A Compositional Approach for Schedulability Analysis of Distributed Avionics Systems

Pujie Han

Thessaloniki, 15 April 2018

Background

Modeling

Approach

Case study

Integrated Modular Avionics (IMA)

- One function = Software downloaded to the modules
- Generalized integrated processing modules
- A unified high-bandwidth network

Distributed Integrated Modular Avionics (DIMA)

Features

- IMA but distributed intelligence
- I/O close to actuators and sensors
- Computation close to actuators and sensors
- COTS computers and I/O units as Modules
- Separation into integration areas
- More complex schedulability analysis

Analytical Methods

Resource Model

Task Model

Supply

Demand

Response Time Analysis

Schedulability

Expressiveness of analytical model

- Limited to simplified system behavior
- Only real-time computation constraints

Conservative assumptions

- Too many "pessimistic" worst case assumptions in modeling phase and response time analysis
- Waste of computation and communication resources
- Timing Anomalies: local worst-case ≠ global worst-case.

Related Work by Model Checking

- Reachability Analyses of Formal Models
 - Nonschedulability conditions encoded into Error states
 - Advanced Petri Nets, Linear Hybrid Automata (LHA),
 Timed Automata (TA), Stopwatch Automata (SWA)
 - Expressive to express more complex behavior
 - State space explosion
- Compositional Analyses
 - Exploit the nature of temporal isolation of partitions
 - Reduce the complexity of reachability analyses.

Isolated computation and communication analysis

- System=Computer modules + Their underlying network
 - Independent hierarchical scheduling systems
 - Network delay in the worst case.
- Challenges
 - Interactions between avionics computers are increasing
 - Each subsystem can be distributed across the whole aircraft
 - Network delay cannot be ignored in schedulability analysis
 - All communications are integrated into a unified network.

Background

Modeling

Case study

Approach

• We consider such a DIMA core system:

- ARINC-653 processing modules
- A unified AFDX network
- Two-level hierarchical scheduling
- Concrete task behavior
- Task synchronization
- Inter-partition communication via ARINC-653 ports

Schedulability Properties

Deadline of each real-time task

Communication constraints

state-space.

Our Approach Adopts:

- Modeling in UPPAAL
 - Stopwatch Automata

ARINC-653 hierarchical scheduling
Multiple real-time task types
Resource sharing
Inter-partition communications
AFDX / FC-AE network

SMC, a simulation-based approach,

avoid an exhaustive search of the

Cover the major features of a DIMA core system

Global View

Includes both computation and nunication.

Alleviating the State Space Explosion

- Combination of classic and statistical model checking
- Compositional Method.

Verify different parts of the system **separately**, conclude about the **whole** system.

Main Procedure of the Schedulability Analysis

- Encoding system into UPPAAL SWA models
- Fast falsification by UPPAAL SMC
- Strict schedulability verification by UPPAAL classic MC
- Refinement of the system configuration.

Schedulability testing in UPPAAL SMC

- Cannot guarantee schedulability but can quickly falsify non-schedulable schemes.
- Hypothesis testing:

$$Pr[<= M](<> ErrorLocation) <= \theta$$

- Schedulability Verification in Classic UPPAAL
 - Guarantee schedulability but face state-space explosion.
 - Safety property:

A[] not ErrorLocation

Global Analysis

Applied to the system with small size (Normally < 10 tasks)</p>

Compositional Analysis

- Used for larger systems(Normally > 10 tasks)
- Check each partition including its environment individually
- Combine local results to derive the global property.

How to decouple communication dependency from other partitions?

Assume-Guarantee Reasoning

Decomposition

Global property

φ: A[] not ErrrorLocation

Original Goal

$$P_1 \parallel P_2 \parallel \cdot \cdot \cdot \parallel P_n \mid = \varphi$$

Divided into n properties of Partition P_i

φ_i: A[] not ErrrorLocation_i

where φ can be written as the conjunction $\varphi_1 \land \varphi_2 \land \cdots \land \varphi_n$

■ We now have n goals

$$P_1 || P_2 || \cdot \cdot \cdot || P_n | = \phi_i, i \in \{1, 2, ..., n\}.$$

Construction of Message Interfaces

- **Message Interface**
 - An abstract model that describes the external messagesending behavior of a partition
- **Abstraction Relation ≤**
 - A_{i,j}: Partition P_i sends messages to P_i

$$P_j \leq A_{i,j}$$

- **How to Construct Message Interfaces?**
 - 1. An intricate automaton that covers all the message types?
 - 2. Modeling each message in one automaton& Composition 15

■ Construction of Message Interfaces

- Message Interface A^k_j
 - \blacksquare P_i sends msg_k to other partitions:

$$P_j \leqslant A^k_j$$

- Abstraction Compositionality of Message Interfaces
 - For any $k \in K$, if $P_j \leq A_j^k$, the composition of A_j^k satisfies

$$P_j \leqslant \prod_{k \in K} A^k_j$$

- Abstraction of a Partition
 - P_j sends all msg_k , $k \in K$ to P_i , and P_j can be replaced with

$$A_{i, j} = \prod_{k \in K} A_{i, j}^{k}$$
, where $P_{j} \leq A_{i, j}$

- **■** Construction of Message Interfaces
 - Compositionality of Message Interfaces

$$P_1 \leqslant A_1, P_2 \leqslant A_2 \Rightarrow P_1 \parallel P_2 \leqslant A_1 \parallel A_2$$

- Assumptions of the Environment of a Partition
 - Composite model that describes the environment of P_i:

$$\left\| \int_{j=1, j\neq i}^{n} A_{i,j} \right\|$$

Abstraction Relation in the Analysis of a Partition

$$P_1 || P_2 || \cdots || P_n \preceq P_i || (||_{j=1, j \neq i}^n A_{i,j})$$

Model Checking

- Schedulability Verification
 - Check n subproblems by model checking in UPPAAL:

$$= P_i \parallel (\mid \mid_{j=1, j\neq i}^n A_{i,j}) \models \varphi_i \mid i \in \{1, 2, \dots, n\}.$$

- Verification of Abstraction Relations
 - For any message interface A, create a test automaton A^T
 - Check if the Error locations of A^T are reachable in UPPAAL:

$$(P||A^T \models \neg E \Leftrightarrow A^T.Error) \implies P \preceq A$$

- Deduction
 - Property Preservation

$$P \leq Q \land Q \models \phi \Rightarrow P \models \phi$$

Apply the assume-guarantee reasoning rule:

$$P_1 \| P_2 \| \cdots \| P_n \quad \preceq \quad P_i \| \left(\left\| \prod_{j=1, j \neq i}^n A_{i,j} \right) \right.$$

$$P_i \| \left(\left\| \prod_{j=1, j \neq i}^n A_{i,j} \right) \models \varphi_i$$

$$P_1 \| P_2 \| \cdots \| P_n \models \varphi_i$$

$$P_2 \leq A_2^1, P_2 \leq A_2^2, P_3 \leq A_3^3$$

$$P_2 \leq A_2^1 || A_2^2, P_3 \leq A_3^3$$

$$P_1$$
 $\preceq P_1 ||A_2^1||A_2^2||A_3^3|$

$$P_2 \leq A_2^1 \wedge P_2 \leq A_2^2 \wedge P_3 \leq A_3^3$$

$$P_1 ||A_2^1||A_2^2||A_3^3 \models \varphi_1$$

$$P_1 || P_2 || P_3 \models \varphi_1$$

P3

Background

Approach

Modeling

Case study

Timed stopwatch automata in UPPAAL

- Scheduling layer
 - PartitionScheduler
 - TaskScheduler
- Task layer
 - PeriodicTask
 - SporadicTask
- Communication layer
 - IPTx, IPRx
 - VLinkTx, VLinkRx

Example: PartitionScheduler

Example: TaskScheduler

Background

Modeling

Case study

Approach

Statistics of This Avionics System

- 3 Core Processing Modules
- 5 ARINC-653 Partitions
- 18 periodic tasks and 4 sporadic tasks
- 4 AFDX Virtual Links
- 2 Sampling Ports and 2 Queuing Ports

			I		T		Execution Chunks					
No.	Task	Release	Offset	Jitter	Deadline	Priority					#	
							Time	Mutex	Output	Input	Ш	
		[25,25]	2	0	25	2	[0.8,1.3]	-	-	-		
		[23,23]					[0.1,0.2]	-	-	-		
	Tsk_2^I	[50,50]	3	0	50	3	[0.2,0.4]	-	Msg_1	-		
P_1	Tsk_3^I	[50,50]	3	0	50	4	[2.7,4.2]	-	-	-		
	Tsk_4^I	[50,50]	0	0	50	5	[0.1,0.2]	Mux	-	-		
	Tsk ₅ ¹	[120,∞)	0	0	120	6	[0.6,0.9]	-	-	-		
	1365	[120,00)	V	U	120	6	[0.1,0.2]	Mux_1^1	-	-		
	Tsk_1^2	[50,50]	0	0.5	50	2	[1.9,3.0]	-	-	-	Ñ	
	Tsk_2^2	[50,50]	2	0	50	3	[0.7,1.1]	-	Msg ₂	-	1	
P ₂	Tsk ²	[100,100]	0	0	100	4	[0.1,0.2]	Mux_1^2	-	-	1	
ll i	Tsk ₄ ² [100,∞)	(0011	10	10 0	100	5	[0.8,1.3]	-	-	-	1	
		[100,∞)	100,∞) 10				[0.2,0.3]	Mux_1^2	-	-	1	
Ī	Tsk ³	[25,25]	0	0.5	25	2	[0.5,0.8]	-	-	Msg_1	Ĭ	
	Tsk3	[50,50]	0	0	50	3	[0.7,1.1]	-	-	Msg ₂	i	
P ₃	Tsk3	[50,50]	0	0	50	4	[1.0,1.6]	-	-	Msg ₃	1	
	Tsk_4^3 [100, ∞)) 11	0	100	5	[0.7,1.0]	-	-	-	1		
		[100,∞)	11	0	100	3	[0.1,0.3]	-	-	-	Ĭ	
	Tsk ⁴	[25,25]	3	0.2	25	2	[0.7,1.2]	-	-	-	Ĭ.	
	Tsk ⁴	[50,50]	5	0	50	3	[1.2,1.9]	-	Msg ₃	Msg_1	1	
P ₄	Tsk ⁴	[50,50]	25	0	50	4	[0.1,0.2]	-	-	Msg ₄	1	
	Tsk4	[100,100]	11	0	100	5	[0.7,1.1]	-	-	-	H	
	Tsk ₅ ⁴	[200,200]	13	0	200	6	[3.7,5.8]	-	-	-	1	
P ₅	Tsk ⁵	[50,50]	0	0.3	50	1	[0.7,1.1]	-	-	Msg_1	Ĭ	
	Tsk_2^2	[50,50]	2	0	50	2	[1.2,1.9]	-	Msg ₄	Msg ₂	i i	
	Tsk ₃ ⁵	2 0 1 1			200	3	[0.4,0.6]	-	-	-	Ħ.	
			200] 0	0			[0.2,0.3]	Mux_1^5	-	-	t	
	Tsk ₄ ⁵	t ₄ ⁵ [200,∞)			200		[1.4,2.2]	- '	-	-	1	
			[200,∞)	[200,∞)	14	0	200	4	[0.1,0.2]	Mux_1^5	-	-
					l		(,)				ш	

Global analysis 22 task processes

VS

Compositional analysis ≤ 5 task processes

Source: 2013 Carnevali, Pinzuti & Vicario, Compositional verification for hierarchical scheduling of real-time systems.

2009 Easwaran, Lee, Sokolsky & Vestal, A compositional scheduling 25 framework for digital avionics systems

Partition Schedule and AFDX Configuration

- Partition Schedule
 - 5 Disjoint Partition Windows

To make a comparison, keep the temporal order of the schedule in [2013 Carnevali] and [2009 Easwaran].

Message	Length	VL	BAG	L_{max}	Source	Destinations
Msg_1	306	V_1	8	200	P_1	P_3, P_4, P_5
Msg_2	953	V_2	16	1000	P_2	P_{3}, P_{5}
Msg_3	453	V_3	32	500	P_4	P_3
Msg_4	153	V_4	32	200	P_5	P_4

■ Experiment Results

■ The Experiment Results (Result), Execution Time (Time/sec.) and Memory Usage (Mem/MB)

	M	IC	SMC			
No.	Result	Time	Mem	Result	Time	Mem
$\overline{P_1}$	Yes	7.35	141			
P_2	Yes	1.02	45			
P_3	Maynot	57.84	563	No	2.67	53
P_4	Yes	0.83	45	\		
<i>P</i> ₅	Yes	33.27	526			

A Counter Example

■ Improved Partition Schedule

Experiment Results

The Experiment Results (Result), Execution Time (Time/sec.) and Memory Usage (Mem/MB)

		1	MC	SMC			
	No.	Result	Time	Mem	Result	Time	Mem
Ī	P_1	Yes	6.07	101			
	P_2	Yes	1.09	49	\		
	P_3	Yes	437.99	3150	Yes	77.58	53
	P_4	Yes	0.88	43			
	<i>P</i> ₅	Yes	179.25	2078			

This Approach:

- Modeling DIMA systems in UPPAAL
- Modeling and analysis in a global view
- Combination of classic and statistical model checking
- Application of compositional method.

谢谢聆听!

Thanks for listening!

