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Disentangling Embedding Vectors for
Controllable Facial Video Generation

Anonymous Author(s)

ABSTRACT

The task of editing video aims to control the content whilst gen-
erating realistic and coherent videos. The embedding vectors of
an encoding-decoding architecture can be manipulated to create
novel videos with certain characteristics, but they are typically
entangled, making editing difficult and generalization weak. In
this paper, we propose a novel vision transformer architecture and
contrastive training regime for facial video generation and editing.
Our model is able to disentangle embedding vectors, which yields
embeddings with semantic interpretations. This allows for manipu-
lation of videos in a direct and intuitive manner. We show that our
model is effective for facial video editing. This has many potential
applications in the animation, gaming, and video editing industries.
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1 INTRODUCTION

Video content editing is a challenging task, with many applications
in the animation and gaming industries. One approach is to encode
each frame, manipulate the encoding and then decode the frame to
produce novel videos. However, the embedding vectors (or latent
codes) are typically entangled, meaning that the axes of the vec-
tors do not have clear semantic interpretations. This entanglement
makes editing difficult and generalization to new scenarios weaker.

This paper proposes a novel contrastive training approach to
disentangle embedding vectors, and demonstrates the effectiveness
of this approach when applied to facial video editing.

2 METHODOLOGY
2.1 Model Architecture

In recent years, vision transformers (ViTs), [Dosovitskiy et al. 2020]
have achieved state-of-the-art results in many image processing
and vision tasks, such as image classification, object detection, and
image segmentation. ViTs are particularly well-suited for video
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generation, as they can learn long-range dependencies and spatial-
temporal contexts in videos. In this paper, we use a vision trans-
former architecture for video generation. Our architecture is based
on the following key components:

e A spatial transformer encoder to learn spatial features from
each frame in the video.

o A spatial transformer decoder to generate the output video
frame by frame.

e A temporal transformer to learn temporal dynamics.

o A latent code editor to edit the embedding representation
of the video before decoding.

Our spatial transformer encoder is a standard ViT encoder, which
divides each frame into 32 X 32 X 3 patches mapped onto 128-
dimensional vectors and then uses self-attention to learn spatial
features from these patches. Specifically, we have a 10-layer 8-
headed transformer to perform encoding, and each of the patches
uses additive position encoding. We adopt layer normalisation and
use a 0.1 dropout during training to improve generalisation and
help training.

Our decoder has the same ViT architecture as the spatial en-
coder with a 2-layer feed-forward network to cast the latent vector
into image space. Note that as we want each dimension of our em-
bedding vector to carry independent semantic information, we do
not use dropout on the first layer of this decoder, as it encourages
redundancy in the representation.

The temporal transformer works on the embedding vectors pro-
duced by the spatial encoder, generating vectors in the same space.
As the present work focuses on the disentangling and is orthog-
onal to the temporal prediction, we will not detail the temporal
transformer further.

The latent code editor simply maps each user action onto one
specific dimension of the embedding vector before being decoded,
and again is not the focus of this current work.

2.2 Training

The combined architecture is trained to minimize the reconstruction
error between the generated video and the ground-truth video.
Specifically, we use a SSIM similarity metric [Wang et al. 2004] to
measure the reconstruction error, modified to emphasize the luma:

SSIM(image;g b, imagegg b) + SSIM(image? ey, imagegmy)

A proprietary database of around 400 hours of video footage is used,
with both natural conversational recordings as well as recordings of
isolated facial movements. Heads are tracked and faces are extracted
and normalized.

During training, contrastive learning [Chen et al. 2020] is applied.
The recordings of isolated facial movements are used to disentangle
the embeddings by constraining the model to associate only a single
dimension of the embedding vector with each facial movement.
Specifically, pairs of images from the same motion are presented
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