or two) can improve the robustness. DEC correction,
as shown in [28], increase the simulation time efficiency without a deterioration of the
solution accuracy.

2.4 CFL Condition
At the end, it is necessary for convergence of MR scheme to define the time interval ∆t.
In mathematics, it is used the Courant Friedrichs Lewy condition (CFL condition). Usu-
ally, it arises when explicit time-marching schemes are used for the numerical solution.
As a consequence, the time step must be less than a certain time in many explicit time-
marching computer simulations, otherwise the simulation will produce incorrect results.
CFL condition it is necessary to define correctly the time step simulation. If a wave
is moving across a discrete spatial grid and, it is necessary to compute its amplitude
at discrete time steps of equal length. This length must be less than the time for the
wave to travel to adjacent grid points. So, with CFL condition, the time step is set as
the minor time for a wave to cross the spatial domain ∆x. The intensity of the wave is
given by the maximum eigenvalue λmax. For 1D case, the CFL number used is defined
as follows:

CFL = λmaxδt

δx
(2.36)

where λmax is the maximum value of the eigenvalues of Roe Matrix. For 2D solution the
CFL condition is expressed for MR scheme as the 1D case, and the maximum eigenvalue
is taken from the global Roe Matrix Ã and ∆x is a characteristic length of each cell. As
it possible to understand, for implicit solution CFL value must be higher than explicit
solution. This mean that the time steps are higher, and the solution could result less
accurate but faster than explicit one. The objective of this work is to improve the
accuracy for implicit solution, with a different sediment transport model to solve Exner
equation.

2.5 1D Model implementation
The implementation of the model chosen is herein presented.

2.5.1 Modified Grass Model
The first model chose is the modified Grass model (1.30), presented in Section 1.3,
subchapter 1.4.6. The model is implemented only modifying the last line of Roe Matrix
(2.9), which, for simplicity, is called ~F . This vector is composed by the partial derivates
of the sediment transport model qb as follows:

F = − 1
1− p

∂qb
∂x

(2.37)

where ~x = (x1, x2, x3) is the state vector:

~x =

 h
hu
H

 (2.38)



CHAPTER 2. MODIFIED ROE SCHEME FOR SHALLOW WATER 27

So, the modified Grass model (1.30) can be rewritten as:

qb(x1, x2, x3) = Adx1(x2
x1

)3 (2.39)

Therefore, according to eq. (2.37):

~F =

 1
1−pAd

u3/2

2
− 1

1−p
3
2Ad
√
u

0

 (2.40)

and the last line of Roe Matrix is the transposed of vector ~F . So, the first order
explicit solution is derived and the implicit solution was implemented using automatic
differentiation though Tapenade. Second order terms are automatically calculated in
the 1D code and defined the first order fluxes and the implicit 2nd order version simply
derives by using the DEC approach described in [28]

2.5.2 Meyer Peter Muller Model
The Meyer Peter - Muller model, expressed as eq. 1.24, in Section 1.3, subchapter 1.4.3
has also been implemented. That model, is defined by:

qb√
(G− 1)gd3

50
= sign(u)8(θ − θcr)

3
2

is one of the most used in the literature and/or for ingegneristic/hydraulical problems.
It is important the choice of the model for the shear stress τ , to well define the Shields
condition. To simplify the computational problem, the shear stress are written in the
Chezy form τ = Cu2 where C is a constant, which can be determined by different
theories (e.g. Manning theory or Chezy theory, App. C.). So, the non-dimensional
shear stress θ is:

θ = C

K
u2 (2.41)

It is possible to simplify eq. (1.24) by defining the parameter K as:

K = (G− 1)gd50 (2.42)

Therefore, substituting in eq. (1.24) the expression of the non-dimensional shear stress
(2.41), MPM 1.24 equation is simplified as:

qb = sign(u)Ã(u2 − ũ2) 3
2 (2.43)

where:
Ã = a

C
3
2

K
d50 (2.44)

ũ2 = θcr
K

C
(2.45)

Where, for MPM model, a = 8. For the Fernandez Luque and Van Beek model a = 12:
in the code a is put as an input, so it is simple to switch between the two models.
Consequently, it is possible to handle different physical conditions and to perform also
the Fernandez Luque model. The incipient motion condition is thus a condition on the
square of velocity u. So, if u2 > ũ2, sediment transport is present and expressed by eq.
(1.24). Therefore, in the 1D code an if control is implemented to consider the threshold
on the motion condition. The variables set as input are:
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• a

• d50

• G = ρs
ρ

• C

• θcr

The last line of Roe Matrix ~F , as done for modified Grass model, is the transposed of
vector ~F , defined in [8], which can be expressed as follows:

~F =

 1
1−p3Ã

√
(u2 − ũ2)u2

h

− 1
1−p3Ã

√
(u2 − ũ2)uh
0

 (2.46)

and the transposed vector (2.46) is the last line of Roe Matrix. It should be noted that
∂qb
∂h = −u ∂qb∂hu . So, the first and second order implicit version can therefore be obtained
as previously explained for the modified Grass model.

2.5.3 Modified Meyer Peter Muller Model
MPM model can oalso be modified in a similar way as the Grass model. As done for
MPM model, the equation is reduced as:

qb = sign(u)Ãh(u2 − ũ2) 3
2 (2.47)

The last line of the Roe Matrix is the transposed of vector ~F having the following
expression:

~F =

 1
1−p Ã[(u2 − ũ2) 3

2 − 3u2√(u2 − ũ2)]
− 1

1−p3uÃ
√

(u2 − ũ2)
0

 (2.48)
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Chapter 3
Simulations with Grass model

In this Chapter, the test case used by Bilanceri in [28] for the Grass model is described.
The results obtained with Grass model are briefly recalled the in Sec. (3.1). Next, in
Sec. (3.2), simulations done with modified Grass model are presented.

3.1 Test case. Grass model results
A 1D test-case which corresponds to a standard problem already considered in several
papers (see e.g. [7], [28]) is considered. It is a sediment transport problem in a channel
of length l = 1000 m with a non constant bottom profile. The initial bottom topography
is given by a hump shape function (Fig. 3.1):

Z(0, x) =
{

0.1 + sin2( (x−300)π
200 ) if 300 ≤ x ≤ 500

0.1
h(0, x) = 10− Z(0, x)
u(0, x) = 10

h(0,x)

(3.1)

in which all the variables are in SI units. In [7] [28], two different uniform grids are con-
sidered for the discretization of the computational domain: a coarse grid, GR1, which is
composed by 100 cells and a refined one, GR2, composed by 250 cells. The results com-
puted by first and second-order MR schemes, both explicit and implicit, were compared
in terms of accuracy and computational costs. Four sets of simulations, characterized by
Ag equal to 0.001, 0.01, 0.1 and 1 respectively, Ag being the free parameter in the Grass
model were carried out. Each value of the parameter Ag corresponds to a specific speed
of interaction between the flow and the bedload and, as a consequence, to a specific time
scale for the evolution of the bottom topography. The first value corresponds to a weak
interaction between the flow and the bedload, the last to a strong one, while the other
values to intermediate conditions. Therefore, in order to observe significant variations
of the bed profile, the simulations corresponding to small values of Ag were advanced
in time for longer periods, as table (3.1) shows. The largest CFL, allowing an accurate
solution to be obtained are shown in Tab. (3.2). As it is possible to see, for second order
implicit case, DEC correction permit to use a higher value of CFL. The implicit time
advancing is computationally efficient even using only one DEC iteration for slow and in-
termediate speeds of interaction. The CFL limitation to avoid loss of accuracy is roughly
inversely proportional to Ag and, in presence of unphysical oscillations, increasing the

30
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Figure 3.1: Initial condition imposed for 1D numerical test.

number of DEC iterations can significantly increase the accuracy. The implicit time
advancing is computationally efficient even using only one DEC iteration for slow and
intermediate speeds of interaction not shown here for the sake of brevity. In this work,
the same problem and simulation set up are used, for all the models implemented. All
the simulations have been carried out on a 2.5 GHz Intel Pentium Dual Core processor
with 4 Gb RAM. Porosity is set as p = 0.4.

Ag 1 0.1 0.01 0.001
Simulation time 700 7000 50000 500000

Table 3.1: Final simulation time (seconds) for the considered values of Ag.

Ag 1 0.1 0.01 0.001
CFL Explicit 0.8 0.8 0.8 0.8

CFL Implicit DEC=1 100 101 102 103

CFL Implicit DEC=3 101 102 103 104

Table 3.2: CFL value which allows the lower computational cost for Grass model.

3.2 Simulation for modified Grass model
Numerical test are conduced to investigate the corrective effect of the state h in the
Grass model GRH. The correction implies that the sediment constant Ag is modified as
follows:

Ag = hAd (3.2)
so it varies along the local water column. Ag is not constant in the field and reaches
its maximum values at the bottom, where h is maximum. In the field test case used,
the maximum height is h ∼= 10 meters, as presented in Section 3.1. Therefore, discharge
constant Ad is set as in Tab. (3.3), in order that the maximum values of Ag be the same
as those considered in [28] [31]. The local reduction of Ag could decrease the stiffness of
the problem, reducing also the computational cost.

Ag 1 0.1 0.01 0.001
Ad 0.1 0.01 0.001 0.0001

Table 3.3: Values imposed in input constant to obtain each fluid interaction.
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3.2.1 Weak interaction
Weak interaction corresponds to the smallest value of the sediment constant Ag. This
type of interactions, when 0.001 ≤ Ag ≤ 0.003, is typical for sandy areas, on costal envi-
ronment. Figure 3.2 compares the solutions obtained with second order explicit scheme
(CFL= 0.8) and implicit one (CFL= 103) for the Grass model and the modified Grass
model. As for the model comparison, the sediment constant varies in the z direction,
and thus the total discharge it is reduced, the bottom slope is more compact, and less
advanced in the x direction. It can also be seen that the implicit solutions at CFL=103

coincide with the explicit ones for both grids and for both models. In order to better
investigate the effects of the CFL number (a equivalently time step) Figs 3.3 and 3.4
show the solution obtained with 1st and 2nd order implicit schemes for the modified
Grass model at various CFL numbers, compared to corresponding explicit solutions.
In all cases at CFL=104 there is a deterioration of the implicit solution accuracy. Fi-
nally, Fig. 3.5 shows the effect of DEC iterations on the 2nd-order implicit solution at
CFL=104. It appears that with 3 or 4 DEC iterations accuracy problems are practically
eliminated. Computational time are presented in Tab. (3.4). Implicit second order
scheme for CFL= 104, DEC= 3, is clearly the best value which allows accuracy with
small computational time. An important decrease of the CPU cost is anyway obtained
with the implicit scheme also at CFL=103.

Method GRID
100 el. 250 el.

Explicit 1st CFL= 0.8 33.51 s 206.892 s
Explicit 2nd CFL= 0.8 77.33 s 478.67 s
Implicit 1st CFL= 103 0.228 s 1.44 s

Implicit 2nd CFL= 103 DEC 1 0.232 s 1.468 s
Implicit 2nd CFL= 104 DEC 3 0.072 s 0.444 s

Table 3.4: Simulation time for modified Grass model when Ad = 0.0001. Comparison
between Grid of 100 and 250 elements.
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Figure 3.2: Comparison between Grass model and modified Grass model for Ad = 0.0001.
Second order solution, explicit solution with CFL= 0.8 and implicit solution with CFL=
103.
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Figure 3.3: Implicit case for modified Grass model for Ad = 0.0001 compared to explicit
solution, CFL= 0.8. First order solution,CFL varies from 102 to 104.
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Figure 3.4: Implicit case for modified Grass model for Ad = 0.0001 compared to explicit
solution, CFL= 0.8. Second order solution,CFL varies from 102 to 104.
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Figure 3.5: Second order implicit case for modified Grass model for Ad = 0.0001, effects
of the number of DEC iterations for CFL= 104.
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3.2.2 Weak/intermediate interaction
A weak/intermediate interaction, which correspond to Ag = 0.001 (Ad = 0.0001), is
now considered. Weak/intermediate interactions are found in river areas, where the
bed is more grainy, composed by sand and small stones. Fig. 3.6 shows the largest
value of CFL (102) for second order implicit scheme with match explicit solution with
DEC= 3. The modified Grass model present a more compact shape, with an higher
peak, than Grass one. Moreover, the bottom slope is less advanced in the x direction. It
can also be seen that the implicit solutions at CFL=102 coincide with the explicit ones
for both grids and for both models. The same analysis proposed for weak interaction to
investigate the CFL influence in implicit scheme is proposed in Figs. 3.7 and 3.8. For
both 1st and 2nd order, explicit solution is reached by implicit scheme for CFL=102.
Furthermore, a deterioration of the solution accuracy appears for CFL=103 and, for
second order scheme, DEC iteration corretion is introduced in Fig. 3.9. For the second
order implicit scheme, increasing DEC iterations, the accuracy is improved and, for
DEC= 3, good accuracy is obtained also at CFL= 103. Finally, Tab. (3.5) shows the
computational times. The largest gain obtained is obviously obtained at CFL=103 with
3 DEC iterations, but the implicit scheme is more efficient than the explicit one also at
CFL=102.

Method GRID
100 el. 250 el.

Explicit 1st CFL= 0.8 3.384 s 20.737 s
Explicit 2nd CFL= 0.8 7.828 s 47.939 s
Implicit 1st CFL= 102 0.228 s 1.424 s

Implicit 2nd CFL= 102 DEC 1 0.236 s 1.456 s
Implicit 2nd CFL= 103 DEC 3 0.068 s 0.44 s

Table 3.5: Simulation time for modified Grass model when Ad = 0.001. Comparison
between Grid of 100 and 250 elements.
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Figure 3.6: Comparison between Grass model and modified Grass model for Ad = 0.001.
Second order solution, explicit solution with CFL= 0.8 and implicit solution with CFL=
102.
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Figure 3.7: Implicit case for modified Grass model for Ad = 0.001 compared to explicit
solution, CFL= 0.8. First order solution, CFL varies from 102 to 104.
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Figure 3.8: Implicit case for modified Grass model for Ad = 0.001 compared to explicit
solution, CFL= 0.8. Second order solution, CFL varies from 102 to 104.
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Figure 3.9: Second order implicit case for modified Grass model for Ad = 0.001, effects
of the number of DEC iterations for CFL= 103.
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3.2.3 Strong/intermediate interaction
This type of interaction is the highest value, physically speaking, considered valid for
Grass model. However, the study of these interactions is useful at computational level
since it allows to reduce the final time to observe a well defined sediment discharge.
Moreover, considering strong/intermediate interaction, which correspond to Ag = 0.1
(Ad = 0.01), the modified Grass model compared to the Grass model is presented in
Fig. 3.10. Implicit second order scheme with CFL=101 and explicit solutions with
CFL=0.8 are compared. Implicit scheme match the explicit solution for both grid and
condition. Also in this case, a reduction on displacement in x direction is found for the
modified Grass model. Therefore, the CFL influence in implicit scheme is investigated
in Fig. 3.11 for 1st order and in Fig. 3.12 for 2nd order. In all cases the implicit
scheme accuracy deteriorates for CFL=102. Conversely, for CFL=101, implicit 1st and
2nd order scheme well match explicit solution with CFL=0.8 for both meshes. Finally,
DEC iteration was investigated for CFL=102 and it is shown in Fig. 3.13 for both grid.
It appears that with 3 DEC iterations accuracy problems are practically eliminated.
In conclusion, computational times are presented in Tab. (3.6). Implicit second order
scheme for CFL=102, DEC=3, is the best value which allows accuracy with with a
negligible reduction in computational time. Explicit second order scheme CFL=0.8
gives accurate results with slightly higher times than implicit second order scheme with
CFL= 102, DEC 3.

Method GRID
100 el. 250 el.

Explicit 1st CFL= 0.8 0.46 s 2.88 s
Explicit 2nd CFL= 0.8 1.072 s 6.66 s
Implicit 1st CFL= 101 0.316 s 1.968 s

Implicit 2nd CFL= 101 DEC 1 0.324 s 2.012 s
Implicit 2nd CFL= 102 DEC 3 0.1 s 0.608 s

Table 3.6: Simulation time for modified Grass model when Ad = 0.01. Comparison
between grid of 100 and 250 elements.
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Figure 3.10: Comparison between Grass model and modified Grass model for Ad = 0.01.
Second order solution, explicit solution with CFL= 0.8 and implicit solution with CFL=
101.



CHAPTER 3. SIMULATIONS WITH GRASS MODEL 37

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

x

B
ot

to
m

A
d
 = 0.01 GRD1

 

 

IMP1 CFL=100

IMP1 CFL=101

IMP1 CFL=102

EXP1 CFL=0.8

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

x

B
ot

to
m

A
d
 = 0.01 GRD2

 

 

IMP1 CFL=100

IMP1 CFL=101

IMP1 CFL=102

EXP1 CFL=0.8

Figure 3.11: Implicit case for modified Grass model for Ad = 0.01 compared to explicit
solution, CFL= 0.8. First order solution, CFL varies from 100 to 102.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

x

B
ot

to
m

A
d
 = 0.01 GRD1

 

 

IMP2 CFL=100

IMP2 CFL=101

IMP2 CFL=102

EXP2 CFL=0.8

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

x

B
ot

to
m

A
d
 = 0.01 GRD2

 

 

IMP2 CFL=100

IMP2 CFL=101

IMP2 CFL=102

EXP2 CFL=0.8

Figure 3.12: Implicit case for modified Grass model for Ad = 0.01 compared to explicit
solution, CFL= 0.8. Second order solution, CFL varies from 100 to 102.
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Figure 3.13: Second order implicit case for modified Grass model for Ad = 0.01, effects
of the number of DEC iterations for CFL= 101.
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3.2.4 Strong interaction
The last interaction value considered is for Ag = 1 (Ad = 0.1). In order to compare
the modified Grass model and the Grass one for strong interaction, in Fig. 3.14 implicit
solution obtained with CFL=1 is presented together with the one given by explicit
scheme. In this case, a reduction in CFL for modified Grass model is found for the
explicit scheme, which gives valid solution for CFL=0.6, instead of the value 0.8 used
for Grass model. Again, for strong interaction a different discharge is found for the
two considered models, for both grid. Modified Grass model presents a reduction of
the x direction. Also for strong interaction, the influence in implicit solution of CFL is
investigated for 1st and 2nd order scheme (Figs. 3.15 and 3.16). In all cases at CFL= 101

there is a deterioration of the implicit solution accuracy. Furthermore, increasing the
number of DEC iterations for second order implicit scheme makes the solution more
stable, as presented in Fig. 3.17. For 3 DEC iterations all accuracy problems completely
disappear. Finally, computational time are presented in Tab. 3.7. Explicit scheme has
a CPU time comparable to second order implicit scheme CFL= 101, with DEC= 3. For
strong interaction, it is found a good computational gain using implicit scheme with
DEC correction. Thus, for strong interaction, it is better to use the explicit scheme.

Method GRID
100 el. 250 el.

Explicit 1st CFL= 0.6 0.064 s 0.368 s
Explicit 2nd CFL= 0.6 0.14 s 0.828 s
Implicit 1st CFL= 100 0.28 s 1.756 s

Implicit 2nd CFL= 100 DEC 1 0.288 s 1.792 s
Implicit 2nd CFL= 101 DEC 3 0.084 s 0.536 s

Table 3.7: Simulation time for modified Grass model when Ad = 0.1. Comparison
between Grid of 100 and 250 elements.
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Figure 3.14: Comparison between Grass model and modified Grass model for Ad = 0.1.
Second order solution, explicit solution with CFL= 0.6 for modified Grass model and
implicit solution with CFL= 101.
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Figure 3.15: Implicit case for modified Grass model for Ad = 0.1 compared to explicit
solution, CFL= 0.6. First order solution,CFL varies from 100 to 102.
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Figure 3.16: Implicit case for modified Grass model for Ad = 0.1 compared to explicit
solution, CFL= 0.6. Second order solution,CFL varies from 100 to 102.
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Figure 3.17: Second order implicit case for modified Grass model for Ad = 0.1, effects
of the number of DEC iterations for CFL= 101.
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3.2.5 Concluding remarks for the modified Grass model
As for the comparison between the implicit and explicit time advancing, the behavior of
the modified Grass model is practically the same as the Grass one. The maximum CFL
allowed for implicit time advancing to obtain an accurate solution is:

CFL =' 1
Ag

(3.3)

It could be increased of one order of magnitude at second order with 3 DEC iterations.
Fig. 3.18 shows the ratio between explicit and implicit CPU time for all the values of Ag.
Second order implicit scheme with 3 DEC iteration presents a strong decrease in com-
putational efficiency for modified Grass model than the Grass one, especially for weak
interaction, also if the CFL value is 104 for both model. Considering weak interaction
for Grass model, the gain using implicit second order scheme is four time higher than
using the modified Grass scheme. Moreover, also for weak/intermediate interaction this
reduction it is found. The same decreasing trend is found for the solutions with only
one DEC iteration.
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Figure 3.18: Time ratio between second order implicit and explicit scheme, for modi-
fied Grass model (DEC= 3) and Grass model (DEC= 3) model for all the interaction
analyzed.



Chapter 4
Simulations with MPM model

In this Chapter, the analysis carried out for MPM model is presented. Simulations are
presented in Sec 4.2. To well study the threshold influence in the problem, a set of test
are carried out for MPM model and are presented in Sec. (4.3). After that, the MPM
model is corrected like the Grass model. Simulations are presented in Sec. (4.4), and in
Sec. (4.5) the analysis on threshold condition is reported.

4.1 Validation (ũ = 0)
First of all, to validate the work done, results obtained by Bilanceri [28] with Grass
Model are used. The MPM model without threshold and Grass model must coincide.
So, it is possible to compare those models by imposing in MPM, θcr = 0. The results
obtained with MPM match Grass results, also in CFL variation, as Fig. 4.1 shows for
second order scheme and GR2. The considered values of Ag (Ã) constant in MPM
model is obtained by imposing correctly the value of G = ρs

ρ and Chezy constant C,
following eq. (2.44). Table (4.1) resumes the constant value imposed in input to obtain
all fluid interactions speed. The threshold θcr is also an input, so it is imposed equal to
zero to have Grass model. As expected, the computational times for Grass model and
MPM without threshold are comparable. The solution scheme is the same, only one
therm change which does not produce relevant time gain. After no threshold analysis,
threshold condition is verified, by imposing in input θcr = 0.047. Obviously, to analyze
the effect of the threshold, the incipient motion condition must be present in the test.
Therefore, according to the Chezy expression of shear stress, it is simple to note that Ã

Interaction G = ρs
ρ C ũ [m/s] d50 [m]

Ag = 1 1.8155 1 1.04 2.876
Ag = 0.1 9.1549 1 1.04 0.2877
Ag = 0.01 1.08155 0.01 1.04 0.287
Ag = 0.001 1.8155 0.01 1.04 0.0288

Table 4.1: Values imposed in input parameter to obtain each fluid interaction.

41
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do not depend on mean diameter:

Ã = a
C

3
2

(G− 1)g (4.1)

Consequently, it is possible to set only the value of C and G to have the value of
Ã required. The values presented in Tab. (4.1) are obtained by setting the Chezy
coefficient, calculating G to obtain the corresponding speed interaction. After that,
with an opportune value of d50, the presence of the threshold is assured. This has
got an important physical meaning, namely that the presence of sediment transport
depends on the size of the sediment and not from the relative weight. Considering the
same weight of two particle with different diameter the same weight, the size of the
sediment defines the threshold of motion and, in turn, the type of scheme (Ã is inversely
proportional to density ratio G). Therefore, the threshold appears in the scheme used
as a velocity condition. This because of the model of τ chosen. So, to obtain an optimal
value, velocity shape at the bottom of Bilanceri result is analyzed. It is set as speed
condition an average value:

ũ = 1.04 (4.2)

which, guarantees the presence of the threshold in the test.
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Figure 4.1: Results obtained for MPM model with no threshold. All Ag values matches
results with Grass model.
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4.2 Simulation with ũ = 1.04
In this section, results obtained with the MPM model with threshold set as ũ = 1.04
are presented. The presence of the threshold must change the bottom slope, and it is
important to understand the effect on the stiffness of the code.

4.2.1 Weak interaction
Considering weak interaction, first and second order explicit solution, compared to Grass
results, are shown in Fig. 4.2 for ũ = 1.04. It is possible to see the difference in the
displacement of the bottom slope or the MPM, which is smaller and the hump near the
threshold condition. Implicit first order solutions are compared with explicit first order
in Fig. 4.3 for ũ = 1.04. Solutions seems to be stable, with an excellent accuracy of
the solution up to CFL=104. At CFL=105, a slight decrease of the peak of the bottom
profile. This decrease is greater in the case of solutions of second order, as can be
seen in Fig. 4.3 for ũ = 1.04. Solution is stable and well matches first order solution
until CFL = 104, with DEC=1. For CFL = 105, the solution accuracy significantly
decreases: the code is not able to calculate this case for GR2, and for GR2 a higher
peak is found. Also, for GR1, a different slope at threshold condition is found. The
number of DEC iteration is increased for CFL = 105 and results are shown in Fig. 4.5
for ũ = 1.04, without relevant results. In terms of computational resources, Tab. (4.2)
shows the CPU time for weak interaction. Implicit scheme have a more efficient solution
and, compared to the result obtained with Grass model, the maximum CFL allowed to
obtain an accurate solution is increased of one order of magnitude.

Method θcr = 0.047 θcr = 0
100 el. 250 el. 100 el. 250 el.

Explicit 1st CFL= 0.8 33.61 s 214.537 s 35.43 s 224.83 s
Explicit 2nd CFL= 0.8 74.22 s 467.55 s 79.14 s 514.02 s
Implicit 1st CFL= 104 < 0.001 s 0.004 s 0.02 s 0.12 s

Implicit 2nd CFL= 104 DEC 1 0.02 s 0.116 s 0.02 s 0.124 s

Table 4.2: Simulation time for MPM model, Ã = 10−3, ũ = 1.04 m/s.
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Figure 4.2: Differences between initial condition, Grass model and MPM model for Ã =
0.001, GR1 and GR2. Explicit case CFL= 0.8, ũ = 1.04 m/s.
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Figure 4.3: Implicit case for MPM model for Ã = 0.001 compared to explicit solution,
CFL=0.8. First order solution, CFL varies from 103 to 105, with ũ = 1.04 m/s.
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Figure 4.4: Implicit case for MPM model for Ã = 0.001 compared to explicit solution,
CFL=0.8. Second order solution, CFL varies from 103 to 105, with ũ = 1.04 m/s.
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Figure 4.5: Second order implicit case for MPM model for Ã = 0.001, effects of the
number of DEC iterations for CFL=105, ũ = 1.04 m/s.
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4.2.2 Weak/intermediate interaction
Increasing Ag value, weak/intermediate interaction between bedload and water flow
are considered. As presented for weak interaction, the bottom slope is smaller, as it
is possible to see for first and second order of explicit solution, compared to Grass
results, in Fig. 4.6 for ũ = 1.04. The presence of the threshold is evident, especially
for the fact that it is linked to the velocity profile, constraining the bottom slope to
the initial one. Implicit first order solutions are compared with explicit first order, in
Fig. 4.7 for ũ = 1.04. In terms of accuracy resolution, an order of CFL is gained also
for weak/intermediate interactions,with respect to Grass solution. Implicit second order
solutions are compared with explicit second order in Fig. (4.7) for ũ = 1.04. Solution
is stable and well matches second order solution until CFL = 103, with DEC = 1.
After that, a peak for GR1 is found, and for GR2 the solution is not stable, as for
weak interaction. Further increasing the DEC iteration is increased for CFL = 104

and results are shown in Fig. (4.9) for ũ = 1.04. Moreover, for DEC=2, unphysical
oscillation are observed for GR2. Solution seems to lose accuracy also for DEC=3, with
an higher peak. As for weak interaction, implicit scheme allows to gain one order degree
in CFL condition but an increment of DEC correction does not reach a larger value.
Finally, Tab. (4.3) shows the CPU time for weak/intermediate interaction. As for weak
interaction, DEC=1 assures the best ratio accuracy-time calculation.

Method θcr = 0.047 θcr = 0
100 el. 250 el. 100 el. 250 el.

Explicit 1st CFL= 0.8 3.38 s 21.43 s 3.63 s 22.54 s
Explicit 2nd CFL= 0.8 7.39 s 46.85 s 7.97 s 50.07 s
Implicit 1st CFL= 103 0.02 s 0.116 s 0.02 s 0.12 s

Implicit 2nd CFL= 103 DEC 1 0.02 s 0.116 s 0.094 s 0.016 s

Table 4.3: Simulation time for Ã = 10−2, ũ = 1.04 m/s.
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Figure 4.6: Differences between initial condition, Grass model and MPM model for Ã =
0.01, GR1 and GR2. Explicit case CFL= 0.8, ũ = 1.04 m/s.
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Figure 4.7: Implicit case for MPM model for Ã = 0.01 compared to explicit solution,
CFL=0.8. First order solution, CFL varies from 102 to 104, with ũ = 1.04 m/s.
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Figure 4.8: Implicit case for MPM model for Ã = 0.01 compared to explicit solution,
CFL=0.8. Second order solution, CFL varies from 102 to 105, with ũ = 1.04 m/s. For
GR2, CFL=104, the code gives no results.
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Figure 4.9: Second order Implicit case for MPM model for Ã = 0.01, effects of the
number of DEC iterations for CFL=104, ũ = 1.04 m/s.
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4.2.3 Strong/intermediate interaction
The value of Grass constant Ã = 0.1 corresponds to intermediate/strong interactions
between sediment transport and fluid. Also in this case, as shown for weak interactions,
the solution with MPM model is bound by the threshold, appearing more stable. First
and second order of explicit solution, compared to Grass results, are shown in Fig. 4.10
for ũ = 1.04. Even for weak interactions, for implicit first order solutions, an order
degree on CFL value is gained, as Fig. 4.11 shows. For CFL = 103, the solution
near the threshold presents a lower peak, and some oscillations of second order. The
same happens for implicit second order scheme, compared with explicit second order in
Fig. 4.21 for ũ = 1.04.Solution is stable and well matches second order solution until
CFL= 103, with DEC= 1. For CFL= 103, solution it is unstable, with an higher peak
for GR1.For GR2 the code is not able to calculate the solution, and for CFL= 105

significant oscillation were found. Moreover, increasing DEC iteration for CFL = 103

and, as it possible to see in Fig. 4.13, the scheme is almost unstable, with an higher
peak. Solution with DEC correction couldn’t be considered valid. In this case, increasing
DEC iteration is recommended to find a better ratio accuracy-computational time only
for Grass model. Finally, as presented in Tab. (4.4), which shows the CPU time for
strong/intermediate interaction.

Method θcr = 0.047 θcr = 0
100 el. 250 el. 100 el. 250 el.

Explicit 1st CFL= 0.8 0.47 s 2.98 s 0.52 s 3.254 s
Explicit 2nd CFL= 0.8 1.06 s 6.55 s 1.15 s 7.26 s
Implicit 1st CFL= 102 0.18 s 1.09 s 0.028 s 0.168 s

Implicit 2nd CFL= 102 DEC 1 0.028 s 0.16 s 0.010 s 0.11 s

Table 4.4: Simulation time for for MPM model, Ã = 10−1, ũ = 1.04 m/s.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

x

B
ot

to
m

A
g
 = 0.1 GRD1

 

 

Initial
EXP1 MPM
EXP2 MPM
EXP1 GR
EXP2 GR

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

x

B
ot

to
m

A
g
 = 0.1 GRD2

 

 

Initial
EXP1 MPM
EXP2 MPM
EXP1 GR
EXP2 GR

Figure 4.10: Differences between initial condition, Grass model and MPM model for
Ã = 0.1, GR1 and GR2. Explicit case CFL= 0.8, ũ = 1.04 m/s.
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Figure 4.11: Implicit case for MPM model for Ã = 0.1 compared to explicit solution,
CFL=0.8. First order solution, CFL varies from 101 to 103, with ũ = 1.04 m/s.
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Figure 4.12: Implicit case for MPM model for Ã = 0.1 compared to explicit solution,
CFL=0.8. Second order solution, CFL varies from 101 to 103 for GR1 and from 101 to
104 for GR2, with ũ = 1.04 m/s.
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Figure 4.13: Second order Implicit case for MPM model for Ã = 0.1, effects of the
number of DEC iterations for CFL=103, ũ = 1.04 m/s.
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4.2.4 Strong interaction
IN order to compare the different solution between obtained with Grass and MPM
models, first and second order of explicit solution, for Ã = 1 are presented in Fig. 4.14.
For strong interaction, the quality of the results imposes a maximum CFL number equal
to 1 for first order and second order scheme but, for GR2, a god accuracy is found also
for CFL = 102, as it possible to see in in Fig. 4.15. Implicit second order solutions are
compared with explicit second order in Fig. 4.15 for ũ = 1.04. Solution is stable and
well matches first order scheme until CFL = 101, with DEC=1. The number of DEC
iterations is increased for CFL = 102 and results are shown in Fig. (4.17) for ũ = 1.04.
With 4 or 5 DEC iterations, good accuracy is recovered, although only small oscillation
are present near the peak on GR2. Finally, Table (4.5) shows the CPU time for strong
interaction. In this case, explicit solution do not present large differences in time than
implicit one, so it is possible to use it without losing efficiency. In CFL condition, also
in this case one order degree is gained with DEC=1

Method θcr = 0.047 θcr = 0
100 el. 250 el. 100 el. 250 el.

Explicit 1st CFL= 0.8 0.55 s 0.32 s 0.6 s 0.384 s
Explicit 2nd CFL= 0.8 0.116 s 0.7 s 1.36 s 0.85 s
Implicit 1st CFL= 101 0.028 s 0.164 s 0.18 s 0.2 s

Implicit 2nd CFL= 101 DEC 1 0.028 s 0.172 s 0.036 s 0.204 s

Table 4.5: Simulation time for for MPM model, Ã = 1, ũ = 1.04 m/s.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

x

B
ot

to
m

A
g
 = 1 GRD1

 

 

Initial
EXP1 MPM
EXP2 MPM
EXP1 GR
EXP2 GR

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

x

B
ot

to
m

A
g
 = 1 GRD2

 

 

Initial
EXP1 MPM
EXP2 MPM
EXP1 GR
EXP2 GR

Figure 4.14: Differences between initial condition, Grass model and MPM model for
Ã = 1, GR1 and GR2. Explicit case CFL= 0.8, ũ = 1.04 m/s.
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Figure 4.15: Implicit case for MPM model for Ã = 1 compared to explicit solution,
CFL=0.8. First order solution, CFL varies from 100 to 102, with ũ = 1.04 m/s.
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Figure 4.16: Implicit case for MPM model for Ã = 1 compared to explicit solution,
CFL=0.8. Second order solution, CFL varies from 100 to 102, with ũ = 1.04 m/s.
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Figure 4.17: Second order Implicit case for MPM model for Ã = 1, effects of the number
of DEC iterations for CFL=102, ũ = 1.04 m/s.



CHAPTER 4. SIMULATIONS WITH MPM MODEL 51

4.2.5 Concluding remarks for MPM model
The results obtained with MPM model presents an increasing in the CFL condition,
considering only 1 DEC iteration. So, considering only one DEC iteration, the time
scale of the problem is proportional to:

CFL w
10
Ag

(4.3)

which is the best ratio obtained with Grass model, but with DEC=3. For the MPM
model, the solution doesn’t shows a better trend with DEC= 3 at 2nd-order scheme,
and the maximum CFL can’t be further increased by carrying out more DEC iterations.
The computational efficiency is compared in Fig 4.18, in which the best solution for bot
model is presented, with the solution obtained with only one DEC for Grass model. It
is important to note how MPM model allows the same computational efficiency of Grass
model with only one DEC. Especially for weak and weak/intermediate solution, a larger
gain is obtained in CPU time using implicit scheme.

It is important to note, observing Tab. (4.1), that the values of the physical param-
eters imposed for Ã = 10−3 hasn’t got a valid meaning. The constant Ã is too high
and the particle diameter is not congruent with the displacement of the problem. For
Ã = 10−3, values of the physical parameters imposed has got a valid meaning. The
corresponding value of G and C are typically used in sandy areas. The mean diameter
is a bit high, but this is in agreement with Grass model, which is developed for sandy
areas. For low values of the density ratio G, transport is present if the particle diameter
has a considerable dimension, according to eq. (2.45). In sandy areas, G and d50 are
small and transport is still present. To introduce the threshold, a larger value of mean
diameter is required, as it is shown Tab. (4.1). The case analyzed is more suitable for
sediment transport in rocky rivers, for which MPM equation is developed.

4.3 Threshold influence on MPM model
The principal effect of the threshold is to reduce the sediment discharge. In order to
fully understand its influence on simulation performed, an analysis varying the threshold
value was performed. Two additional values for ũ have been analyzed.
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Figure 4.18: Time ratio between second order implicit and explicit scheme, for MPM
model (DEC= 1) and Grass model (DEC= 3) model for all the interaction analyzed.
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Interaction G = ρs
ρ C ũ [m/s] d50 [m]

1.02 2.767
Ag = 1 1.8155 1 1.04 2.876

1.06 2.9883
1.02 0.2767

Ag = 0.1 9.1549 1 1.04 0.2877
1.06 0.2988
1.02 0.2767

Ag = 0.01 1.08155 0.01 1.04 0.287
1.06 0.2988
1.02 0.0277

Ag = 0.001 1.8155 0.01 1.04 0.0288
1.06 0.02988

Table 4.6: Values imposed in eq. (2.44) and (2.45) to obtain weak interaction for MPM
model.

4.3.1 CFL influence
The presence of the threshold leads to a different bottom evolution with respect to the
one obtained with the Grass model. This bottom slope could influence, in particular,
the value of CFL for which the solution might be considered accurate. At this matter,
two additional thresholds are considered for the MPM model. As mentioned in Chap.
4 for MPM model, varying only the parameter d50 it is possible to set the threshold, as
reported in Tab 4.6. As it possible to see in Fig. 4.19, for GR2, the threshold position
influence the bottom slope. As expected, the bottom movement is reduced increasing
the threshold magnitude. The threshold constrains the location of the bottom at the
initial one, so it is expected an influence on the peak of the bottom slope. So, it is
expected also an influence on the behavior of the implicit scheme with varying CFL.
As it possible to see in Fig. 4.20 and Fig. 4.21, a different trend is found for different
threshold magnitude. For ũ = 1.02 m/s, solution losses accuracy at the same CFL
for ũ = 1.04 m/s. The solution is still accurate for CFL=103. This trend confirm
the influence of the threshold on the instability mode. However, also if with a higher
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Figure 4.19: Differences between initial condition, Grass model and MPM model for
Ã = 0.001, GR2. Explicit case CFL= 0.8, ũ = 1.02 m/s (right) and ũ = 1.06 m/s (left).
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Figure 4.20: Implicit case for MPM model for Ã = 0.1 compared to explicit solution,
CFL=0.8. First order solution, CFL varies from 101 to 103, with ũ = 1.02 m/s.

value of the threshold the solution seems to be stable, the scheme had to produce a
valid solution for all case. The solution is considered valid for CFL= 102, strong/weak
interaction, first order solution. For the others interaction, first order implicit scheme,
a similar trend is found so results obtained for MPM model with ũ = 1.04 m/s. The
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Figure 4.21: Implicit case for MPM model for Ã = 0.1 compared to explicit solution,
CFL=0.8. First order solution, CFL varies from 101 to 103, with ũ = 1.06 m/s.

effect on implicit second order scheme is now considered. To investigate the threshold
effect in CFL and DEC condition in second order implicit scheme, considering both
threshold, are presented for strong speed interaction in Fig. 4.22 and Fig. (4.23. For
strong interaction, the threshold position does not influence the CFL condition: also
further oscillations were found for ũ = 1.04 m/s. Increasing the DEC iteration does
not allow a larger value of CFL. Moreover, the same condition were found for weak
interaction, as presented for both threshold in Fig. 4.24 and Fig. 4.25. The second
order implicit solution gives the same results for all threshold value considered. It is
possible to affirm that the time scale is the same considered in eq. (5.1) and, in all case
analyzed, increasing the DEC iteration number does not allow a larger CFL value.
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Figure 4.22: Implicit case for MPM model for Ã = 1 compared to explicit solution,
CFL=0.8, with ũ = 1.02 m/s. Second order solution, CFL varies from 100 to 102 and
DEC iteration is visualized for CFL= 102.
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Figure 4.23: Implicit case for MPM model for Ã = 1 compared to explicit solution,
CFL=0.8, with ũ = 1.06 m/s. Second order solution, CFL varies from 100 to 102 and
DEC iteration is visualized for CFL= 102.
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Figure 4.24: Implicit case for MPM model for Ã = 0.001 compared to explicit solution,
CFL=0.8, with ũ = 1.02 m/s. Second order solution, CFL varies from 100 to 102 and
DEC iteration is visualized for CFL= 102.
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Figure 4.25: Implicit case for MPM model for Ã = 0.001 compared to explicit solution,
CFL=0.8, with ũ = 1.06 m/s. Second order solution, CFL varies from 102 to 104 and
DEC iteration is visualized for CFL= 105.

4.3.2 Final time: influence on the steady state
As observed, threshold condition modifies the steady shape of the bottom. The total
time imposed is the same used in [28] to convergence as a steady solution for Grass model,
to well compare different solution. At this matter, it important to study if the situation
proposed is a steady condition and how the model reaches it. A series of different
simulations, changing the final time, are executed. The objective is to understand if
the threshold introduce or not a delay in the sediment discharge. At this matter, each
simulation is advanced in 3 different steps, each of these 2% of the total time previously
used, taken as initial reference. Indeed, as noted in previous chapters, the main effect
of the threshold is to reduce the sediment discharge and, consequently, a solution is
reached in less time than steady. As further confirmation, tests are performed reducing
the overall time. Three backwards steps are considered, each of these 2% of the total
time taken as initial reference. The considered simulation times are presented in Tab.
(4.7) and in Tab. (4.8). To well understand the influence of the threshold, different
geometrical characteristic of the sediment slope are analyzed.

Interaction Time step [s] T0 [s] T1 [s] T2 [s] T3 [s]
Ag = 1 14 700 714 728 742
Ag = 0.1 140 7000 7140 7280 7420
Ag = 0.01 1000 50000 51000 52000 53000
Ag = 0.001 10000 500000 510000 520000 530000

Table 4.7: Threshold influence, final time analysis. Total time upwards steps for each
interaction value used for MPM and Grass models. The time step considered is the 2%
of the total time used in the previous simulation.

All the geometrical characteristic are made dimensionless with the occurred at the
reference time T0. First of all, the bedload geometrical coordinate x and z (Gx and
Gz) are calculated for all interaction value. Gx indicates how the sediment slope moves
along the x direction, Gz indicate the behavior of the sediment along the z direction.
Together they gives an idea of the movement of the sediment, so it is possible to check
what happens in the presence of threshold for the MPM model compared to the Grass
one. For this purpose, it should be remembered as the model without MPM threshold
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Interaction Time step [s] T0 [s] T1 [s] T2 [s] T3 [s]
Ag = 1 14 700 686 672 658
Ag = 0.1 140 7000 6860 6720 6580
Ag = 0.01 1000 50000 49000 48000 47000
Ag = 0.001 10000 500000 490000 480000 470000

Table 4.8: Threshold influence, final time analysis. Total time backwards steps for each
interaction value used for MPM and Grass models. The time step considered is the 2%
of the total time used in the previous simulation.

coincides with Grass model, as observed in Chapter 4. As it possible to see in Fig. 4.26,
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Figure 4.26: Threshold influence on the center of gravity on x direction, for weak and
strong interaction, GR2. Explicit second order scheme with CFL= 0.8.
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Figure 4.27: Threshold influence on the center of gravity on z direction, for weak and
strong interaction, GR2. Explicit second order scheme with CFL= 0.8.

the presence of the threshold reduces the movement of the sediment in the x direction.
A linear trend is found for all interactions. The movement reduction is larger as higher
is the threshold value. Interesting is the trend in the z direction, presented in Fig. 4.27.
The shape of the sediment moves along x and elongates, increasing its height. This
justifies what observed for the correction of the Grass model. The sediment transport,
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function of the speed, increases more than fluid velocity is high. As consequence of this,
the shape of the sediment is more stretched and more shifted towards the bottom of
the field. The correction of the model becomes necessary as a continuous shift with
strain is not expected physically and goes against the idea of bedload, a phenomenon for
which the model was developed for. Therefore, it is important to understand how the
movement of sediment occurs. For this purpose, in Fig 4.28 the average displacement
Zmean along z is shown and, in Fig 4.29, the relative value of the peak Zmax. The thing
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Figure 4.28: Threshold influence on mean height of the bottom slope, for weak and strong
interaction, GR2. Explicit second order scheme with CFL= 0.8.
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Figure 4.29: Threshold influence on the maximum height of the bottom slope, for weak
and strong interaction, GR2. Explicit second order scheme with CFL= 0.8.

that should be immediately observed is that the average displacement Zmean remains
almost constant for both models, with minor fluctuations for the model of Grass, for
strong interactions. The maximum displacement, however, tends to decrease with a
non-regular pattern, if not for the Grass model for weak interactions. This means that
for strong interactions, the model of Grass, the sediment has found an almost stable
shape, which tends to move along x. For weak speed interaction, instead of to disperse
itself, the sediment becomes more compact. It is important to observe that, for the
Grass model, the variation of Gx and Gz are in the order of a thousandth of the initial
displacement at T3. The presence of the threshold reduces to one-tenth the displacement
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respect to the Grass model. The variation of the peak instead remains, for both models,
in the same order. This means that the threshold has an influence on the displacement
along x and y along, while on its peak is reduced. The average displacement remains
constant for both models. Therefore, the stability for the MPM model at higher values
of CFL with only one iteration DEC can thus be linked to a large reduction of the
displacement. The MPM model, consequently, owes its stability to its smoothness of
sediment discharge.

4.3.3 Computational costs
No significant differences for MPM model, were found in computational time, changing
the threshold value, as Fig. (4.30) shows. CPU time is similar for each case, and the
time gain observed for ũ = 1.04 m/s is the same for all threshold values. The different
discharge caused by different thresholds do not influence computational costs.
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Figure 4.30: Ratio between implicit and explicit time, second order scheme, for MPM
model. Comparison between different threshold values for all the interaction analyzed.

4.4 Modified MPM model simulations with ũ = 1.04
Finally, the MPM model is corrected as Grass model. In this case, the constant which
is correct is Ã, eq. (2.47), which has the same meaning of the sediment constant Ag.
Test are conducted setting Ã as shows Tab. (4.10): with this values, the higher value of
the sediment constant is near the interaction required. As done for MPM model, it is
important to well define the various parameter which define Ã, expressed by eq. (2.44)
Table (4.9) resumes the constant value imposed in input to reach all fluid interaction.
As for MPM model, the threshold condition is imposed at ũ = 1.04 m/s.

Interaction G = ρs
ρ C ũ [m/s] d50 [m]

Ãd = 0.1 9.1549 1 1.04 0.2876
Ãd = 0.01 82.5494 1 1.04 0.0288
Ãd = 0.001 1.8155 0.01 1.04 0.0288
Ãd = 0.0001 9.1549 0.01 1.04 0.0029

Table 4.9: Values imposed as input constant to obtain each fluid interaction.
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Ã 1 0.1 0.01 0.001
Ãd 0.1 0.01 0.001 0.0001

Table 4.10: Values imposed in input constant to obtain each fluid interaction.

4.4.1 Weak interaction
Weak interaction are obtained setting Ãd = 0.0001. The maximum value of the sediment
constant is at the bottom, and it coincides with the value imposed for Grass model. First
of all, explicit solution for MPM and MPMH are compared in Fig. 5.1. As it found for
GRH and GR models, a reduction int discharge is found for the modified model. The
solution introducing the threshold is similar at MPM model, with a clear hump near the
threshold condition. First order implicit scheme is presented Fig. 4.32. This solution
is stable until CFL= 104, and presents a similar instability trend of MPM model. For
the second order implicit scheme, instabilities were found for CFL= 105, as shows Fig.
4.33, and DEC iteration for this value are presented in Fig. 4.34. The solution doesn’t
present a stability also increasing the DEC iterations. The instability mode is also
different from MPM solution. However, the same increase trend in CFL condition found
for the MPM model of CFL has been found. Finally, computational time required are
presented in Tab. (4.11). For weak interaction, solution is considered valid for CFL=104

with DEC= 1. A little increasing in computational time it is observed in the solution
without threshold, maybe caused by the increasing of the discharge.

Method θcr = 0.047 θcr = 0
100 el. 250 el. 100 el. 250 el.

Explicit 1st CFL= 0.8 33.54 s 205.945 s 34.79 s 214.24 s
Explicit 2nd CFL= 0.8 76.60 s 470.43 s 80.30 s 498.20 s
Implicit 1st CFL= 104 0.002 s 0.116 s 0.02 s 0.12 s

Implicit 2nd CFL= 104 DEC 1 0.002 s 0.12 s 0.02 s 0.12 s

Table 4.11: Simulation time for modified MPM model, Ã = 0.0001, ũ = 1.04 m/s.
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Figure 4.31: Differences between initial condition, MPM model and modified MPM model
for strong interaction, GR1 and GR2. First and second order explicit scheme.
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Figure 4.32: Implicit case for modified MPM model for Ad = 0.0001 compared to explicit
solution, CFL= 0.8. First order solution, CFL varies from 103 to 105.
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Figure 4.33: Implicit case for modified MPM model for Ad = 0.0001 compared to explicit
solution, CFL= 0.8. Second order solution, CFL varies from 103 to 105.
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Figure 4.34: Second order implicit case for modified MPM model for Ad = 0.0001, effects
of the number of DEC iterations for CFL=105.
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4.4.2 Weak/intermediate interaction
Weak/interaction are obtained setting Ãd = 0.001. The comparison between explicit
solution for modified MPM and MPM model are presented in Fig. 4.35. A global
reduction of the sediment discharge is found. Moreover, to investigate the effect in the
implicit scheme of the correction implemented, the solutio for first order implicit scheme
is presented Fig. 4.36 shows. In this case, the implicit scheme is stable until CFL= 103.
The instability mode is similar to the one found for MPM model. Moreover, for second
order implicit scheme, instabilities appears for CFL= 104, as it possible to see in Fig.
4.37. Increasing the value of DEC iteration does not assure a larger value of CFL,
as Fig. 4.38 shows. Also with DEC= 3 the solution present an high peak and some
unphysical oscillation in the first part of the field. Finally, computational time required
are presented in Tab. (4.12). For second order implicit scheme, solution is considered
valid for CFL=101, with DEC= 1, which represent the best ratio between accuracy and
computational cost.

Method θcr = 0.047 θcr = 0
100 el. 250 el. 100 el. 250 el.

Explicit 1st CFL= 0.8 3.352 s 20.62 s 3.484 s 21.45 s
Explicit 2nd CFL= 0.8 7.676 s 47.127 s 8.056 s 49.847 s
Implicit 1st CFL= 103 0.016 s 0.116 s 0.02 s 0.12 s

Implicit 2nd CFL= 103 DEC 1 0.02 s 0.116 s 0.016 s 0.124 s

Table 4.12: Simulation time for modified MPM model, Ãd = 0.001, ũ = 1.04 m/s.
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Figure 4.35: Differences between initial condition, MPM model and modified MPM model
for strong/intermediate interaction, GR1 and GR2. First and second order explicit
scheme.
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Figure 4.36: Implicit case for modified MPM model for Ad = 0.001 compared to explicit
solution, CFL= 0.8. First order solution, CFL varies from 102 to 104.
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Figure 4.37: Implicit case for modified MPM model for Ad = 0.001 compared to explicit
solution, CFL= 0.8. Second order solution, CFL varies from 102 to 104.
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Figure 4.38: Second order implicit case for modified MPM model for Ad = 0.001, effects
of the number of DEC iterations for CFL= 104.
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4.4.3 Strong/intermediate interaction
Also for Ãd = 0.01 a similar shape were found to MPM model, as Fig. 4.39 shows.
A global reduction of the sediment discharge is found, obviously, with similarities on
the displacement on what happened for weak and weak/intermediate interaction. Solu-
tion without threshold seems to be more stable than Grass and modified Grass models.
For first order implicit scheme, Fig. 4.40, the solution is stable until CFL=103. An
instability mode similar to MPM model is found, with a different lower peak. Instead
of, for MPM model second order implicit scheme, unphysical oscillation are higher for
strong/intermediate interaction. In this case, as Fig. 4.41 and Fig. 4.42 shows, oscilla-
tion were reduced but are still presents. DEC iteration for second order implicit scheme
are increased for CFL=103. A large number of DEC correction does not provide a good
approximation of the results. For DEC= 4, solution present a higher peak than explicit
solution. For GR2, unphysical oscillation were found near the threshold condition, as
found for MPM model. Computational time required are presented in Tab. (4.12). For
second order implicit scheme, solution is considered valid for CFL=102, with DEC= 1,
which represent the best ratio accuracy and computational cost.

Method θcr = 0.047 θcr = 0
100 el. 250 el. 100 el. 250 el.

Explicit 1st CFL= 0.8 0.468 s 2.884 s 0.5 s 3.084 s
Explicit 2nd CFL= 0.8 1.076 s 6.688 s 1.148 s 7.216 s
Implicit 1st CFL= 102 0.028 s 0.168 s 0.024 s 0.172 s

Implicit 2nd CFL= 102 DEC 1 0.032 s 0.164 s 0.028 s 0.172 s

Table 4.13: Simulation time for modified MPM model, Ãd = 0.01, ũ = 1.04 m/s.
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Figure 4.39: Differences between initial condition, MPM model and modified MPM model
for strong/intermediate interaction, GR1 and GR2. First and second order explicit
scheme.
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Figure 4.40: Implicit case for modified MPM model for Ad = 0.01 compared to explicit
solution, CFL= 0.8. First order solution, CFL varies from 101 to 103.
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Figure 4.41: Implicit case for modified MPM model for Ad = 0.01 compared to explicit
solution, CFL= 0.8. Second order solution, CFL varies from 101 to 103 for GR1 and
from 101 to 104 for GR2. For GR2, the code isn’t able to write the solution for CFL=103.
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Figure 4.42: Second order implicit case for modified MPM model for Ad = 0.01, effects
of the number of DEC iterations for CFL=103.
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4.4.4 Strong interaction
Strong interaction, for which Ãd = 0.1, presents the same trend for explicit solution
found for other interaction, but with a lower total time. This trend is observable in Fig.
(5.2), in which modified MPM model and MPM model are compared. The solution is
similar, only a little reduction of the discharge were found. Also in this case, the steady
state for explicit solution without threshold is similar to modified Grass model. First
order implicit scheme, which is shown in Fig. (4.44), presents an unphysical oscillation
at the peak for CFL= 102, using GR1. Instead of, for GR2, the code isn’t able to write
the solution. For the same value of CFL, unphysical oscillation were found for second
order implicit scheme, as Fig. (4.45) shows. Also with DEC iteration, Fig. (4.46),
solution for GR2 don’t match explicit scheme, losing solution accuracy. Computational
time required for strong interaction are presented in Tab. 4.12. For second order implicit
scheme, solution is considered valid for CFL=101, with DEC= 1, which represent the
best ratio accuracy and computational cost.

Method θcr = 0.047 θcr = 0
100 el. 250 el. 100 el. 250 el.

Explicit 1st CFL= 0.8 0.056 s 0.308 s 0.06 s 0.36 s
Explicit 2nd CFL= 0.8 0.108 s 0.696 s 0.132 s 0.828 s
Implicit 1st CFL= 101 0.024 s 0.164 s 0.028 s 0.2 s

Implicit 2nd CFL= 101 DEC 1 0.028 s 0.176 s 0.036 s 0.2 s

Table 4.14: Simulation time for modified MPM model, Ãd = 0.1, ũ = 1.04 m/s.
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Figure 4.43: Differences between initial condition, MPM model and modified MPM model
for weak interaction, GR1 and GR2. First and second order explicit scheme.
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Figure 4.44: Implicit case for modified MPM model for Ad = 0.1 compared to explicit
solution, CFL= 0.8. First order solution,CFL varies from 100 to 102. For GR1, the
code does not provide a solution.
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Figure 4.45: Implicit case for modified MPM model for Ad = 0.1 compared to explicit
solution, CFL= 0.8. Second order solution,CFL varies from 100 to 102.
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Figure 4.46: Second order implicit case for modified MPM model for Ad = 0.1, effects
of the number of DEC iterations for CFL=102.
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4.4.5 Concluding remarks for modified MPM model
As found for MPM model, increasing DEC iteration for second order scheme does not
assure a better accuracy of the solution, considering all speed interactions. So, for
modified MPM model the time scale is connected to the interaction as:

CFL w
10
Ag

(4.4)

for second order implicit scheme, only with a DEC iteration. A larger value of DEC iter-
ation does not give a valid approximation of the solution. In conclusion, observing Fig.
4.47, it is important to note how MPMH guarantee the same computational efficiency
with respect to Grass model, but with only one DEC iteration. A larger computational
gain is found for weak/weak intermediate solution.

10
−3

10
−2

10
−1

10
0

0

1000

2000

3000

4000

5000

A
g

t ex
p / 

t im
p

GRD1

 

 

MPMH DEC=1
GR DEC=3
GR DEC=1

10
−3

10
−2

10
−1

10
0

0

1000

2000

3000

4000

5000

A
g

t ex
p / 

t im
p

GRD2

 

 

MPMH DEC=1
GR DEC=3
GR DEC=1

Figure 4.47: Ratio between implicit with DEC= 1 and explicit time, second order scheme,
for modified MPM and Grass model for all the interaction analyzed.

4.5 Threshold influence on MPMH model
Even for the model of MPM is performed an analysis to the variation of the module of
the threshold. This will help you understand the effect of the threshold in motion and
as a further reduction of the motion changes the results and the computational time
required.

4.5.1 CFL influence
The analysis at threshold for the modified MPM model produces results similar to those
obtained for MPM. The value imposed for all constant were presented in Tab. (4.15).
First, an overall reduction of the transport is obtained, presented in Fig. 4.48 were
compared. In that figure, all the models with two different values of threshold for MPM
and modified MPM. The difference in threshold magnitude is observable with a different
position of the classical hump found also for MPM model. For first order scheme,
solution found its instability as MPM model. As presented in Fig. 4.49, the influence on
the bottom peak is more evident for first order scheme. Relevant unphysical oscillation
were also found for second order scheme, for all value of interaction with ũ = 1.06
m/s. Therefore, for strong interaction Therefore, for strong interaction oscillation were
found near the peak for CFL=102. Results for varying CFL and DEC iteration for
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Figure 4.48: Model comparison for two different threshold condition, weak interaction,
GR2. Explicit solution scheme.

strong interaction are presented in Fig. 4.50, with ũ = 1.06 m/s. Solution isn’t stable
also increasing DEC iteration. The same instability is found for ũ = 1.02 m/s, but
oscillation are reduced as it possible to see in Fig. 4.50. Moreover, other oscillation
were found in the first part of the field, also found for weak interaction. For ũ = 1.06
m/s, a first instability appears in the first part of the field, as Fig. 4.53 shows. Instead
of, for ũ = 1.02 m/s, a reduction of unphysical oscillation is found. Also near the peak
oscillation were reduced. The presence of a threshold seems to not give different result
in computational time and instability. Maybe oscillation were reduced but the value
of CFL for which they appears remains the same than MPM. A larger CFL value it is
obtained with only one DEC iteration with respect to the Grass model.

4.5.2 Final time: influence on the steady state.
Also for modified MPM model, a similar trend is found in threshold analysis, The
global discharge is reduced increasing the threshold magnitude, as it possible to see in

Interaction G = ρs
ρ C ũ [m/s] d50 [m]

1.02 0.2767
Ag = 1 1.8155 1 1.04 0.2877

1.06 0.2988
1.02 0.0277

Ag = 0.1 9.1549 1 1.04 0.0288
1.06 0.0299
1.02 0.0277

Ag = 0.01 1.08155 0.01 1.04 0.0288
1.06 0.0299
1.02 0.0028

Ag = 0.001 1.8155 0.01 1.04 0.0029
1.06 0.03

Table 4.15: Values imposed in eq. (2.44) and (2.45) to obtain weak interaction for
modified MPM model.
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Figure 4.49: Model comparison for two different threshold condition, weak interaction,
GR2. Explicit solution scheme.
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Figure 4.50: Second order implicit case for modified MPM model for Ad = 0.1, GR2,
second order scheme for ũ = 1.06 m/s. effects of the number of DEC iterations is
executed for CFL= 102, without relevant results.

Fig. (4.54) and Fig. (4.55). The displacement on x direction is reduced increasing the
threshold and little variation on z variation were found. Also in the variation of the peak
and average height, the variations are small and subject to the same speeches made for
MPM model. Only the variation of the peak, in Fig. (4.56), appears slightly reduced
compared to the case of MPM: this is an effect of the reduction of transport along the z
axis in modified MPM model. However, also the average displacement, presented in Fig.
(4.57), does not undergo large variations. Zmean is strictly constant, and the solution
could be considered in a steady state.

4.5.3 Computational cost
No significant difference in computational efficiency were found changing the threshold
for MPMH. The time ratio remains almost the same, as it is possible to see in Fig. 4.58.
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Figure 4.51: Second order implicit case for modified MPM model for Ad = 0.1, GR2,
second order scheme for ũ = 1.02 m/s. effects of the number of DEC iterations is
executed for CFL= 102, without relevant results.
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Figure 4.52: Second order implicit case for modified MPM model for Ad = 0.0001, effects
of the number of DEC iterations for CFL= 105.
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Figure 4.53: Second order implicit case for modified MPM model for Ad = 0.0001, effects
of the number of DEC iterations for CFL= 105.
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Figure 4.54: Geometrical center Gx variation for modified MPM model for strong (right)
and weak (left) interaction.
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Figure 4.55: Geometrical center Gz variation for modified MPM model for strong (right)
and weak (left) interaction.
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Figure 4.56: Maximum height Zx variation for modified MPM model for strong (right)
and weak (left) interaction.
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Figure 4.57: Mean height Zmean variation for modified MPM model for strong (right)
and weak (left) interaction.
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Figure 4.58: Ratio between implicit and explicit time, second order scheme, for modified
MPM model at different threshold condition, all the interaction analyzed.



Chapter 5
Comparison and concluding remarks

Four different models for sediment transport are analyzed to understand the influence in
shallow water problems. The analysis was carried out for different types of interaction
speed. For weak interactions, the four models are presented in Fig. 5.1 second-order
explicit scheme. Obviously, it is possible to observe that there is a discrepancy between
the transport models with threshold (MPM and MPMH) and those without a threshold.
The presence of the threshold reduces the global discharge, so MPM model presents
a reduction on x displacement of the bottom slope. In addition, the effect of the
correction with the introduction of the state h is more pronounced in the case of Grass,
where there is a reduction of the global discharge. Since the MPM model has a clearly
smaller displacement, the effect of the correction is reduced. For weak/intermediate
interaction, the comparison is not presented for the sake of brevity. Also in this case, the
same remarks as for weak interaction can be made. For strong/intermediate and strong
interactions the effect of transports reduction is more pronounced, due to an increase
of interaction strength. For strong interactions, presented in Fig. 4.35, it is possible to
observe as modified Grass model seems to reduce the movement of the sediment slope,
keeping the shape unchanged. This is not observable for others interactions, with a
higher peak. From the computational point of view, the CFL values that represents
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Figure 5.1: Differences between initial condition and all model analyzed for for strong
interaction, GR1 and GR2. Second order explicit scheme.
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Figure 5.2: Differences between initial condition and all model analyzed for for weak
interaction, GR1 and GR2. Second order explicit scheme.

the best value for accuracy/costs are presented in Tab. (5.1) for modified Grass model,
in Tab. (5.2) for MPM model, in Tab. (5.3) for modified MPM model. It is possible
to observe that, for implicit scheme, an order degree of magnitude of CFL is gained.
However, introducing a large number of DEC correction, helps to improve the solution
accuracy only for Grass and modified Grass models. Therefore, for MPM and MPMH,
the time scale is defined with:

CFL w
10
Ag

(5.1)

for only 1 DEC iteration. This is the same ratio found for Grass and modified Grass, but
with 3 DEC iterations. At this manner, the best computational efficiency is presented
in Fig. 5.3 for all the model investigated. The same computational efficiency is found
for Grass, MPM and modified MPM, considering the DEC condition which allows the
larger CFL value. Only modified Grass model seems to have a bad explicit/implicit
time ratio. For all model, it is possible to observe that the implicit scheme has a better
efficiency for weak and weak/intermediate interaction speed.
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Figure 5.3: Ratio between implicit and explicit time, second order scheme, for GRH and
MPM model for all the interaction analyzed.
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Modified Grass

Method Ag
1 0.1 0.01 0.001

Explicit 1st 0.6 0.8 0.8 0.8
Explicit 2nd 0.6 0.8 0.8 0.8
Implicit 1st 100 101 102 103

Implicit 2nd DEC 1 100 101 102 103

Implicit 2nd DEC 3 101 102 103 104

Table 5.1: Best values of CFL for modified Grass model.

Meyer − Peter Muller

Method Ag
1 0.1 0.01 0.001

Explicit 1st 0.8 0.8 0.8 0.8
Explicit 2nd 0.8 0.8 0.8 0.8
Implicit 1st 101 102 103 104

Implicit 2nd DEC 1 101 102 103 104

Implicit 2nd DEC 3 n.v. n.v. n.v. n.v.

Table 5.2: Best values of CFL for modified MPM model.

Modified Meyer − Peter Muller

Method Ag
1 0.1 0.01 0.001

Explicit 1st 0.8 0.8 0.8 0.8
Explicit 2nd 0.8 0.8 0.8 0.8
Implicit 1st 101 102 103 104

Implicit 2nd DEC 1 101 102 103 104

Implicit 2nd DEC 3 n.v. n.v. n.v. n.v.

Table 5.3: Best values of CFL for modified MPM model.
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Chapter 6
Simulation for Tunis Lake

This investigation is part of the Medlagoon project,and it is partly carried out during a
stage at LIM, Ecole Polytechnique de Tunisie (18/03/2012-04/04/2012). The objective
is to study the Tunis lake, which is very shallow and suitable to the application of the
previously developed numerical methods and models.

6.1 Tunis Lake
Tunis is the capital of both the Tunisian Republic and the Tunis Governorate. Behind
the Lake of Tunis and the port of La Goulette (Halq al Wadi), the city extends along the
coastal plain and the hills that surround it. At the centre of more modern development
(from the colonial era and later) lies the old medina. Beyond this district lie the suburbs
of Carthage, La Marsa, and Sidi Bou Said. The Lake of Tunis is a natural lagoon located
between the Tunisian capital city of Tunis and the Gulf of Tunis (Mediterranean Sea).
The lake covers a total of 37km2, in contrast to its size its depth is very shallow (average
depth estimated around 0.9 meters). It was once the natural harbor of Tunis. The Lac
Nord is 9620 meters long, and 4589 meters large. The Lac Nord is bigger than the Lac
Sud, which is 6516 meters long, and 1881 meters large.

6.1.1 Historical notes
Situated on a large Mediterranean Sea gulf (the Gulf of Tunis), Tunis is located in
north-eastern Tunisia on the Lake of Tunis, and is connected to the Mediterranean
sea by a canal which terminates at the port of La Goulette / Halq al Wadi. The
ancient city of Carthage is located just north of Tunis, along the coastal part. The
city of Tunis is built on a hill slope down to the lake of Tunis. These hills contain the
places, Notre-Dame de Tunis, Ras Tabia, La Rabta, La Kasbah, Montfleury and La
Manoubia which altitudes beyond just 50 meters. The isthmus between them is what
geologists call the ”Tunis dome”, which includes hills of limestone and sediments. It
forms a natural bridge and since ancient times several major roads linking to Egypt and
elsewhere in Tunisia have branched out from. The Tunis-Carthage connection was very
important to the Romans, as it meant control over the fertile hinterland. The Romans
therefore built a dam through the lake. The dam is used today as an expressway for
automobiles and railway connecting Tunis to the harbor, La Goulette, and the coastal
cities of Carthage, Sidi Bou Said, and La Marsa. The northern lake includes the island

77



CHAPTER 6. SIMULATION FOR TUNIS LAKE 78

of Chikly, once home to a Spanish stronghold, and now (since 1993) a nature reserve.
Due to the lake’s continuing aggradation during the 19th century, the French colonial
forces traversed the lake with a 10 km long, 450 m wide, and 6 m deep canal. In those
days, there was a small port in Tunis, developed between 1778 and 1814. The port
was small, the lagoon not too deep sea trade was unaffected. In 1888 a modern port
was developed, which required a connection to La Goulette. So, they built the canal
that is currently used to reach the Mediterranean sea, seen in Fig (6.2). The channel
is 9 km long, 45 m wide and about 8 meters deep. After this work of rebuilding, the
division between North and South Lake has been scored. In addition, also changed the
perimeter shape of the lagoon, due to the presence of dams erected for the development
of this channel. Approximately 120.000 m2 are changed by this work. In 1893 was
inaugurated the new port of Tunis, with the construction of engines for purification,
and irrigation in some areas used to grow. In 1980 another important change was made
to North Lake, performed by SIDA (Swedish International Development Cooperation
Agency). The North lake, after this intervention, suffered only a few adjustments while
the southern lake, which has suffered a new and profound intervention between 1993
and 2002. Recently, the Tunisian government and Sama Dubai of the UAE (led by
Dubai Governor Mohammed bin Rashid Al Maktoum) have joint-ventured an investment
agreement to develop the southern shore of the lake into a new commercial, residential
and touristic center in Tunisia and the Mediterranean. Total costs of the investment,
considered the biggest in Tunisia’s history, will be around 18 billion USD. The project
should be ready in the next 10 to 15 years. The intervention is located on the Nord,
and is in the zone.

6.1.2 SIDA intervention on Nord Lac
The city of Tunis had long suffered from the bad breath of the polluted lake. Until the
1970s the stench was most repelling close to the population center, and it was there

Figure 6.1: Satellite view of the Lac Tunis, where it is possible to recognize the Lac Nord,
the Lac Sud and the third channel which connect the port to the sea.
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that the Tunisian authorities wanted to create an attractive environment. The plan-
ning of the Lake of Tunis restoration project was in 1972 organized and sponsored by
the Tunisian Government in cooperation with the Swedish International Development
Authority (SIDA) and the Institute of Limnology at Lund. The City of Tunis is sur-
rounded by very shallow, highly saline lakes. As the Lake of Tunis is connected with
the Mediterranean, it does not dry up as the other lakes do. The water level, however,
is dependent upon that in the sea. Although the self-purification capacity of Lac Nord
was very high during most of the year, the ecosystem of the whole lake collapsed period-
ically (oxygen depletion, fish-kills). Furthermore, during nearly the whole year the odor
of sewage and hydrogen sulphide from the permanently highly overloaded western part
was a most unpleasant environmental embarrassment in the environs of the City of Tu-
nis. The area bordering the lake was really a no-man’s-land impossible to use for human
habitation. Instead it was used for the unregulated deposition of rubbish and, generally
speaking, was in a deplorable state of degradation. The fish catches from the overloaded,
periodically collapsing lagoon ecosystem were successively reduced. This had economic
consequences and the smell after severe fish-kills aggravated the odor problems. The bad
smell from the lake could even be noticed at the Tunis international airport, Carthage,
thus discouraging tourists from visiting the capital area. In the early 1970s the situa-
tion was so bad that it was decided to make efforts immediately to alleviate the worst
problems consequent on the pollution. The first phase of the restoration had to be car-
ried out during a period when the sewerage system and the existing primitive treatment
plant were being put in order. Although the self-purification capacity of the lagoon was
very high, Lac de Tunis should not be used as a receiver of sewage and industrial waste
water. Instead the capital, built on the shore of the lagoon, should have access to a water
aesthetically attractive and enjoyable. Lac de Tunis had already in the early 1970s been
included in the CW-list, i.e. selected for protection as a lake/wetland of utmost value
for waterfowl (CW is the abbreviation of Conservation of Wetlands). The goals for the

Figure 6.2: Lac Tunis after the restoration works done by SIDA in 1972-1980.
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measures to be taken immediately in Lac Nord were mainly to:

• avoid the nasty smell

• improve the lagoon’s efficiency as a receiver of sewage during the years it still had
to be utilized as such

• avoid fish-kills

constitute phase one in a systematically realized plan for a definitive restoration of Lac
de Tunis. Thereby prerequisites should be created partly for an attractive environ-
ment and close contact with the water in the westernmost part closest to the capital,
partly to ensure the high value of the lagoon as a fish-producing water. The methods
recommended were:

1. suction dredging of sewage sludge sediments

2. construction of settling ponds for temporary treatment of sewage

3. removal of floating big algae

4. aeration

5. direction and control of water flow through the lagoon

6. restoration of the littoral zone (deposition sites for solid waste etc)

all interventions are primarily aimed at local water purification. Instead, with the par-
ticipation number 4, we try to foster a self-purification of the lake. It necessary that
the current should be directed in such a way that nutrient-rich water be transported
from the lagoon and replaced by nutrient-poor water from the Mediterranean Sea. Only
in-flow should be allowed at Khereddine and only out-flow through other connections
between Lac Nord and the harbor Tunis Marine by way of the navigation canal. The con-
nections closest to La Goulette should be closed. Canal Khereddine should be widened
from its present 24 m to at least 40 and preferably 45 m. The depth should be kept
at 1.5 m. Considering the small depth of the lake no greater depth is necessary in the
connection with the Mediterranean Sea. Automatic water gates were installed in the
inlet for sea water at Khereddine and at the outlet for lagoon water at Tunis Marine.
By these arrangements a very important renewal of nutrient-poor water will be secured.
As the wind is the main driving force for the water level fluctuations made use of in
this system, the renewal is brought about in the cheapest possible way. However, it is
of utmost importance that the water gates are carefully maintained in order to function
properly also with minor changes in the water level. The arrangement should not be
looked upon as a simple hydromechanical measure. Instead it is a means of creating a
suitable nutrient budget in order to control the productivity of the lagoon ecosystem.

6.1.3 SPLT intervention
The intervention on Lac Sud are developed by SPLT (Societe de Promotion du Lac
de Tunis). In recent years the work of maintenance upgrade of the lake have been
developed by the SPLT. The major tasks are related to the maintenance of the North
Lake, especially in the Khereddine dredging at the channel entrance. This to ensure a
continuous flow of water to encourage a continuous cleaning of industrial contaminants.
In addition, controls are designed to continue the water, with a reorganization of some
areas of the Lake Contour Controls continues on flora and fauna are provided. With
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regard to the South Lake, substantial work on the beach along the Lake have been
performed. Also they worked to facilitate the cultivation of marine salt and other crops
. Have less information about South Lake because of a greater economic interest to the
North Lake. More information could be found in the SPLT website.

6.1.4 The water
The supply of surface water and sewage from the area of the City of Tunis reduced the
salinity in the westernmost part of Lac Nord. Heavy rains caused flooding in the city and
an intensified supply of solid material which settled in the lake. The massive discharge
of sewage resulted in very high concentrations of nutrients in Lac Nord. However, the
extremely good self purification capacity of the water body was illustrated in the steep
nutrient gradients from east to west. Wind induced water currents in alternating direc-
tions occur regularly in the connections with the Mediterranean Sea and the Navigation
canal. Thereby sea water very poor in nutrients moved back and forth through the
Khereddinde Canal as did heavily polluted water through the Tunis Marine connection
between the harbor and the lake. The lake shores were besmeared by oil emanating from
the city area, the harbor and the power plant STEG.

6.1.5 The sediment
The natural, characteristic bottom substrate is clayey and sandy soils and shell frag-
ments. Outside the outlets of sewage in the western part of Lac Nord concentrated
deposits of sewage sludge had accumulated. Also in calm water areas, as among the
reefs of Mercierella a top sediment rich in organic matter occurred. However, in re-
lation to the total bottom area the distribution of sewage sediments was small. The
concentrations of nitrogen and phosphorus were very high in the sewage sediment and
the concentration of ammonia extremely high in the interstitial water. As to the organic
top sediment layer, several substances showed steep concentration gradients from west
to east. The exchange of substances between sediment and water was investigated by
SIDA under aerobic and anaerobic conditions (laboratory experiments). The studies
revealed that very large quantities of ammonia and phosphate were released from the
top sediment to the water. Thus, it was estimated that 500−900 mg NH4-N and 25−30
mg PO4-P were added to the lake water per day from a sediment area of 1 m2. As to
the oxygen concentration in the water, the heavy release from the sediment of phosphate
took place under anaerobic as well as under aerobic conditions. Under prevailing high
pH conditions and intensive formation of sulphide in the sediment, iron did not play
any role for either the precipitation or the release of phosphate. In the thick deposits
of organic matter in the western part of Lac de Tunis there were, with respect to the
release of phosphate, considerable differences between the top layer and layers deeper
down. Thus, from the superficial layer twice as much was released as from the layers at
100 − 150 and 150 − 200 cm. It is characteristic for recipients which gradually become
overloaded that the concentrations of nutrients and other substances increase upwards
in the sediment. Through the intensive gas ebullition the concentrations of nutrients in
the water increased still more as interstitial water was mixed with lake water.

6.2 Mesh generation
The first step of the analysis is to build a realistic mesh of both lakes. The Code
developed in [28] uses the Grass model for sediment transport, and discretizes the system
with MR scheme. The mesh file request is an .amdba file, which is composed as follow:

http://www.splt.com.tn/


CHAPTER 6. SIMULATION FOR TUNIS LAKE 82

first line a b (where a is the number of the nodes and b the number of the triangles)

a lines node table (number of the node - x coordinate - y coordinate - label)

b lines connectivity table (number of the triangle - node 1 - node 2 - node 3 - label)

The label indicates where the vertex is located:

0 for a point in the fluid-dynamic field

1 for a point on the wall

2 for a point on the outlet line

3 for a point on the inlet line

Thus, it is necessary to create the mesh and to assign to each node the corresponding
label. The mesh file is obtained with Matlab ®, using the function pdepoly. The lakes
are reconstructed point-by-point, using Google Maps ®to well fix the contours. For
each point, longitude and latitude are detected, as shows Fig. (6.3). After that, the
shape is rebuilt in meters with an homothety. Finally, the mesh is created and exported
in the connectivity table and the node table. So, using a graphical interface, developed
in Matlab ®, the .amdba file is created. Table (6.1) resumes the mesh characteristic
for each Lac and the node distribution is shown in Fig. (6.4) and in Fig. (6.5).

Lac Contour Points Nodes Triangles
Nord 88+135 8014 14968
Sud 344 2559 4498

Table 6.1: Mesh Characteristic
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Figure 6.3: Coordinates for the Lac Nord and the Lac Sud.
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Figure 6.4: Node distribution for the Lac Nord. It is possible to recognize the inlet and
the outlet line.
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Figure 6.5: Node distribution for the Lac Sud. It is possible to recognize the inlet and
the outlet line.

6.3 Bathymetry
The bathymetry is imposed point by point. The code set the initial condition with a
pre-definite function. Therefore, it has been modified so that it is possible to insert
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the bathymetry through an external file, point by point. The bathymetry should be
calculated as a finite function or a table of points. Those points are interpolated to
reconstruct the shape of the lake, using Matlab ®. So it is possible to give at each
node of the internal mesh, the corresponding value of bathymetry H. The bathymetry
is obtained from the data proposed in Appendix A and Appendix B and it is presented
in Fig. (6.6) for Lac Nord and in Fig. (6.7) for Lac Sud.

Figure 6.6: Lac North Bathymetry visualized with Paraview.

Figure 6.7: Lac Sud Bathymetry visualized with Paraview.



Chapter 7
Lac Nord

In this chapter the simulations carried for Lac Nord are presented. Three different fluid
interactions are tested, for the same total time, in Tab. (7.1).

7.1 Lac Nord simulation
The Lac Nord presents a particular composition of the water. As previously observed,
the Canal Khereddine is used to introduce clean water in the lake. At this matter, several
interventions are done each year at the entrance of the Lake by SPLT. This interventions
want to reduce the sediment accumulation at the entrance, to guarantee a regular water
flow in the lake. To analyze the flux of the water and the bathymetric variation, a real
value of sediment transport constant is calculated, according to eq. (2.44), developed for
MPM model. The code uses the Grass model to solve Exner equation. The interaction
constant Ag is calculating precisely by exploiting the similarities between the two im-
plemented models presented for 1D simulations. The model chosen for the shear stress
the one is proposed by Chezy (C):

τ = Cu2 (7.1)

where the constant C is expressed by the Chezy constant C, which is related to the
Manning roughness coefficient η as:

C = g

C2 = gη2

(R
1
6
h )

(7.2)

Introducing this simplification in the expression of constant Ã (2.44), the sediment
constant could be expressed as follow:

Ag = 8
(G− 1)g η

3
√

g

RH
(7.3)

It is necessary to set properly the values of each constant to have a good approximation
of the problem. The Manning roughness constant is set as η = 0.07, according to
Tab. (C.1), which correspond to a scattered brush with many weeds or medium to
dense brush. This value is chosen according to the observation done for the Tunis Lake.
The water, due to the pollution produced from industries near the Lac, has a high
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amount of polluting material. Consequently, the constant G, which describes precisely
the relationship between density of the sediment and water, is chosen equal to 3. Instead,
the hydraulic diameter RH, in the case of large water surfaces, is to be considered equal
to the average height of bathymetry. The Lake of Tunis is very shallow, with an average
depth of 0.9 meters. Thus, a good approximation of the constant of Grass is equal to:

Ag = 0.0045 (7.4)

which might describe the real environment of Nord lake. This value is near weak interac-
tion and weak/intermediate interaction between water velocity and sediment discharge
previously investigated in the 1D case. Simulations are executed also for this two values,
for 10 hours (360000 seconds). Therefore, according to what found by Bilanceri in [28],
only implicit solutions were considered because the assure good results without high
computational costs. Tab. (7.1) resumes the simulation executed for Lac Nord.

Interaction Weak Weak/intermediate Real

Ag 0.001 0.01 0.0045
Total T ime [s] 360000 360000 360000

Table 7.1: Numerical simulation for Lac Nord: water interaction and total time.

7.1.1 Initial condition
As observe in subsection 6.1.2, the Lac Nord, is connected to the sea with the Canal
Khereddine, which must be considered as an input. This channel introduces nutrient-
poor water to purify the lake. The port of Tunis is considered as an outlet. The water exit
from Lac Nord through Lac Sud. A small channel connect both Lac and the navigation
channel. The inlet-outlet condition are imposed following those considerations. The
inlet velocity of the water is considered studying the marine charts of Mediterranean
sea. At the inlet a velocity normal to the boundary and having a modulus of 1 knot
(0.514 m/s) is assumed. In the middle of the field, the velocity is taken as zero and the
height of the water column h is equal to the bathymetry. Tab. (7.2) resumes the initial
conditions for all simulations.

NORD Inlet Outlet F ield
u [m/s] −0.2715 / 0
v [m/s] 0.4364 / 0
h [m] 1 1 -H
H [m] 1 1 Fig. 6.6

Table 7.2: Initial conditions for Lac Nord.

7.2 Weak/intermediate interaction
For weak/intermediate interaction, the same large CFL values found for 1D case for
Grass model were used. In order to compare those different solution, implicit second
order solutions with CFL=102 with only one DEC iteration and with CFL=103 with
DEC= 3 are presented in Fig 7.1. The bed evolution is practically the same, without
significant changes. To confirm the results obtained, also the velocity field is presented
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in Fig. 7.2, in which the velocity component in x direction is considered. No significant
difference were found. The water diffuses in the lake according to what done by SPTL,
especially in the nord part near the Arabian zone. The effect of DEC correction it is
observable from Tab. (7.3). A considerable gain it is found with implicit second order
solution with CFL=103 with DEC= 3. The computational gain is roughly one hour
with respect to implicit second order solutions with CFL=102, DEC=1. Moreover, to
invenstigate two of the hot-spot in Tunis lake according to what observed by SPLT,
solution near Chikly island and at the inlet Kerredine channel are presented in Fig. 7.3.
The Chikly island present a considerable sediment accumulation in the nord part, near
the deepest zone of Lac Nord. Maybe this is due to a strong variation of the depth,
which favors the accumulation of sediment. For the inlet channel, the results confirm
what is expected based on the work performed by SPLT, with a strong accumulation
of the sediment and an area in which the water mass flow digs. This area is constantly
supervised by SPLT with weekly/monthly processes of dredging, to encourage the inflow
of clean water from the Mediterranean Sea. Therefore, the results obtained are in
accordance with what found by the SPLT.

Figure 7.1: Bottom variation for Tunis Nord Lake, weak/intermediate interaction: im-
plicit second order scheme CFL=103, with DEC=1 (up) and DEC=3 (down).
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Scheme CPU time [s]
IMP CFL=102 DEC=1 22595.718
IMP CFL=103 DEC=3 19298.442

Table 7.3: Simulation times for Lac Nord for weak/intermediate interaction.

Figure 7.2: Velocity field [m/s] for Tunis Nord Lake, weak/intermediate interaction:
implicit second order scheme CFL=103, with DEC=1 (left) and DEC=3 (right).

Figure 7.3: Bottom Variation for Tunis Lake near Chikly island and Kherredine chan-
nels, weak/intermediate interaction. Implicit second order scheme with CFL=103 and
DEC=3.

7.3 Weak interaction
In this section weak interaction was considered. In this case, simulations were carried out
for implicit second order scheme with CFL=103, DEC=1 and with CFL=104, DEC=3.
In order to compare the CFL effect, the bathymetry variation for both cases are presented
in Fig. 7.4. The sediment discharge is practically the same in all the field, except in
the nord part of the lake, near the Arabian zone, where for implicit second order with
CFL=103, DEC=3, the sediment transport is about zero. To evaluate if this reduction
is present in the rest of the lake, comparison between both solution near Chikly island
is presented in Fig. 7.5. Near the island, a global reduction of sediment discharge
it is found for implicit second order scheme with CFL=103, DEC=1. Moreover, this
reduction it is also found at the inlet channel, as it possible to see in Fig. 7.6. Near the
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Scheme CPU time [s]
IMP CFL=103 DEC= 1 7276.320
IMP CFL=104 DEC= 3 4701.356

Table 7.4: Simulation times for Lac Nord for weak interaction.

Kherredine channel, the sediment discharge has a similar trend for both solutions, but
a little decrease on sediment transport were found for CFL=103, DEC=1. In order to
investigate the accuracy of the solution, another comparison is executed on the velocity
field, in Fig. 7.7. Implicit second order solution with CFL=103, DEC=1, presents a
reasonable velocity field. Thus is not the case for the solution with CFL=104, DEC=3.
For this CFL condition, velocity presents, in the nord part of the lake, an higher value
of magnitude which could not be observed in reality. Finally, computational time were
presented in Tab. 7.4. A considerable reduction on computational time is obtained using
DEC correction with CFL=104, but a deterioration on solution accuracy it is observed.

Figure 7.4: Bottom variation for Tunis Nord Lake, weak interaction: implicit second
order scheme CFL=103, with DEC=1 (left) and CFL=104, DEC=3 (right).
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Figure 7.5: Bottom Variation for Tunis Lake near Chikly island, weak interaction. Im-
plicit second order scheme with CFL=103 with DEC=1 (left) and CFL=104, DEC=3
(right).

Figure 7.6: Bottom Variation for Tunis Lake at Kherredine channels, weak interaction.
Implicit second order scheme with CFL=103 with DEC=1 (left) and CFL=104, DEC=3
(right).

Figure 7.7: Velocity field [m/s] for Tunis Nord Lake, weak interaction: implicit second
order scheme CFL=103, with DEC=1 (left) and CFL=104, DEC=3 (right).
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7.4 Real interaction
Finally, real interaction conditions are imposed in the Grass model to have a better idea
of the sediment discharge in Tunis Lake. According to the simplifications done, it is found
that Ag = 0.0045, which could be considered as weak interaction. Therefore, simulation
for second order implicit scheme with CFL=103, DEC=1, and with CFL=104, DEC=3,
were carried out. Unfortunately, for CFL=104, the code is unstable and gives no results.
In order to investigate if, for this interaction value, the most reasonable CFL condition
is the same for weak/intermediate or for weak interaction, it was decided to impose
the DEC iterations for CFL=103. A considerable difference is found in computational
time, as Tab. (7.5) shows. Second order implicit scheme with CFL=103, DEC=3, has
a computational time almost twice that obtained with only one DEC iteration. On
the other hand, a deterioration of accuracy is found for the solution with only one
DEC. At this matter, the velocity field it is presented in Fig 7.8 for both solutions,
as done for weak interaction. As it possible to see, the solution with only one DEC
iteration present value of speed which are not reasonable expected in reality. Therefore,
the sediment discharge is analyzed taking into account only the solution with 3 DEC
iterations. The bottom variation for Lac Nord it is presented in 7.9, for second order
implicit scheme with CFL=103, DEC=3. The sediment discharge is more concentrated
in the two hot spot found by SPLT, the Chikly island and the inlet at Kherredine
channel. Other variations are observed along the south side of the lake, at the edge
of a road that connects the city of Tunis and La Goulette. The sides of the road
leading to the island of Chikly present some areas where there is a considerable flow of
sediments. However, in the deeper area, in the north of Chikly, the sediment transport
practically negligible. Moreover, the sediment discharge near Chikly island and at the
inlet is presented in Fig. 7.10. The sediment discharge has the same trend found for
weak and weak/intermediate interaction. The area in which the sediment discharge is
more concentrated is at Kherredine channel: in this area, a critical zone in which the
sediment accumulate and an other area in which the water digs the bottom are observed.
Therefore, the mean value of bathymetry in this zone is about 0.7 meters and the bottom
variation due at sediment accumulation is in the order to 0.08/0.09 for days. This results
confirm the dredging plane done by SPLT, which provides weekly/monthly control and
dredge plans. Consequently, the last hot spot in SPLT plane it is analyzed: the water
currents il Lac Nord. The dredging plane are imposed to improve the inlet in the lake of
fresh water from Mediterranean Sea, to favorite the water purification. At this matter,
the velocity field and streamline are presented in Fig. 7.11. The water flow, coming from
the Kherredine channel, crosses around the Chikly island, forming a large recirculation
area. Other recirculation zons were found near the inlet and in the nord literal of the
lake. Therefore, by observing the behavior of the currents, it can be affirmed that the
water flow has a good diffusion throughout the lake.

Scheme CPU time [s]
IMP CFL=103 DEC= 1 8204.116
IMP CFL=103 DEC= 3 17843.149

Table 7.5: Simulation times for Lac Nord for real interaction.
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Figure 7.8: Velocity field [m/s] in Tunis Lac Nord for second order implicit scheme
CFL=103, with DEC=1 (left) and DEC=3 (right).

Figure 7.9: Bottom Variation for Tunis Lake. Implicit scheme CFL=103 with DEC= 3.

Figure 7.10: Bottom Variation for Tunis Lake near Chikly island (left) and Kherredine
channel (right). Implicit scheme CFL=103 with DEC= 3.
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Figure 7.11: Tunis lake, currents inside the Lake. Velocity field (u component) [m/s]
and streamline starting from the inlet. Implicit scheme CFL=103 with DEC= 3.

7.5 Concluding remarks for Lac Nord simulation
The simulations confirm what studied by SPLT, in terms of sediment discharge and
water flow. For weak and weak/intermediate interaction the same dependence of the
CFL with the interaction speed has been found. The largest value of CFL is roughly
proportional of the inverse of sediment constant. For real interaction, the CFL condition
is the same utilized for weak/intermediate interaction.



Chapter 8
Lac Sud

In this chapter the simulation carried out for Lac Sud are presented. Two different fluid
interactions are tested, for the same total time, asin Tab. (7.1).

8.1 Sud Lac simulation
The Lac Sud has a different importance for Tunis than Lac Nord. It is used mostly to
obtain salt or to grow plants, because it is small and shallow. The water is more clean,
without industries which introduce pollution in the environment. So, constant G is set
2.8. Therefore, the medium value of the bathymetry is near 0.6 meters. The Manning
roughness constant is set equal to 0.6, with a little decrease from the Lac Nord case,
because the water is considered more clean due to the requirements cultivation in the
lake. The realistic sediment constant is calculated as:

Ag = 0.0036 (8.1)

Tab. (8.1) resumes the simulation carried out for Lac Sud.

Interaction Weak Real
Ag 0.001 0.0036

Total T ime [s] 360000 360000

Table 8.1: Numerical Simulation for Lac Sud: water interaction and total time.

8.1.1 Initial conditions
The initial conditions are imposed according with what was observed for the North
Lake. The inlet condition is the connection with the port and the outlet is the channel
which connect Lac Sud to the sea. At the inlet a velocity normal to the boundary and
having a modulus of 1 knot (0.514 m/s) is assumed. In the computational domain, the
velocity is taken as zero and the height of the water column h is equal to the bathymetry
considerate. Tab. (8.2) summarizes the initial conditions for all simulations executed.
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SUD Inlet Outlet F ield
u [m/s] 0.0808 / 0
v [m/s] −0.5076 / 0
h [m] 0.8 0.8 -H
H [m] 0.8 0.8 Fig. 6.7

Table 8.2: Initial condition for Lac Sud.

8.2 Weak interaction
For weak interaction, the code presents two different computational behaviors. For
the second order implicit solution, the code blows up. But it is possible to have an
idea of sediment discharge few seconds before the final time imposed, at about 359996
seconds. Furthermore, for the solution with CFL=101, DEC=3, instabilities appear at
about 306000 seconds. In this case, a different approach it is proposed: first of all, the
instabilities mode are investigated, to evaluate for which condition they may occurs. To
this aim, the velocity field, which is connected to the sediment discharge, is presented
in Fig. 8.1 in various time istants. It is possible to observe how, after t=101551 s, the
velocity magnitude reaches a steady condition. Therefore, the instability is not directly
connected to u or v. The depth value Z (−H)is investigated in Fig. 8.2. A progressive

t = 36300 s t = 69530 s

t = 101551 s t = 132791 s

t = 193580 s t = 223694 s

t = 253714 s t = 283698 s

t = 293686 s t = 305670 s

Figure 8.1: Velocity field at different times, weak interaction, implicit second order
scheme CFL=101, DEC=3.
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t = 223694 s t = 253714 s

t = 283698 s t = 293686 s

t = 305670 s

Figure 8.2: Bathymetry values at different times, weak interaction, implicit second order
scheme CFL=101, DEC=3.

decrease of bathymetry it is found near the inlet of the Lac Sud, because of which the
instability may occur. So, the bathymetry it is presented also for the solution with
CFL=100, DEC=1, in Fig. 8.3. Moreover, the same bathymetry variation is found near
the inlet and, to well understand this phenomenon, in Fig. 8.4, a zoom in that zone is
proposed. It is possible to see how a big accumulation of sediment is present in both
simulations, near the first part of the lake, with a mean value of depth, in the red zone,
about of 0.2 meters. The same bathymetry trend is found, thus instability is expected
also for the solution with CFL=100, DEC=1.

Figure 8.3: Bathymetry values at different times, weak interaction, implicit second order
scheme CFL=100, DEC=1.
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Figure 8.4: Bathymetry values for weak interaction, implicit second order scheme
CFL=100, DEC=1, near the final time, and CFL=101, DEC=3, t=305670 s.

8.3 Real interaction
Also for realistic interaction a decrease in CFL is found. The code is unstable, and the
largest value which allows to obtain a solution is CFL=1, with only one DEC iteration.
However, the code isn’t able to write the output file, so the solution at the final time
imposed is not available. So, a solution near the final state it is analyzed, as done for
weak interaction, to well understand the stability of the field. Moreover, the code be-
come unstable for second order implicit scheme for CFL=10, DEC=3, after about90000
seconds. The reduction of the time for which the instability occurs, could be connected
to the largest value of Ag, according to what found for weak interaction. To well un-
derstand if this connection is real, the bottom shape at the inlet it is presented for both
solutions in Fig. 8.5. The bathymetry is reduced also in this case near the inlet of
the lake, reaching values of 0.2− 0.25 meters. Also in this case, instability occurs and,
before that, a bathymetry reduction is found in the inlet part of the Lac Sud. A further
confirmation can be found in Fig. 8.6: the only area in which a consistent decrease of
bathymetry value is near the inlet.

Figure 8.5: Bathymetry values for real interaction, implicit second order scheme
CFL=100, DEC=1, near the final time, and CFL=101, DEC=3, t=83176 s.
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Figure 8.6: Bathymetry values for real interaction, implicit second order scheme
CFL=101, DEC=3, t=83176 s.

8.4 Concluding remarks for Lac Sud
For Lac Sud a global reduction on CFL condition it is found and only non valid solution
were found. An area after the inlet presents a large reduction in bathymetry value which
may produce the instability in the code. Moreover, the velocity magnitude in all case
oscillates around a value of 0.4 m/s, with the larger value of 0.75 m/s. These values
could be expected in the physical reality in Lac Sud, according to the nautical charts
and the morphodynamical characteristic of the lake.
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Chapter 9
Conclusion

The sediment transport model in shallow water problems has been considered, and the
Exner equation has been used to describe the bed evolution. This equation need a model
to represent the sediment discharge. In previous studies [28], the model chosen was the
Grass one. The scheme to discretize the coupled system was the Modified Roe, together
with the implicit and explicit time advancing. In the present work, three different models
have been implemented to close the Exner equation: an amendment to Grass model, the
Meyer-Peter Muller model and a modification of this, the same as for the Grass model.

Modified Grass model gives different bottom slope trend from Grass model, with
a similar computational time. The correction implemented is in order to correct an
intrinsical error of Grass model, in which the bedload is maximum near the water surface
and not at the bottom. A linear dependence on water column in introduced. The global
discharge is reduced and the bottom slope presents higher peak. The largest value of
CFL which allows an accurate solution with implicit time advancing solution is the same
of Grass model.

The Meyer Peter Muller model permit to take into account a very important physical
issues: a threshold on motion condition. This condition is introduced in the code ac-
cording to Shields theory, for which the movement of bedload is constant after a certain
value of Reynolds at the bottom, typically 103. The introduction of the threshold influ-
ence the problem according to the model chosen for shear stress. In this work, a linear
dependance between shear stress and the square of water speed it is imposed, according
to Chezy theory. So, the threshold becomes a condition on the square of the critical
velocity ũ. A different bottom slope with respect to the previous models it is found
with a hump near the threshold condition. The largest value of CFL for the implicit
scheme, with only one DEC iteration, presents a better trend than Grass model. The
solution with only one DEC iteration gains one order of magnitude with respect to Grass
and Modified Grass model. Therefore, However, DEC iterations does not eliminate the
accuracy problems at larger CFL numbers. The computational efficiency is near the
one found for Grass model with 3 DEC iterations. In order to investigate the threshold
effects for implicit second order scheme, a set of three different critical velocity were
carried out. The threshold magnitude does not influence computational efficiency. The
smoothness of MPM model is analyzed taking into account some geometrical character-
istic of the bottom slope changing the final time. The x and z position of the bedload
geometrical center has a little displacement for MPM model, and this variation is lower
with increasing threshold magnitude. This displacement reduction could explain the
higher value of CFL obtained with MPM.
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Finally, for 1D analysis, the same correction proposed for Grass model is applied at
MPM model. In order to compare MPMH model with MPM, only a little reduction of
the global discharge is found and the same hump appears near the threshold condition.
Moreover, computational times are comparable and the same computational efficiency
is found. Also in this case, the same threshold analysis done for MPM model were
carried out. The threshold influence does not affect the largest CFL value and the
computational efficiency also for MPMH model. Summarizing, it has been found that,
as expected, the sediment transport model significantly affects the bedload evolution.
On the other hand, implicit time advancing efficiency remains very effective for all the
considered models for weak to intermediate speeds of interaction between bedload and
water flow. As for possible development concerning sediment transport model, different
shear stress theory, for example Manning one, which introduce different dependence on
physical parameters may be considered.

Moreover, only models with the classical division of sediment transport (bedload,
suspension load and saltation) were chosen in the present study. It could be interesting
to chose a model based on Einstein theory, introducing the alveum concept, to analyze
the efficiency of the MR scheme.

A realistic case is investigated for Tunis Lake by 2D simulations. The Tunis lake
is divided in two part, Lac Nord and Lac Sud, and has a mean depth very shallow,
about 0.8 meters. Both lakes, across the years, have undergone substantial changes,
facilitated also by the small mean depth. Maintenance works have been carried out
mainly in order to keep the lake clean from pollutants. The main objectives, during
years, were to facilitate the circulation of clean water from the Mediterranean Sea and
to avoid excessive sediment deposits in some hot spots. The results obtained with
the model of Grass, confirmed what was done by maintenance works across the years.
The same applies also for maintenance works weekly, in the points where the sediment
tends to accumulate (for example at the entrance of the channel Kherredine). From the
computational point of view, for Lac Nord the results have confirmed what that found
for the 1D case. The highest value of CFL at which accurate solutions are obtained
is approximately roughly proportional to the inverse of Ag. Instead, for the South
Lake, a deterioration of numerical stability has been observed. This is due, according
to observations made, to an excessive reduction of the bathymetry at a point in the
first part of the lake, which can lead to instability. This issue, however, deserves further
investigation.
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Appendix A
Lac Nord Tunis bathymetry

Figure A.1: Lac Nord Tunis bathymetry
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Appendix B
Lac Sud Tunis bathymetry

Figure B.1: Lac Sud Tunis bathymetry
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Appendix C
Shear stress

To simplify the numerical system, for the shear stress tau the Chezy form is used. The
shear stress are modeled as follows:

τ = Cu2 (C.1)

The friction therm C is related to the roughness and the friction therm as the following
relation:

C = g

C2 (C.2)

The formula is named after Antoine de Chezy, the French hydraulics engineer who
devised it in 1775. This formula can also be used with Manning’s Roughness Coefficient,
instead of Chezy’s coefficient.

C.1 Chezy Formula
Manning derived the following relation to C based upon experiments:

C = R
1
6
h

η
(C.3)

where:

• is the Chezy coefficient [m1/2/s]

• is the hydraulic radius (w water depth H) [m]

• Manning’s roughness coefficient, Tab.(C.1)

Unlike the Manning equation, which is empirical, the Chezy equation is derived from
hydrodynamics theory, studying steady, turbulent open channel flow near Paris.

C.2 Manning Formula
To express the Chezy constant C, Manning proposed the following

C = γRH |SF | (C.4)
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γ is the unit weight, RH is the hydraulic ratio, usually equal to the water column h, and
the form factor is defined according to the Manning Theory:

SF = gη2
0

R
4
3
H

(C.5)

The Gauckler Manning formula is used to estimate flow in open channel situations where
it is not practical to construct a weir or flume to measure flow with greater accuracy. The
friction coefficients across weirs and orifices are less subjective than n along a natural
(earthen, stone or vegetated) channel reach. Cross sectional area, as well as n’, will likely
vary along a natural channel. Accordingly, more error is expected in predicting flow by
assuming a Manning’s n, than by measuring flow across a constructed weirs, flumes or
orifices. The formula can be obtained by use of dimensional analysis. The Gauckler
Manning coefficient, Tab.(C.1), often denoted as η, is an empirically derived coefficient,
which is dependent on many factors, including surface roughness and sinuosity. When
field inspection is not possible, the best method to determine η is to use photographs
of river channels where n has been determined using Gauckler Manning’s formula. In
natural streams, η values vary greatly along its reach, and will even vary in a given reach
of channel with different stages of flow. Most research shows that n will decrease with
stage, at least up to bank-full. Overbank η values for a given reach will vary greatly
depending on the time of year and the velocity of flow. Summer vegetation will typically
have a significantly higher n value due to leaves and seasonal vegetation. Research has
shown, however, that η values are lower for individual shrubs with leaves than for the
shrubs without leaves. This is due to the ability of the plant’s leaves to streamline and
flex as the flow passes them thus lowering the resistance to flow. High velocity flows will
cause some vegetation (such as grasses and forbs) to lay flat, where a lower velocity of
flow through the same vegetation will not. Historically both the Chezy and the Gauckler
Manning coefficients were expected to be constant and functions of the roughness only.
But it is now well recognized that these coefficients are only constant for a range of flow
rates. Most friction coefficients (except perhaps the Darcy Weisbach friction factor) are
estimated 100% empirically and they apply only to fully rough turbulent water flows
under steady flow conditions. One of the most important applications of the Manning
equation is its use in sewer design. Sewers are often constructed as circular pipes. It
has long been accepted that the value of n varies with the flow depth in partially filled
circular pipes.
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Figure C.1: Manning parameter η in different environment.
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solo perchè sono sicuro che stai concludendo questo lavoro al mio fianco, come sempre
farai, spero. Ne ho avuto riprova subito dopo che ti ho chiesto aiuto, non sono bastate
neanche 24 ore. Ti voglio bene. Grazie. Grazie di cuore a tutti. Ma sopratutto ringrazio
di cuore, la persona di cuore, che mi ha ridato un cuore.

It can only ends once, and everything that happens before that, it is just progress.


	Abstract
	List of Symbol
	Introduction
	I Sediment transport problem
	Physical Model
	Shallow water equations
	Exner equation. Theory of incipient motion
	Sediment transport models
	Empirical sediment transport models
	Du Boys relation
	Exner model
	Meyer-Peter - Müller model
	Fernandez Luque - Van Beek model
	Grass model
	Modified Grass model
	Nielsen model
	Camenen model

	Hybrid sediment transport models
	Einstein approach
	Engelund - Hansen model
	Bijker model
	Ackers and White model
	Engelund - Fredsoe model
	Bailard and Inman approach
	Van Rijn model
	Watanabe approach
	CERC, Inman - Bagnold and Kamphuis approaches
	CHSH Approach
	Yang and Liu approach
	Bayrman Model

	General remarks on sediment transport models

	Modified Roe Scheme for Shallow Water
	Shallow water coupled system for 1D and 2D case
	Finite volume approach
	Discretization in time
	Linearized implicit time advancing: a first-order accurate approach

	Modified Roe Scheme for 2D solution
	Explicit solution
	Implicit solution. DEC correction

	CFL Condition
	1D Model implementation
	Modified Grass Model
	Meyer Peter Muller Model
	Modified Meyer Peter Muller Model



	II 1D Numerical Simulation
	Simulations with Grass model
	Test case. Grass model results
	Simulation for modified Grass model
	Weak interaction
	Weak/intermediate interaction
	Strong/intermediate interaction
	Strong interaction
	Concluding remarks for the modified Grass model


	Simulations with MPM model
	Validation (=0)
	Simulation with =1.04
	Weak interaction
	Weak/intermediate interaction
	Strong/intermediate interaction
	Strong interaction
	Concluding remarks for MPM model

	Threshold influence on MPM model
	CFL influence
	Final time: influence on the steady state
	Computational costs

	Modified MPM model simulations with =1.04
	Weak interaction
	Weak/intermediate interaction
	Strong/intermediate interaction
	Strong interaction
	Concluding remarks for modified MPM model

	Threshold influence on MPMH model
	CFL influence
	Final time: influence on the steady state.
	Computational cost


	Comparison and concluding remarks

	III 2D Simulations
	Simulation for Tunis Lake
	Tunis Lake
	Historical notes
	SIDA intervention on Nord Lac
	SPLT intervention
	The water
	The sediment

	Mesh generation
	Bathymetry

	Lac Nord
	Lac Nord simulation
	Initial condition

	Weak/intermediate interaction
	Weak interaction
	Real interaction
	Concluding remarks for Lac Nord simulation

	Lac Sud
	Sud Lac simulation
	Initial conditions

	Weak interaction
	Real interaction
	Concluding remarks for Lac Sud


	IV Conclusion
	Conclusion
	Conclusion

	V Appendix
	Lac Nord Tunis bathymetry
	Lac Sud Tunis bathymetry
	Shear stress
	Chezy Formula
	Manning Formula


	Acknowledgements
	Acknowledgements


