Formal Verification of Usage Models: A Case Study of UseCON Using TLA+

Antonios Gouglidis1
1School of Computing and Communications Lancaster University Lancaster, United Kingdom

Christos Grompanopoulos2
2Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece

Anastasia Mavridou3
3Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

Satellite workshop of ETAPS 2018 — 15th of April 2018, Thessaloniki, Greece
Outline

• Motivation

• The UseCON model – specifications

• Verification and performance evaluation

• Discussion
Motivation – Access control

- Access Control Policies
- Access Control Models
- Access Control Mechanisms

DAC | MAC | RBAC | ABAC / UCON
Motivation - Verification

Verification of AC Policies
e.g., NIST SP 800-192*

Use-based Usage Control (UseCON)

Definitions

• Entities

\[E \triangleq S \cup O \cup A \]

• Attributes function

\[att_i: X \mapsto RangeAtt_i \]

• Entity specification

\[e_i \triangleq [id(e_i) = k, att_1(e_i) = l_1, \ldots, att_n(e_i) = l_n] \]

\[\forall e_i, e_j \in E: id(e_i) = id(e_j) \iff e_i = e_j \]
Definitions – Use

• A use u represents a record

$$u \triangleq [sid(u) = s. id, oid(u) = o. id, aid(u) = a. id, st(u) = state, att_1(u) = v_1, \ldots, att_n(u) = v_n]$$
Decision making

• Policies
 \[Policy_Rule(s, o, a, S, O, A) \triangleq \text{expression}(e_1, \ldots, e_n) \]
 e.g., \(p = p_1 \land p_2 \ldots \land p_n \)

• Type of policies
 • Direct:
 \[e_i \in \{s, o, a\} \text{ or } e_i \triangleq l \]
 • Indirect:
 \[e_i \triangleq \text{CHOOSE } x \in E: \text{select}(x, s, o, a, l) \]
 • Complex indirect:
 \[e_i \triangleq \text{aggregation}([e \in E: \text{select}(e)]) \]
Transition system – Pre model

\[\text{Init} \triangleq U = \{\} \]

\[\text{Next} \triangleq \text{Request} \lor \text{preEvaluate} \lor \text{Complete} \]
Transition system – Pre model - Actions

Request ≡ ∃u ∈ (S × A × O):
(∀x ∈ U: (x.sid ≠ u[1].id ∨ x.aid ≠ u[2].id ∨ x.oid ≠ u[3].id)
∧ U' = U ∪ {createUse(u)})

CreateUse(x)
≡ [sid(x) = x[1].id, aid(x) = x[2].id, oid(x) = x[3].id,]
 state(x) = “requested”, att(x) = k
Transition system – Pre model – Actions (continued)

\[\text{preEvaluate} \triangleq \exists u \in U: \]
\[\land u.\text{state} = \text{“requested”} \]
\[\land \text{IF(PolicyRule)} \]
\[\text{THEN} \]
\[U' = (\{U \setminus \{u\}\} \cup \{\text{preUpdate}(u)\}) \]
\[\text{ELSE} \]
\[U' = (\{U \setminus \{u\}\} \cup \{\text{denUpdate}(u)\}) \]

\[\text{preUpdate} \triangleq [u \EXCEPT !.\text{st} = \text{“activated”}] \]

\[\text{denUpdate} \triangleq [u \EXCEPT !.\text{st} = \text{“denied”}] \]
Transition system – Pre model – Actions (continued)

\[\text{Complete} \triangleq \exists u \in U: \]
\[\quad \land u.\text{state} = \text{“activated”} \]
\[\quad \land U' = (U\setminus\{u\}) \cup \{\text{comUpdate}(u)\} \]

\[\text{comUpdate} \triangleq [u \text{ EXCEPT } !.st = \text{“completed”}] \]
Transition system – Ongoing model

\[\text{Init} \triangleq U = \{ \} \]

\[\text{Next} \triangleq \text{Request} \lor \text{Activate} \lor \text{onEvaluate} \lor \text{Complete} \]
Transition system – Ongoing model - Actions

\[Activate \triangleq \exists u \in U: \]
\[\land u.\text{state} = \text{“requested”} \]
\[\land U' = (\{U\setminus\{u\}\}) \cup \{\text{preUpdate}(u)\} \]

\[onEvaluate \triangleq \exists u \in U: \]
\[\land u.\text{state} = \text{“activated”} \]
\[\land IF(\text{PolicyRule}) \]
\[\text{THEN} \]
\[U' = (\{U\setminus\{u\}\}) \cup \{\text{onUpdate}(u)\} \]
\[\text{ELSE} \]
\[U' = (\{U\setminus\{u\}\}) \cup \{\text{stopUpdate}(u)\} \]
Verification – Type Correctness

- Assigned values originate from a specific set

\[\text{TypeCorrectness} \triangleq U \subseteq \text{Uses} \]

\[\text{SubjectIDs} \triangleq \{s.\text{id}: s \in S\} \]

\[\text{ObjectId}s \triangleq \{o.\text{id}: o \in O\} \]

\[\text{ActionIDs} \triangleq \{a.\text{id}: a \in A\} \]

\[\text{USTATE} \triangleq \{\text{requested, activated, denied, stopped, completed}\} \]
Verification – Violation of safety properties

\[\text{Safety} \triangleq \Box (\exists u \in U : u.st = \text{“completed”} \implies \Box (u.st \neq \text{“requested”})) \]

<table>
<thead>
<tr>
<th></th>
<th>Current state</th>
<th>Faulty state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre model Completed</td>
<td>Completed</td>
<td>Any other state</td>
</tr>
<tr>
<td>Activated</td>
<td>Completed</td>
<td>Any other state</td>
</tr>
<tr>
<td>Denied</td>
<td>Completed</td>
<td>Any other state</td>
</tr>
<tr>
<td>Ongoing model</td>
<td>Completed</td>
<td>Any other state</td>
</tr>
<tr>
<td>Activated</td>
<td>Completed</td>
<td>Any other state</td>
</tr>
<tr>
<td>Stopped</td>
<td>Completed</td>
<td>Any other state</td>
</tr>
</tbody>
</table>
Verification – Violation of liveness properties

\[\text{Liveness} \triangleq \forall u \in U : u.st = \text{“activated”} \iff u.st = \text{“requested”} \]

<table>
<thead>
<tr>
<th>Pre model</th>
<th>Current state</th>
<th>Future state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requested</td>
<td>Activated, Denied, Completed</td>
<td></td>
</tr>
<tr>
<td>Activated</td>
<td>Completed</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ongoing model</th>
<th>Current state</th>
<th>Future state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requested</td>
<td>Activated, Completed, Stopped</td>
<td></td>
</tr>
<tr>
<td>Activated</td>
<td>Completed, Stopped</td>
<td></td>
</tr>
</tbody>
</table>
Performance evaluation

<table>
<thead>
<tr>
<th>Model</th>
<th>Uses</th>
<th>Diameter</th>
<th>States Found</th>
<th>Distinct States</th>
<th>Deadlock (sec)</th>
<th>Safety & Liveness (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>2</td>
<td>6</td>
<td>21</td>
<td>12</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>23</td>
<td>277969</td>
<td>16832</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>31</td>
<td>45533665</td>
<td>560128</td>
<td>53</td>
<td>138</td>
</tr>
<tr>
<td>Ongoing</td>
<td>2</td>
<td>7</td>
<td>33</td>
<td>16</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>25</td>
<td>367873</td>
<td>23808</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>37</td>
<td>79112449</td>
<td>1224704</td>
<td>118</td>
<td>241</td>
</tr>
</tbody>
</table>
Discussion

• Specification of UseCON use management functions in TLA+
 • Pre and Ongoing authorisation models

• Formal guarantees for ≤ 12 uses

• Future directions
 • Verification of ongoing policies
 • Investigate the application of secBIP
Thank you for your attention!