
ESA UNCLASSIFIED - For Official Use

TASTE

Using model-driven code generation
for safety-critical applications

Thanassis Tsiodras

European Space Agency

ESTEC/TEC-SWE

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 2

A bit about me

 2 decades in 2 minutes

 PhD from NTUA in 1999; founded Semantix in 2001 and was its Lead Engineer
for 13 years.

 Discovered MDE “in the field” - put it to use in our product lines, with spectacular
results

 Became a part of the team that built the core TASTE tools

 Joined ESA in January 2016.

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 3

 Methods and Tools for Rigorous System Design
 ESA promotes and advocates Model Based System Engineering at all levels

 Model Based System; Model Based Avionics; Model Based Software

 ESA demonstrator on Digital Continuity

S/C initial

concept

model

functional

architectural

model

avionics

models

software

models
code

Digital continuity

In context: MeTRiD and ESA

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 4

What is TASTE?

 A set of tools and technologies that target the creation of complete applications
for safety-critical systems using MDE and code generation

 A long-running effort in ESA to showcase MDE and its immense benefits to the
domain of space SW

 An open-source testbed of ideas to improve the quality of space SW

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 5

Rule No 1: The most maintainable code...

 ...is the one you don’t write at all

 Don’t write code – have machines write it for you

 To do that, create models representing the logic

 ...and have code generators write the code for you

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 6

Rule No 2 – Reuse, don’t “NiH”

 When creating said models, don’t reinvent the wheel

 NiH syndrome: “I can do it from scratch and do it better!”
(No, most of the time you can’t)

 Study the pre-existing tech – and build on top of it unless you have to

 Use the appropriate modelling languages for each domain

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 7

Rule No 3 – Keep it open

 When choosing modelling languages, you also need to address tooling concerns

 Always prefer open-source tooling whenever possible

 avoid vendor lock-in

 Make sure the tools store the models in interoperable form - ideally, in the textual
syntax of the modelling language itself

 Develop the toolchain in the open, involve as many outside partners as possible –
the safety-critical domain is targeted by many.

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 8

Rule No 4 – Keep it real

 The truth: there are so many research results out there that are basically unusable
in the real world

 It is one thing to invent technology – making it usable in everyday workflows is
quite another

 If we are to “tip the scales” and make MDE a part of the safety critical domain, we
need to create a toolchain that works

 Address the “mundane”: How to make a toolchain that works everywhere? That
can be used by everyone? That auto-updates itself?

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 9

A subset of the technologies supported

Modeling

Model analysis

Debugging

& testing

Code generation

& deployment

BIP

ASN.1 SIMULINK SDL

MSC

AADL SCADE VHDL

C/C++ Ada

Python

CHEDDARBIP

Execution

platform
PolyORB

HI
LinuxRTEMS

Targets x86SPARC/LEON ARM/STM32

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 10

How to put it all together?

 Manually

 Executive summary: “while True: Hack()”

 Interface/spec changes? Costly changes…

 Mismatches in the specs? Bugs that slipped through the cracks?
“Oh well, let’s patch in orbit”

 Stick to one vendor - “one tool can rule them all”

 Actually, no - it can’t.

 There’s no silver bullet that addresses all domains and all their requirements.

 Develop each functional block with the appropriate tool for the job

 Use TASTE to perfectly “glue” all the pieces together - automatically.

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 11

The mile-high view of the workflow

 Describe your interfaces’ parameter types in ASN.1

 Describe the interfaces and the deployment of the functional blocks in AADL

 TASTE will then generate skeletons for your functional blocks

 Fill-in the skeletons and verify the implementation at model level

 TASTE finally builds the system automatically.

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 12

Interface View

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 13

Deployment View

 Choose your deployment
nodes

 Bind your functional blocks
inside them

 Connect them via devices
and buses, and configure
what each message will use
to “travel across”

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 14

DataView – ASN.1, an ITU standard

 Let’s look at one of the TASTE technologies in depth: the data modelling.

 ASN.1 is a good standard – one that works so well you forget about it
(it fades into the background)

 Your phone uses it every minute, your bank’s ATM every time you take out some
cash, your browser every time you visit an HTTPS site...

 So describe your interfaces’ messages in ASN.1 – and get optimal encoders and
decoders in C or Ada by ASN1SCC ; our Space Certifiable Compiler.

 But what does that mean, in practice?

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 15

ASN1SCC in action

 Write the description of your
messages in an abstract form

 That is, you don’t specify
“int16_t”, “uint32_t”, little
endian, big endian...

 These details are taken care of
by the ASN.1 compiler…

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 16

ASN1SCC in action

 ...that processes your grammar

 creates an Abstract Syntax Tree
(AST) describing all the type
information, and then uses it;

 …to generate encoders and
decoders for each one of
the message types

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 17

ASN1SCC in action

 The encoders and decoders look like this...

 They will verify all your message constraints, and report specific errors…

 The amount of memory necessary to statically reserve enough space for all
possible configurations of your message types is also provided:

 ...as are the automatically generated test cases - that exercise these encoders
and decoders at 100% statement and branch coverage:

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 18

ASN1SCC in action

 ...so you get all necessary combina-
tions of values put in your fields,
the messages are encoded to a
stream and decoded back, the
content is then checked to make sure
it remained as-is through the round-trip –
and in so doing, all lines of the encoders
and decoders are also fully exercised.

 That’s a lot of work! That you’d
otherwise be forced to do yourself.

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 19

ASN1SCC in action

 When targeting Ada, the generated code includes SPARK contracts:

...so by using the proper tools you can prove that your usage scenarios (i.e. the caller
code) will e.g. never overflow their buffers

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 20

ASN1SCC in action

 Bulletproof message marshalling

 The compiler is maintained in the open (https://goo.gl/76Yo7R)

 ...is already used in missions (3 use cases already)

 And we’ve barely scratched the surface...

 ...because when you have an abstract model, you find you can do more things.
For example, space standards require formal documentation...

https://goo.gl/76Yo7R

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 21

ASN1SCC in action

... parts of which you can generate automatically: e.g. from this grammar...

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 22

ASN1SCC in action

...you get this Interface Control Document (ICD)…

...correct by construction - and always in sync with your design.

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 23

Models – the power behind TASTE

 Having access to the underlying models, enables many things

 Far more impressive things than just serializing data…

 Models extend to the behavioural logic of the functional blocks.

 e.g. if you are using state machines, you can describe them in SDL; and TASTE
offers OpenGEODE - an open-source (https://goo.gl/JsXv6Z) SDL editor.

https://goo.gl/JsXv6Z

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 24

Models – the power behind TASTE

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 25

“Glueing” functional blocks together

 Or perhaps your Guidance Navigation and Control (GNC) people design and verify
with Simulink (or SCADE) - and then autogenerate the related code…

 In which case, TASTE can create the skeletons for your design…

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 26

“Glueing” functional blocks together

 ...and can also create the code that will translate the data at run-time between
the C structures generated by Simulink’s Embedded Coder and the ones
generated by ASN1SCC

 And since TASTE can do this for quite a number of modelling tools and languages,
this means your Simulink / SCADE block can now “speak” to the outside world at
zero integration cost

 Your types, your interfaces, your integration code, they all “magically” become
available – because there’s an underlying ASN.1 model describing the data, and
an underlying AADL model describing the interfaces

 MDE power – use the best tool for each job, and then “glue” it all together.

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 27

Space Robotics (video)

Enough theory… here’s a TASTE-y Space Rover:
(in this video, the Robotics Division is using TASTE to control EXOTER)

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 28

Graphical User Interfaces

 If you specify “GUI”
as the implementation
language of a
functional block...

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 29

Graphical User Interfaces

 ...you will then get an
automatically generated “Ground”
application - that allows you to
graphically call all the Required
interfaces (i.e. fill-in the
parameters and invoke the
telecommands) and also monitor
the calls being done to its
Provided interfaces
(i.e. the telemetry – as well as
plot/monitor any field inside it
in real-time).

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 30

Graphical User Interfaces

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 31

Graphical User Interfaces (video)

A video recorded during the ESA
Open Days last October – where you
can see TASTE-y Quadcopters being
flown and controlled via TASTE GUIs.

The scenario reproduced is that of
the PROBA3 mission – flying in
formation, with one copter
“shielding” the other from the “sun”
(just as the real mission will do, to
allow examining the Sun’s corona)

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 32

Graphical User Interfaces

 In so doing, the GUI can also record the exchanges in a standard form - an MSC (a
Message Sequence Chart). This will include all the exchanged TM/TC
information.

 The recorded .msc files can then be processed by a TASTE code generator that
translates them to Python scripts...

 ...that can be used for automated testing - basically, record a scenario, and run
the Python script inside your Continuous Integration (Jenkins, etc) to make sure
what you just enacted indeed stays functional during implementation of the
system (easy regression checking)

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 33

Python and uPython

 Speaking of Python test scripts – not only do we expose all the necessary
bindings that allow you to “speak” to a TASTE-generated system at run-time...

 ...we also support MicroPython as one of the implementation languages.

 If you mark a functional block as implemented in MicroPython, then a qualified
executor is bundled inside the generated binary - and will execute MicroPython
bytecode that is compiled from your functional block’s Python code

 Which means you can do your On-Board control procedures with this – and
generally speaking, even “ship” bytecode at run-time

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 34

RTEMS

 The environments where TASTE binaries are meant to execute in, need to obey
very strict verification and execution semantics - they need to be qualified for
space flight.

 So in addition to Linux, TASTE specifically targets RTEMS – the OS used (and
qualified) in many of our missions

 That is itself an evolving target – which is why the “mundane”
part of automatic updates is very important: we need to keep
track of the RTEMS mainline, build the appropriate cross-compilers
for our targets (Leon2, Leon3, GR712RC, GR740) and bundle them
in TASTE environments with minimal fuss.

And we do – just execute “Update-TASTE.sh”! - Remember: “keep it real”.

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 35

Many more features…

 When writing your test scripts, it would sure be nice if you could save and restore
the related messages inside a relational database... and indeed you can: We create
SQL DDL statements for setting up of your DB, and we also support major DB
engines (PostgreSQL, MySQL, etc) via SQLAlchemy

 We support FPGAs and VHDL: when specifying
a functional block as a HW block, TASTE will then
create both the VHDL skeletons as well as a
complete device driver that speaks to the synthesized
device at run-time - marshalling all input and output
parameters both ways.

Watch this hands-on video creating a TASTE-y VHDL design: https://goo.gl/XYwWRn

https://goo.gl/XYwWRn

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 36

Real use cases – and not just in space

CHEOPS: ASN.1 and ASN1SCC is used by DLR to generate
the message encoders and decoders for the application SW.

PROBA3: the payload onboard and ground segments make extensive
use of the Data Modelling Tools from TASTE, for both code and
documentation purposes.

FBK uses TASTE in operational projects that are not funded by ESA:

- Contest (solar/stirling cogeneration; modeling, deployment)
- GreenerSys (single-unit Organic Flow-Batteries; model, deployment)
- GreenerNet (grid of OFBs; modeling), etc.

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 37

Are we done? (technical challenges)

 We have more work to do.

 The maturity of TASTE’s individual pieces varies.

 For some of the pieces we’re still at the “first make it work” stage – we need to
move them to the “make it work right” and “make it work fast” stages.

 More modelling tools, techniques and technologies keep coming up. We want to
take advantage of them and merge them in – but remember, we need to “keep it
real”

 This is not an academic exercise! We want TASTE to become the backbone of our
missions.

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 38

Are we done? (non-technical challenges)

 Very few people trust these technologies enough to try them out

 Education on MBSE is lacking – nowadays, few new engineers know about it

 Proprietary new languages pop up all the time => people lose focus

 Lots of legacy code and processes are in place in the industry

 For companies, unproven short-term ROI is a risk

 Many decision-making people think of this as a "religious" debate

...because they don’t know the impact it can have.

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 39

Join us!

The world is seemingly reverting to “hack it and ship it”, with all the resulting chaos
from malfunctioning, full of holes, exploitable SW.

Website:

https://taste.tools/

https://taste.tools/

ESA UNCLASSIFIED - For Official Use MeTRiD | 15/04/2018 | Slide 40

Questions?

