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While many studies and tools target the basic stabilizability problem of networked control systems
(NCS), nowadays modern systems require more sophisticated objectives such as those expressed as
formulae in linear temporal logic or as automata on infinite strings. One general technique to achieve
this is based on so-called symbolic models, where complex systems are approximated by finite ab-
stractions, and then, correct-by-construction controllers are automatically synthesized for them. We
present SENSE as a tool for the construction of finite abstractions for NCS and the automated syn-
thesis of controllers, to enforce complex specifications over plants in NCS by taking into account
several non-infidelities of the network.

Given a symbolic model of the plant and network delays, SENSE can efficiently construct a sym-
bolic model of the NCS, by employing operations on binary decision diagrams (BDDs). Then, it syn-
thesizes symbolic controllers satisfying a class of specifications. It has interfaces for the simulation
and the visualization of the resulting closed-loop systems using OMNeT++ and MATLAB. Addition-
ally, SENSE can generate ready-to-implement VHDL/Verilog or C/C++ codes from the synthesized
controllers.

1 Introduction

Networked control systems (NCS) combine physical components, computing devices, and communica-
tion networks all in one system forming a complex and heterogeneous class of so-called cyber-physical
systems (CPS). NCS have attracted significant attention in the past decade due to their flexibility of
deployment and maintenance (especially when using wireless communications). However, numerous
technical challenges are present due to the wide range of uncertainties within NCS, introduced by their
unreliable communication channels. This includes time-varying communication delays, packet dropouts,
time-varying sampling/transmission intervals, and communication constraints (e.g. scheduling proto-
cols).

Many studies deal with subsets of the previously mentioned imperfections targeting the basic stabiliz-
ability problem of NCS [3, 2, 16, 7]. However, nowadays CPS require more sophisticated specifications,
including objectives and constraints given, for example, by formulae in linear temporal logic (LTL) or
omega-regular languages [1].

A well-known approach to synthesize controllers enforcing such complex specifications is based on
so-called symbolic models (a.k.a. discrete abstractions) [13, 5, 19, 10]. A given plant (i.e. a physical
process described by a set of differential equations) is approximated by a symbolic model, i.e., a system
with finite state and input sets. As the model is finite, algorithmic techniques from computer science [14,
6] are applicable to automatically synthesize discrete controllers enforcing complex logic specifications
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Figure 1: Structure of the NCS and the symbolic controller.

over symbolic models. Finally, those discrete controllers (a.k.a. symbolic controllers) can be refined to
hybrid ones enforcing the same properties over concrete systems.

In this paper, we present SENSE, a tool for the automated synthesis of controllers for NCS. It autom-
atizes the construction of symbolic models of NCS, given symbolic models of plants in them, and the
synthesis of their controllers. Additionally, it generates automatically C/C++ or VHDL/Verilog codes
that are ready for implementation and, thus, providing an end-to-end automated synthesis approach for
NCS.

2 Symbolic models and controller synthesis for NCS

Figure 1 depicts the structure of NCS supported in the tool SENSE, which follows the general NCS
structure reported in [16] and [17]. A NCS Σ̃ consists of the following components: (1) a control system,
often referred to as plant, representing a physical process to be controlled; (2) two non-ideal commu-
nication channels transferring state information and control inputs from/to the plant; and (3) a remote
digital (symbolic) controller enforcing some complex specifications on the plant by taking into account
the imperfections of the communication channels.

The general (possibly nonlinear) control systems Σ is usually modeled by a differential equation
of the form ξ̇ (t) = f (ξ (t),υ(t)) whose state ξ (t) ∈ Rn is measured, every sampling period τ , by a
sensor/sampler, that is followed by a quantizer. The input signal υ belongs to U , which is a subset of the
set of all functions of time from ]a,b[⊆ R to Rm. We denote by ξxυ(t) the point reached at time t under
the input υ and started from the initial condition x = ξxυ(0). We denote by xk the sampled and quantized
state, and k ∈ N0 is an index referring to the sampling time kτ . Additionally, a zero-order-hold (ZOH)
helps sustaining an inter-sampling continuous-time control input υ(t).

A communication network connects the plant to a controller and introduces the time-varying sensor-
to-controller and controller-to-actuator delays ∆sc

k and ∆ca
k , respectively. A formal definition of symbolic

controllers is given in [10]. We consider the delays to be bounded and to take the form of integer
multiples of the sampling time τ , meaning ∆sc

k := Nsc
k τ and ∆ca

k := Nca
k τ , where Nsc

k ∈ [Nsc
min;Nsc

max] ⊂ N,
Nca

k ∈ [Nca
min;Nca

max]⊂ N, and Nsc
min,N

sc
max,N

ca
min,N

ca
max ∈ N.

Having a quantizer before the network as in Figure 1 and considering time-varying communication
delays with upper and lower bounds, as showed in [4, 18, 17, and references therein], one can readily
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consider four types of network non-idealities: (i) quantization errors; (ii) limited bandwidth; (iii) time-
varying communication delays; and (iv) packet dropouts as long as the maximum number of consecutive
dropouts over the network is bounded [3].

2.1 Symbolic Control of NCS

We use the symbolic approach to design controllers enforcing given logic specifications over the plants
in NCS while taking the network imperfections into account. Here, we use a notion of system [13] as a
unified modeling framework for both continuous systems as well as their finite abstractions. A system is
a tuple S = (X ,X0,U,F) that consists of a state set X ; a set of initial states X0 ⊆ X ; an input set U ; and a
transition relation F ⊆ X ×U ×X . We also use F as a map to denote the set of post-states of x which is
F(x,u) = {x′ ∈ X |(x,u,x′) ∈ F}.

Let Sτ(Σ) = (Rn,Rn,Uτ ,Fτ) denote the system that captures the evolution of Σ at each sampling
time τ . Set Uτ = {υ : [0,τ]→ Rm | υ(0) ∈ Rm, and υ(t) = υ(0), for all 0 < t ≤ τ} is a an input set of
constant curves over intervals of length τ . A transition (xτ ,υτ ,x′τ) belongs to Fτ if and only if there exists
a trajectory ξxτ υτ

: [0,τ]→ Rn in Σ such that ξxτ υτ
(τ) = x′τ .

Let Sq(Σ) = (Xq,Xq,0,Uq,Fq), where Xq is a finite cover of Xτ and Uq is a finite subset of Uτ , denotes
the symbolic model of Sτ(Σ) if there exists a feedback refinement relation (FRR) Q ⊆ Xτ ×Xq between
the two systems. Interested readers can find more details about FRR and the construction of Fq in [10].
System Sq(Σ) can then be used to synthesize controllers that enforce given logic specifications over Σ.

For NCS, one can follow the same methodology. A system S̃τ(Σ), representing Sτ(Σ) in the network
environment with the network imperfections, is derived from Sτ(Σ). Then, S̃q(Σ), which represents a
symbolic model of the overall NCS, is constructed from S̃τ(Σ) such that there exists a FRR Q̃ between the
two systems. The process is rather complex since S̃τ(Σ) is high-dimensional representation of Sτ(Σ) that
includes network imperfections. Instead, SENSE employs the results in [4, Theorem 4.1] to construct
S̃q(Σ) directly from Sq(Σ) while preserving some FRR, all without going through the construction of
S̃τ(Σ). This construction is achieved by applying an operator L as introduced in [4, 5]. More specifically,
S̃q(Σ) := (X̃q, X̃q,0,Uq, F̃q) is derived as S̃q(Σ) = L (Sq(Σ),Nsc

min,N
sc
max,N

ca
min,N

ca
max), where

• X̃q = {Xq∪q}Nsc
max×UNca

max
q × [Nsc

min;Nsc
max]

Nsc
max× [Nca

min;Nca
max]

Nca
max , where q is a dummy symbol;

• X̃q,0 = {(x0,q, . . . ,q,u0, . . . ,u0,Nsc
max, . . . ,N

sc
max,N

ca
max, . . . ,N

ca
max), where x0 ∈ Xq,0 and u0 ∈Uτ};

• The transition ((x1, . . . ,xNsc
max

,u1, . . . ,uNca
max

, Ñ1, . . . , ÑNsc
max

, N̂1, . . . , N̂Nca
max

),u,
(x′,x1, . . . ,xNsc

max−1,u,u1, . . . ,uNca
max−1, Ñ, Ñ1, . . . , ÑNsc

max−1, N̂, N̂1, . . . , N̂Nca
max−1)) belongs to F̃q, for all

Ñ ∈ [Nsc
min;Nsc

max] and for all N̂ ∈ [Nca
max;Nca

max], if there exist a transition x0
uNca

max− j∗−→
τ

x′ in Fq, where j∗
is a time-shifting index defined in [4].

Symbolic controllers are generally finite systems that accept states x̂k as inputs and produce uk as
outputs to enforce a given specification over the plants in NCS. The tool SENSE natively supports safety,
reachability, persistence, and recurrence specifications given as the LTL formulae �ϕS, 3ϕT , 3�ϕS,
�3ϕT , respectively, where ϕT and ϕS are the predicates defining, respectively, some target and safe sets
T and S. In the next section, we introduce three main modules inside SENSE:

(1) The symbolic model construction engine: it is responsible for constructing the symbolic model of
the NCS from a symbolic model of the plant in it;

(2) The fixed-point operations engine: it is responsible for synthesizing correct-by-construction sym-
bolic controllers enforcing the aforementioned LTL properties over the NCS;
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(3) Various tools to analyze and simulate the closed-loop NCS, and to automatically generate code of
the synthesized control software.

3 Structure of the tool SENSE

The tool SENSE is an open-source extensible framework that provides a base for further research on the
modeling, abstraction, and controller synthesis of NCS. The research on symbolic control for NCS is
ongoing [17, 4] and the tool is developed to help researchers interested in automated synthesis of NCS.

For the construction of symbolic models of NCS, SENSE has a software engine that supervises the
construction procedure. The engine follows certain customizable construction rules that describe how
the symbolic model of the NCS is constructed from the symbolic model of the plant. The construction
rules depend on the sensor-to-controller and controller-to-actuator delays ∆sc

k and ∆ca
k , respectively. Con-

struction rules (implemented in terms of C++ classes) can be readily provided for any class of NCS.
However, due to the imposed restriction in the implementation phase of the synthesized controllers, fol-
lowing the existing theory in [4, 17], the tool SENSE is currently available with only the construction
rules for a class of NCS called pronged-delay NCS (introduced later). Nevertheless, due to the modular
design of SENSE, it is straightforward to define extra construction rules, e.g. taking time-varying delays
into account, once the theory behind them is available.

The tool SENSE provides ready-to-use fixed-point routines that operate on the constructed symbolic
models to synthesize controllers enforcing any of those specifications introduced in Section 2. It is also
equipped with two interfaces to access the synthesized controllers. The first one is via MATLAB and
allows accessing the synthesized controller as well as performing closed-loop simulations, in which, the
plant is being remotely controlled by the synthesized controller over the network. Since the visualization
capabilities of MATLAB are limited, we include a second interface using OMNeT++ [8], which provides
a powerful visualization-framework. The interface of OMNeT++ allows accessing the synthesized con-
troller to perform realistic network simulations as well as visualizing the closed-loop behavior.

Along with the core engines in SENSE, a rich set of helper tools is developed and made available for
users to analyze and simulate the resulting symbolic models and the synthesized symbolic controllers.
One of those tools allows for code generation of the synthesized controllers as C/C++ or VHDL/Verilog
codes to cover both software and hardware implementations and provide an end-to-end solution.

3.1 The symbolic model construction engine

A straightforward implementation of L -operator can be achieved using element-by-element expansion
of the state set of the symbolic model of the plant. However, this is computationally inefficient and
consumes a large amount of memory.

Symbolic models, which can be considered as labeled transition systems, are easily represented by
boolean functions and encoded inside BDDs. Tool SENSE expands the BDD representing the symbolic
model of the plant to construct a BDD representing the symbolic model of the NCS. Symbolic operations
on BDDs play the major role in order to construct symbolic models of NCS from those of their plants.
Using the CUDD library [12], SENSE employs such operations to efficiently handle computation/memory
complexities when implementing the L -operator.

Figure 2 depicts the structure of the engine for constructing symbolic models of NCS. The engine
takes the symbolic model of the plant as its input. Users can construct such models using the existing tool
SCOTS [11], which is provided as a library inside the tool SENSE. The constructed model is then given
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Figure 2: Structure of the engine for constructing symbolic models of NCS.

to the engine in the form of a BDD file (i.e., a file storing the BDD). The delay bounds within the NCS
should also be provided. The engine then starts expanding the symbolic model of the plant. Specifically,
the transition relation of the NCS is crafted by Cartesian-product-like expansion of the transition relation
of the plant. This is done with the help of a BDD-Manager provided by the CUDD library as follows:

(1) adding extra binary variables to accommodate for the traveling state and input packets through the
communication channels, and their delays;

(2) to construct X̃q, SENSE expands Xq with the dummy symbol q and then performs Cartesian prod-
ucts with Uq and the set of delays in both channels;

(3) to construct F̃q, SENSE performs BDD operations on Fq using the provided construction rules
described as C++ classes.

3.1.1 The prolonged-delay NCS

Note that for constructing symbolic models of any NCS (using the operator L ) and synthesizing sym-
bolic controllers enforcing any of the properties introduced in Section 2 over them, we only require the
delays in both channels of the network to be integer multiples of the sampling period τ with some lower
and upper bounds; see [4, 17] for more details.

The tool SENSE can handle the construction of symbolic models and the synthesis of their controllers
for any class of NCS. However, in order to refine the controllers and apply them to the concrete NCS, the
current theory proposed in [17] requires that the upper and lower bounds of the delays to be equal at each
channel. This implies that, in each channel, all packets are delayed by the same amount of time. This
can be practically achieved by performing extra prolongation (if needed) of the delays suffered by the
packets. For the sensor-to-controller branch of the network, this can be readily done inside the controller.
The controller needs to have a buffer to hold arriving packets and keep them in the buffer until their
delays reach the maximum. For the controller-to-actuator channel, the same needs to be implemented
inside the ZOH. Interestingly, this prolongation results in less conservativeness in terms of the existence
of symbolic controllers; see [17, Lemma 6.1] for more details.
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Additionally, to refine the synthesized symbolic controllers, it is also required that the symbolic
model of the plant is deterministic. This can be fulfilled for a wide class of physical systems [13] having
some stability properties, and it does not require the symbolic models of the NCS to be deterministic.
Nevertheless, the support of controller refinement for non-deterministic symbolic models of the plants is
currently under development and will be incorporated in SENSE in the near future.

3.2 Fixed-point computation for controller synthesis

The tool SENSE implements fixed-point algorithms for synthesizing controllers that enforce those spec-
ifications introduced in Section 2. Tool SENSE uses a customized version of the controller synthesis
engine provided in SCOTS. In order to synthesize controllers that enforce any of the four specifica-
tions, the engine implements fixed-point algorithms that employ a Pre-operation over state-input pairs
of the symbolic model of the NCS. More specifically, given a symbolic model of the NCS S̃q and a set
Z ⊆ X̃q×Uq, the Pre-operation of X̃q is defined by pre(Z) = {(x,u) ∈ X̃q×Uq| /0 6= F̃q(x,u)⊆ πX̃q

(Z)},
where πX̃q

is a projection map defined as πX̃q
(Z) = {x ∈ X̃q|∃u∈Uq (x,u) ∈ Z}. Interested readers can find

more details in [11, 13, 10]. All steps in the algorithms as well as the Pre-operation are implemented
by BDD operations. Users can employ the four main algorithms to describe different LTL specifications
and to synthesize (possibly dynamic) symbolic controllers. We demonstrate this, with examples, for two
different LTL specifications later in Section 4.

The target set T and safe set S are to be given as atomic propositions over the state space of the
plant. Such sets can be generated using SCOTS and they are provided as BDD files. The tool takes
care of expanding those sets to be compatible with the symbolic model of the NCS. Then, it synthesizes
controllers to enforce the specifications over the original plants in NCS. Controllers are, by construction,
BDD objects and they are saved as BDD files.

3.3 Simulation, analysis and code generation

The tool SENSE provides two different interfaces to access the controllers, using MATLAB and OMNeT++.
For both interfaces, it provides a common C++ layer to read the BDD-based synthesized controllers.

For MATLAB, an m-script uses the C++ layer to access the controllers while providing a set of m-script
functions and classes to interface the synthesized controllers. For almost all examples, m-scripts are pro-
vided to simulate the closed-loop behavior of the NCS. This includes simulating the plant’s differential
equation, and the network evolution.

In the interface for OMNeT++, communication channels are modeled as random-delay channels for
realistic simulations. Visualizations up to 3 dimensions are supported in the visualization engine of
OMNeT++.

The tool SENSE also provides the following tools that help analyzing the symbolic models as well
as the synthesized controllers:

• bdd2implement: a tool to automatically generate C/C++ or VHDL/Verilog codes from the
synthesized BDD-based controllers;

• bdd2fsm: a tool to generate files following the FSM data format [15] or the comma-separated
format of the transition relation of symbolic models. Such representation is used by many software
packages to visualize graphs (e.g., the tool StateVis[9]). Users can use the tool to analyze or
understand, visually, how the symbolic model behaves;
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• bddDump: a tool to extract the meta-data information stored inside the generated BDD files.
This helps inspecting the original information about the plant such as sampling time, quantization
parameters, or the binary variables;

• contCoverage: a tool to provide fast terminal-based ASCII-art visualization of the coverage of
the synthesized controllers. It is only possible up to 2 dimensions. To visualize the coverage of
controllers with 3 dimensional inputs, users can still use MATLAB.

• sysExplorer: a tool to help testing the expanded transition relation or the synthesized con-
trollers. It handles the BDD as IN-OUT box. Users can request information about specific transi-
tions in the transition relation by providing the initial state and a sequence of inputs, and the tool
responds with the post-states. For controller testing, the tool can be used to test the controller by
providing states to check the corresponding generated inputs.

3.3.1 Automated code generation of synthesized controllers

In SENSE, the helper tool bdd2implement is provided to automatically generate codes, targeting
hardware and software implementations, of the synthesized controllers. It starts by determinizing the
symbolic controller, in case it is not deterministic, by simply selecting the first available input, for each
state of the system. Then, it converts the multi-output boolean function, representing the controller and
encoded in BDD, to many single-output functions. Each single-output boolean function represents one
bit of the binary-encoded output of the controller. Then,

• for C/C++ code generation, the boolean functions are dumped as C++ functions with bool return
values along with another function that collects and constructs the output of the controller The
C/C++ target-specific compiler takes care of converting such boolean functions to machine codes,
implying that the controller is encoded as instructions of the target microprocessor. This, how-
ever, might violate the real-time requirements for some applications in which the time required to
compute the control output, by executing the instructions, exceeds the real-time deadline. A more
time-efficient (but not memory-efficient) implementation is to store the controller as a lookup-table
in the memory of the target hardware and access it directly. The latter is straightforward but is not
currently added to the tool.

• for VHDL/Verilog code generation, the boolean functions are directly written as register transfer
level (RTL) codes. An electronic design automation (EDA) tool takes care of converting the code
to technology-mapped netlist and, later, a vendor-specific software finds the suitable mapping in
the target chip, in an operation called place-and-route.

3.4 The work flow inside SENSE

Figure 3 depicts the complete structure and the work-flow of SENSE. As an input, the engine takes the
symbolic model of the plant, the delay bounds within the NCS, and the specification. Then, BDD files of
the symbolic model of the NCS, following the construction rules, and its controller are generated. The
files are used by the helper tools for analysis and code generation purposes. The steps taken by the user
to use SENSEare summarized as follows:

1. The user computes a symbolic model of the plant as a BDD file using the included library SCOTS;

2. The user can extract information of the BDD file using the helper tool bddDump;



8 SENSE: Abstraction-Based Synthesis of Networked Control Systems

BDD-based NCS

SENSE Engine

NCS Construction
Rules

Network
Delays

Input: Construction Manager

Input:
Symbolic
Model

BDD
Manager

BDD-based NCS
Transition Relation

expand

BDD-based Fixed
Point Operations

compute
controller

write

Symbolic Controller
Interface

write

read

Specifications
Input:

L

Helper Tools:
Analysis / Codegen

FPGA

VHDL Code

Microcontroller

C/C++ Code

Figure 3: Work flow inside SENSE: from specifications to ready-to-implement source codes.

3. The user can also visualize the transition relation of the symbolic model via the tool bdd2fsm
and a graph visualizing tool (e.g. StateVis);

4. The user passes the BDD file representing the plant’s symbolic model to SENSE, along with the
network delays and the specification;

5. The tool SENSE generates BDD files for the symbolic model of the NCS and the controller;

6. The user can benefit from the tools sysExplorer and contCoverage to test the symbolic
model of the NCS and its synthesized controller;

7. The user can use the provided interfaces in SENSE, in combination with MATLAB and/or OMNeT++,
to simulate and visualize the closed-loop behavior of the NCS;

8. The user can use the tool bdd2implement to generate the final controller for implementation.

4 SENSE in action: results and examples

We present several case studies where we construct symbolic models of NCS, namely, S̃q(Σ) from the
symbolic models of their plants, namely, Sq(Σ) . We also provide two examples where dynamic con-
trollers are synthesized. The closed-loop is simulated using the interfaces with MATLAB and OMNeT++
in SENSE. Code generation is achieved using the tool bdd2implement in SENSE. All examples are
done in a PC (Intel Xeon-E5-1620 3.5GHz 256GB RAM).

4.1 Construction of symbolic models of NCS

First, symbolic models of the plants in NCS are constructed and stored as BDD files. The BDD files
are fed as inputs to the engine of SENSE along with NCS delay bounds to construct symbolic models
of NCS. Table 1 summarizes the results for different case studies and different network delays given as
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Table 1: Results for constructing symbolic models of prolonged-delay NCS using those of their plants.

Case Study |Sq(Σ)| (2,2) (2,3) (2,4) (2,5) (3,2) (3,3) (3,4) (3,5) (4,2) (4,3)
DI 2039 |S̃q(Σ)| 14096 56336 225296 901136 22832 91184 364592 1.45×106 38340 152964

Time (sec) < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Memory (KB) 2.0 2.4 3.1 2.9 3.0 2.9 3.1 3.2 5.2 4.3

Robot 29280 |S̃q(Σ)| 4.1×106 6.5×107 1.04×109 1.67×1010 3.4×107 5.4×108 8.7×109 1.4×1011 2.8×108 4.6×109

Time (sec) < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 1.4 1.6
Memory (KB) 15 14 17 16 16 21 22 19 35 33

Jet 9.0×105 |S̃q(Σ)| 1.5×1011 1.0×1013 6.5×1014 4.2×1016 7.2×1012 4.6×1014 2.9×1016 1.9×1019 3.3×1014 2.1×1016

Time (sec) 1970 1637 1674 2172 3408 1772 2111 7107 4011 2854
Memory (KB) 4323.3 2374.2 2389.1 2392.6 3683.2 4098.2 3317.2 3582.6 5894.3 4784.5

DC-DC 3.8×106 |S̃q(Σ)| 8.9×107 1.8×108 3.6×108 7.1×108 5.2×108 1.0×109 2.0×109 4.1×109 3.0×109 6.0×109

Time (sec) 672 681 530 1131 13690 10114 9791 10084 139693 137648
Memory (KB) 3347.2 3145.0 3176.7 2784.8 10875.2 11543.8 11572.0 11592.1 34169.2 37852.6

Vehi 1.9×107 |S̃q(Σ)| 4.2×1012 2.7×1014 1.7×1016 1.1×1018 2.3×1014 1.4×1016 9.3×1017 5.9×1019 1.3×1016 7.94×1017

Time (sec) 273.3 285 238.4 173 22344 54919 27667 36467 39065 145390
Memory (KB) 1638.4 1945.6 1843.2 1945.6 23040 40652.8 30208 22425.6 21094.4 36556.3

Inver 4.3×108 |S̃q(Σ)| 2.4×1014 1.5×1016 1.0×1018 6.5×1019 4.6×1016 2.9×1018 1.9×1020 1.2×1022 9.2×1016 5.8×1020

Time (sec) 361.4 349.1 340.9 347.8 942 793 1218 910 58411 57110
Memory (KB) 723.1 808.4 349.6 1012.7 2958 2840 3104 2898 35907 35628

Figure 4: Visualization of the transition relation of the robot example. In this example, obstacles in the
state set are considered by removing any transitions to or from them.

pairs (a,b) in the first row where the delay in the sensor-to-controller channel is upper bounded by aτ

and the one in the controller-to-actuator channel is upper bounded by bτ . For each case study, we show
the size of the symbolic model of the plant (i.e. number of transitions and denoted by |.|). Then, for
different network delays, we show the size of the symbolic models of NCS, the time in seconds required
to construct them (from the symbolic model of the plant), and the memory in KB used to store them.

We consider several different dynamics for the plant in the NCS including a double integrator (de-
noted by DI), a fully actuated robot (denoted by Robot), a jet engine (denoted by Jet), a Boost DC-DC
Converter (denoted by DC-DC), a vehicle dynamic (denoted by Vehi), and finally an inverted pendulum
system (denoted by Inver). The details of all these plants can be found in the appendix.
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(a) MATLAB (b) OMNeT++

Figure 5: Closed-loop simulation of the robot in MATLAB and in OMNeT++. Two target sets are repre-
sented by blue boxes. Nine obstacle sets are represented by red boxes.

4.2 Controller synthesis example: a remotely-controlled robot

For controller synthesis, we consider the Robot case reported in Table. 1. We consider delay parameters
of the network to be (2,2). The plant dynamic is described by the following differential equation:[

ξ̇1

ξ̇2

]
=

[
υ1
υ2

]
,

where (ξ1,ξ2) ∈ X ⊆ R2 denotes the position of the robot in the bounded 2D arena X , and (υ1,υ2)
represents a steering input. We use the following state and input sets: set of states is [0,64]× [0,64], state
quantization parameters are (1,1), input set is [−1,1]× [−1,1], and input quantization parameters are
(1,1). The control objective is described by the following LTL formula:

ψ =
( 9∧

i=1

�(¬Obstaclei)
)
∧�3(Target1)∧�3(Target2),

where the atomic propositions Target1, Target2, and Obstaclei, i∈ {1, . . . ,9}, are some hyper-intervals
over X , as depicted in Figure 5.

A program that uses the library SCOTS constructs the symbolic model of the plant in 0.23 sec-
onds. Then, the transition relation is exported using the tool bdd2fsm. Figure 4 depicts the visualized
transition relation using the generated FSM file and the tool StateVis. The blank spaces in the state set
represent obstacles, which is common to efficiently encode obstacles in the transition graph and to reduce
the overall number of transitions.

The NCS construction engine of SENSE constructs the symbolic model of the NCS in 0.26 seconds.
The fixed-point operations engine in SENSE synthesizes the controller in 8 seconds. The resulting con-
troller is a dynamic controller with two discrete states, each corresponds to one static controller, that
enforces a reachability specification for one of the target sets. Figure 5a (resp. 5b) shows the closed-loop
simulation in MATLAB (resp. OMNeT++). We make use of the animation capabilities of OMNeT++ to
visualize both packet transfers over the network as well as the movement of the robot in the arena. The
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Figure 6: Code snippet from the generated VHDL code.

target sets are indicated with red boxes and the obstacles are indicated with blue boxes. The initial state
of the system is (10,10).

The tool bdd2implement is used to generate VHDL and C/C++ codes that are ready for imple-
mentations. Figure 6 shows a code-snippet of the generated VHDL code for one of the static reachability
controllers of the Robot example.

4.3 Controller synthesis example: collision-free deployment of two robots

We use two instances of the same dynamic from the previous example to represent two different robots.
The dynamics are augmented to form a system of higher dimension (i.e. 4-dimensional state set and
4-dimensional input set). The system is now described by the following differential equation:

ξ̇1

ξ̇2

ξ̇3

ξ̇4

=


υ1
υ2
υ3
υ4

 .
We use the following state and input sets: set of states is [0,15]× [0,15]× [0,15]× [0,15], state quan-

tization parameters are (1,1,1,1), input set is [−1,1]× [−1,1]× [−1,1]× [−1,1], and input quantization
parameters are (1,1,1,1). The objective of this example is to synthesize a controller that enforces the
following two specifications simultaneously:

1. For the first robot:

ψ1 =
( 5∧

i=1

�(¬Obstacle1
i )
)
∧
( 15,15∧

i=0, j=0

�(¬Crashi, j)
)
∧�3(Target1)∧�3(Target2),
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Figure 7: Closed loop simulation of the two robots example in MATLAB.

2. For the second robot:

ψ2 =
( 5∧

i=1

�(¬Obstacle2
i )
)
∧
( 15,15∧

i=0, j=0

�(¬Crashi, j)
)
∧�3(Target3)∧�3(Target4),

where Target1, Target2, Target3 and Target4 are atomic propositions over the state set and defined by the
hyper-rectangles: [2,3]× [2,3]× [0,15]× [0,15], [12,13]× [12,13]× [0,15]× [0,15], [0,15]× [0,15]×
[2,3]× [12,13], and [0,15]× [0,15]× [12,13]× [2,3], respectively. Crashi, j, ∀i, j ∈ {0,1, . . . ,15}, repre-
sent the points in the state set where the two robots collide and are defined as follows:

Crashi, j = [i j i j]T .

Obstacle1
i , ∀i ∈ {0,1, . . . ,5}, are obstacles and are defined by the hyper-rectangle: [6,9]× [6,9]×

[0,15]× [0,15], [11,14]× [7,8]× [0,15]× [0,15], [1,4]× [7,8]× [0,15]× [0,15], [7,8]× [1,4]× [0,15]×
[0,15], and [7,8]× [11,14]× [0,15]× [0,15], respectively. Obstacle2

i , ∀i ∈ {0,1, . . . ,5}, are obstacles
and are defined by the hyper-rectangle: [0,15]× [0,15]× [6,9]× [6,9], [0,15]× [0,15]× [11,14]× [7,8],
[0,15]× [0,15]× [1,4]× [7,8], [0,15]× [0,15]× [7,8]× [1,4], [0,15]× [0,15]× [7,8]× [11,14], respec-
tively.

The controller is synthesized and simulated as presented in the previous example. The symbolic
model of the plant is constructed in 56 seconds. For delay parameters of (2,2), SENSE constructs the
symbolic model of the NCS in 29 seconds. Remark that the construction of the symbolic model of the
plant in SCOTS is affected by the increase in the dimension more than in SENSE. This is due to the nature
of SCOTS which operates element-by-element on the state space to construct an over-approximation of
the reachable sets as a step while constructing the finite abstraction of the plant. Unlike SCOTS, SENSE
implements the L -operator as operations on the BDD representing the symbolic model of the plant. The
tool SENSE synthesizes the controller in 75883 seconds. Figure 7 shows the closed-loop simulation in
MATLAB. The initial state of the system is (7,15,15,7).
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Appendix

The tool, its download links and the manuals are available through the following URL:

https://www.hcs.ei.tum.de/en/software/sense.

5 Instructions to reproduce the reported results

We provide instructions on how to reproduce the results in Table 1 and Figure 5 in the submitted paper. As
expected from a tool paper, all experiments are extensible. We provide instructions on how to extend the
examples or the tool itself. Table 2 expands the details of the case studies in Table 1. A state and an input of
any plant are denoted by vectors ξ = [ξ1 ξ2 · · · ξn]

T and υ = [υ1 υ2 · · · υm]
T , respectively, where n and m are

their corresponding dimensions. Any other undefined symbols denote constants related to each case study.

5.1 Requirements and preliminaries

For the full benefits of SENSE and its helper tools, the following requirements are recommended:

• Any of the following C/C++ development environments:
– Linux with GNU C/C++ build tools. We generated all results using Linux Ubuntu version 16.04.
– Mac OS X with Xcode.app including the command line tools. We didn’t run the tool on Mac OS.

However, users should generally face no differences.
– Windows with MSYS2 or with Ubuntu subsystem. Simulation and visualization are not supported.

• A working installation of the CUDD library. Users can download it from: http://vlsi.colorado.
edu/˜fabio/CUDD/. The package follows the usual configure, make, and make install
installation routine. Please configure it as follows:
$./configure --enable-shared --enable-obj --enable-dddmp --prefix=PTH,
where PTH should be replaced by your installation path. We use $(CUDDPATH) to refer to the instal-
lation directory of the CUDD library.

• The tool MATLAB is used to simulate the closed-loop of NCS with the synthesized controllers. The mex
compiler of MATLAB should be installed and ready to be used. Figure 5.a is generated in MATLAB.

• The tool OMNeT++ is used to visualize and simulate the closed-loop interactions between the plant and
the synthesized controller via non-ideal communication channels. Figure 5.b is generated in OMNeT++.

5.2 Instructions for working installation of SENSE

Please follow the following instructions to download, install and run one example of SENSE:

• Download SENSE from: https://www.hcs.ei.tum.de/en/software/sense/download.
• Navigate to $(SENSEROOT)/examples/prolonged ncs/dint/ and build the example DI.
• Run the command $ make in the terminal. Note that for a successful compilation of dint.cc,

the variable $(CUDDPATH), defined in the Makefile, needs to be modified to match the particular
installation directory of the CUDD library.

• A successful compilation indicate, generally, the correct installation of CUDD and SENSE.

To run the example used in the installation, the BDD file of the symbolic model of the plant in the NCS
needs to be available. For all provided examples, we make the required codes to generate those symbolic
models available in a separate directory named scots-files. The directories contain programs that use

https://www.hcs.ei.tum.de/en/software/sense
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
https://www.hcs.ei.tum.de/en/software/sense/download
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Table 2: Details of the case studies reported in Table 1

Case Study Dynamics Equations State set State
quantizers Input set Input

quantizers τ

DI ξ̇ =

[
0 1
0 0

]
ξ +

[
0
1

]
υ [0,3.2]×

[−1.5,1.5] (0.2, .3) [−0.3,0.3] 0.2 0.3

Robot ξ̇ =

[
υ1
υ2

]
[0,63]×
[0,63] (1,1) [−1,1]×

[−1,1] (1,1) 1.0

Jet
ξ̇ =

[
−ξ2 − 3

2 ξ 2
1 − 1

2 ξ 3
1

1
ω2 (ξ1 −υ1)

]
ω = 1

[−1.9,1.9]×
[−1.9,1.9] (0.025,0.025) [−2,2] 0.1 0.3

DC-DC ξ̇ =



[−r1
xl

0
0 −1

xc(r0+rc)

]
ξ , for υ = 1

[
−1
xl
(rl +

r0rc
r0+rc

) −1
xl

r0
r0+rc

1
xc

r0
r0+rc

−1
ξ2

1
r0+rc

]
ξ , for υ = 2


+

[Vs
xl
0

]

r0 = 1,rl = 0.05,rc =
rl
10 ,Vs = 1,xl = 3,and xc = 70

[1.15,1.55]×
[5.45,5.85]

(5×10−4,
5×10−4)

[1,2] 1 0.5

Vehi
ξ̇ =

υ1 cos(α +ξ3)cos(α)−1

υ1 sin(α +ξ3)cos(α)−1

υ1 tan(υ2)


α = arctan(tan(υ2)/2)

[0,10]×
[0,10]×
[−3.54,3.54]

(0.2,0.2,0.2) [−1,1]×
[−1,1] (0.3,0.3) 0.3

Inver
ξ̇ =


ξ2

υ1 cosξ1−MpLξ 2
2 sinξ1 cosξ1+(Mc+Mp)gsinξ1

−MpLcos(ξ1)2+L(Mc+Mp)

ξ4
Lξ̇2−gsinξ1

cos(ξ1)


Mc = 0.25,Mp = 0.5,L = 0.2,and g = 9.807

[−π

4 ,−
π

4 ]×
[−π,π]×
[−4.5,4.5]×
[−4.5,4.5]

(0.05,0.2,
0.3,0.3) [−1.5,1.5] 0.1 0.1

the provided library SCOTSto generate the required BDD files. Compiling and running the provided code,
will generate the required symbolic abstractions of the plants in NCS.

5.3 Instructions to reproduce Table 1

We provide instructions on how to reproduce one of the case studies reported in Table 1. Other case studies
follow the same instructions. We choose the Robot case study and the column corresponding to the pair of
delays (2,2). Please note that SENSE enables a feature in the CUDD library named (AutoDynamic) leading
to automatic reordering of BDD variables. Such feature enhances the performance. However, execution
times have some randomness as the feature is based on a heuristic algorithm. Follow the next instructions to
reproduce the results of the Robot case study in Table 1:

• Navigate to $(SENSEROOT)/examples/prolonged ncs/robot/sense-files. Build and
run the program robot. Figure 8 shows a screen-shot of how this should look like.

• Navigate to $(SENSEROOT)/examples/prolonged ncs/robot/
• Using a text editor, open the file robot ncs.cc. Change the defined values for the delays NSCMAX

and NCAMAX to 2 and 2, respectively. Save and close the file.
• Build and run the example: $ make; ./robot ncs;

Figure 9 shows a screen-shot of how this should look like.
• Record the shown results and do the same for each case study to reproduce the complete table.

5.4 Instructions to reproduce Figure 5

5.4.1 Synthesizing a symbolic controller using SENSE

• Navigate to $(SENSEROOT)/examples/prolonged ncs/robot infoft/.
• Build and run the provided program and the following files will be generated:

– robot rel.bdd: contains the symbolic abstraction of the robot to be provided to SENSE.
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Figure 8: Screen-shot for the program provided to generate the input BDD files.

Figure 9: Screen-shot for the output of SENSE.

Figure 10: Screen-shot for building the C++simulation program.
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Figure 11: Screen-shot for running the C++simulation program for the Robot example.

– robot ts1.bdd: represents the atomic proposition Target1.
– robot ts2.bdd: represents the atomic proposition Target2.

• Open the file robot ncs.cc and make sure the delays of the network are set to (2,2).
• We list part of the code here and give some notes:

...
#define NSCMAX 2
#define NCAMAX 2
#define BDD_REL "scots-files/robot_rel.bdd"
...
ncsFIFOTransitionRelation ncsRobot(cuddManger, BDD_REL, 2, 2, NSCMAX, NCAMAX);
ncsRobot.ExpandBDD();
...
ComputeRecurrenceConjController(bdd_target_files);
...

Aside from the definitions of constants, the code starts by expanding the symbolic model robot rel.bdd
using the class ncsFIFOTransitionRelation, which is the construction-rules class reported in
the paper. Then, controllers enforcing a conjunction of recurrence specifications are synthesized and
saved to BDD files.

• Build and run the example: $ make; ./robot ncs; . The result is two controller files:
robot contr1.nbdd and robot contr2.nbdd, and Figure 10 depicts how this should look like.

5.4.2 Simulation using C++

For users who have no access to MATLAB and are not familiar with OMNeT++, we provide C++ simulation
support. For this example, the simulation program is built automatically with the program if you already used
the provided Makefile. Simply, run the program from the command line: $ ./robot ncs sim
The results will be shown in the terminal and should be as shown in Figure 11:

5.4.3 Simulation using MATLAB to reproduce Figure 5.a

Having MATLAB installed, follow the following steps:
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(a) Screen-shot of the GUI of OMNeT++ for SENSE’s project. (b) Screen-shot of the (.ini) configuration file of the Robot example.

Figure 12: Sample of the C/C++ and VHDL codes as generated from SENSE for the robot example.

• Configure the mex compiler for C++ in MATLAB by executing:
>> mex -setup C++

• Navigate to $(SENSEROOT)/interface/matlab/ and compile the files
mexNcsController.cc and mexSymbolicSet.cc. Edit the Makefile and modify the vari-
ables $(MATLABROOT) and $(CUDDPATH) to match the local installation and do: $ make .

• Open MATLAB and add the directory $(SENSEROOT)/interface/MATLAB to MATLAB’s path.
• In MATLAB, navigate to $(SENSEROOT)/examples/prolonged ncs/robot infoft.
• Run the provided m-file for simulation
>> robot ncs

• MATLAB should generate Figure 5.a.

5.4.4 Simulation using OMNeT++ to reproduce Figure 5.b

Follow the following steps to reproduce Figure 5.b:

• Open the GUI of OMNeT++ by executing the command: $ omnetpp
• From the top menu of File, click Import and select General -> Existing Project into
Workspace. Select the provided OMNeT++ project from the directory:
$(SENSEROOT)/interface/OMNETPP. The GUI of OMNeT++ looks as shown in Figure 12a.

• Copy the file omnetpp.ini from the root folder of the robot example
$(SENSEROOT)/examples/prolonged ncs/robot infoft to the simulation folder of OMNeT++:
$(SENSEROOT)/interface/OMNETPP/simulations.

• Open the file in OMNeT++ to get familiar with its code-style, as depicted in Figure 12b.
The configurations in the (.ini) file are simple hierarchical assignments in the form:
PARENT-MODULE.MODULE = VALUE. The parent module is NCS Topology as specified by the
tool. Submodules describe the basic modules in the NCS. For example, in the configuration lines:
NCS Topology.Channel SC.min delay = 0
NCS Topology.Channel SC.max delay = 0.6 ,
we specify the minimum and maximum delays, in seconds, for both of the communication channels.

• Make sure that the paths in the (.ini) file point, correctly, to the generated controller and the target/ob-
stacle files.
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• Build the simulation project from inside OMNeT++: Right-click on the project
SENSE-OMNet-Interface and select Build Project.

• From inside OMNeT++, run the simulation: Right-click on the project
SENSE-OMNet-Interface and select Run As and then OMNeT++ Simulation.

• An interactive visualization will be shown. You may adjust the screen by zooming in/out before starting
the simulation using the shortcuts (CTRL-M and CTRL-N). Press F5 to start the simulation.

5.5 Instructions to generate the C/C++ or VHDL/Verilog codes

• We assume that you have already built and ran the Robot example.
• Navigate to $(SENSEROOT)/tools/bdd2implement/examples/. You will find two folders:
c-sense-controller: an example to generate the C/C++code for the Robot case study and
vhdl-sense-controller: an example to generate the VHDL code for the Robot case study.

• Navigate to any of the two examples and build/run it.
• A controller code is automatically generated and ready for implementation.

6 Extensibility in SENSE
6.1 Adding more examples

Writing and simulating your own example in SENSE is straightforward. Users can take a copy of existing
example and build on it or define their own ones by following the steps:

• Make sure to produce the BDD files for the plant inside the NCS.
• Make a folder for your new example with at least one (.cc) to hold the code.
• You can copy the Makefile from any example to your example’s directory and change the target file.
• Write your code in the (.cc) file to read the original BDD files and to synthesize the required controller.
• Build and run your code to generate your controller.
• Use either MATLAB or OMNeT++ interfaces to simulate your generated controller.

6.2 Adding new NCS setting classes

Users are encouraged to read the manual for a detailed description of adding new NCS-construction rules
classes. However, we summaries the extension process in the following steps:

• In the directory $(SENSEROOT)/src, create your own (.hh) file to represent the new configuration
class. You can also add the code of your class in the file ncsTransitionRelation.hh.

• Inherit the base class ncsTransitionRelation and provide implementation for the following
virtual methods:

– getSourceStateTemplate(): to help the base class understand the structure of the state of
the symbolic model of new NCS class.

– ConstructQTransitionRules(): to help the base class handle dummy in transitions due
to the initialization of the NCS.

– ConstructNonQTransitionRules(): to help the base class handle normal transitions.
• Create a new folder and examples for this class of NCS in the examples directory as shown before.


