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Disentangling Embedding Vectors for
Controllable Facial Video Generation

Anonymous Author(s)

ABSTRACT
The task of editing video aims to control the content whilst gen-
erating realistic and coherent videos. The embedding vectors of
an encoding-decoding architecture can be manipulated to create
novel videos with certain characteristics, but they are typically
entangled, making editing difficult and generalization weak. In
this paper, we propose a novel vision transformer architecture and
contrastive training regime for facial video generation and editing.
Our model is able to disentangle embedding vectors, which yields
embeddings with semantic interpretations. This allows for manipu-
lation of videos in a direct and intuitive manner. We show that our
model is effective for facial video editing. This has many potential
applications in the animation, gaming, and video editing industries.
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1 INTRODUCTION
Video content editing is a challenging task, with many applications
in the animation and gaming industries. One approach is to encode
each frame, manipulate the encoding and then decode the frame to
produce novel videos. However, the embedding vectors (or latent
codes) are typically entangled, meaning that the axes of the vec-
tors do not have clear semantic interpretations. This entanglement
makes editing difficult and generalization to new scenarios weaker.

This paper proposes a novel contrastive training approach to
disentangle embedding vectors, and demonstrates the effectiveness
of this approach when applied to facial video editing.

2 METHODOLOGY
2.1 Model Architecture
In recent years, vision transformers (ViTs), [Dosovitskiy et al. 2020]
have achieved state-of-the-art results in many image processing
and vision tasks, such as image classification, object detection, and
image segmentation. ViTs are particularly well-suited for video
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generation, as they can learn long-range dependencies and spatial-
temporal contexts in videos. In this paper, we use a vision trans-
former architecture for video generation. Our architecture is based
on the following key components:

• A spatial transformer encoder to learn spatial features from
each frame in the video.

• A spatial transformer decoder to generate the output video
frame by frame.

• A temporal transformer to learn temporal dynamics.
• A latent code editor to edit the embedding representation

of the video before decoding.
Our spatial transformer encoder is a standard ViT encoder, which

divides each frame into 32 × 32 × 3 patches mapped onto 128-
dimensional vectors and then uses self-attention to learn spatial
features from these patches. Specifically, we have a 10-layer 8-
headed transformer to perform encoding, and each of the patches
uses additive position encoding. We adopt layer normalisation and
use a 0.1 dropout during training to improve generalisation and
help training.

Our decoder has the same ViT architecture as the spatial en-
coder with a 2-layer feed-forward network to cast the latent vector
into image space. Note that as we want each dimension of our em-
bedding vector to carry independent semantic information, we do
not use dropout on the first layer of this decoder, as it encourages
redundancy in the representation.

The temporal transformer works on the embedding vectors pro-
duced by the spatial encoder, generating vectors in the same space.
As the present work focuses on the disentangling and is orthog-
onal to the temporal prediction, we will not detail the temporal
transformer further.

The latent code editor simply maps each user action onto one
specific dimension of the embedding vector before being decoded,
and again is not the focus of this current work.

2.2 Training
The combined architecture is trained tominimize the reconstruction
error between the generated video and the ground-truth video.
Specifically, we use a SSIM similarity metric [Wang et al. 2004] to
measure the reconstruction error, modified to emphasize the luma:

SSIM(image𝑟𝑔𝑏1 , image𝑟𝑔𝑏2 ) + SSIM(image𝑔𝑟𝑎𝑦1 , image𝑔𝑟𝑎𝑦2 )

A proprietary database of around 400 hours of video footage is used,
with both natural conversational recordings as well as recordings of
isolated facial movements. Heads are tracked and faces are extracted
and normalized.

During training, contrastive learning [Chen et al. 2020] is applied.
The recordings of isolated facial movements are used to disentangle
the embeddings by constraining the model to associate only a single
dimension of the embedding vector with each facial movement.
Specifically, pairs of images from the same motion are presented
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to the encoder. The embedding vectors 𝑒1 and 𝑒2 are averaged in
all but a single dimension 𝑖 to form 𝑒1 and 𝑒2.1 The 𝑒1 is presented
to the decoder and the reconstruction error to the first image is
minimised and similarly with 𝑒2 and the second image. The mean-
squared error between 𝑒1 and 𝑒2 in all dimensions except the 𝑖th
dimension is added to the loss function.2 In this way, the decoder is
encouraged to associate only the 𝑖th dimension with the associated
motion, and the encoder is encouraged to create a representation
where only the 𝑖th dimension varies.

In some cases the motion cannot be adequately described using
a single attribute. In this case, we repeat the contrastive learn-
ing outlined above, but allowing variability on a small number of
attributes. Principal components analysis is performed and this
process is repeated along each of the principal components.

3 RESULTS AND DISCUSSION

Figure 1: Editing tasks showing isolated yet natural manipu-
lations of facial images.

Figures 1 and 2 show the results of editing tasks using the pro-
posed model. Images in the top row are edited by changing a single
dimension to produce the images in the middle row. Green arrows
show the direction of operation of the change due in the corre-
sponding dimension. The bottom row shows the top row images in
black and white, with the pixel-wise differences between the two
images superimposed in red.

Only regions of the image that are directly associated with the
corresponding edit are effected: the rest of the face is almost com-
pletely unchanged. Nonetheless, the edits are still natural and con-
nected, for example, in Figure 1 note (1) the deepening of the na-
solabial fold with the widening of a corner of the mouth, and in
Figure 2, note (2) the strengthening of the glabellar lines with an
eyebrow constriction and (3) the movement of the nasolablial folds
and the moustache with a nostril flare.

Figure 2 depicts our 3 partial failure cases where our proposed
model is unable to completely isolate the movement to a single con-
trol. Whilst movement is constrained effectively to the appropriate
region, it is still bilaterally ambiguous, meaning that for these 3
features, we are not able to be control them individually but only in
tandem on the left and right. Applying lateral masks to the regions
should be able to overcome this, but this is left for future work.
1𝑒1 = 𝛿 ( 𝑗 ≠ 𝑖 ) 12 (𝑒1 + 𝑒2 ) + 𝛿 ( 𝑗 = 𝑖 )𝑒1 . Similarly for 𝑒2 .
2𝐸 =

∑
𝑗≠𝑖 (𝑒

( 𝑗 )
1 − 𝑒

( 𝑗 )
2 )2

Figure 2: Brow constriction, eyelid closing and nostril flaring
are not fully disambiguated: motion is only able to be con-
trolled bilaterally.

3.1 Supplementary Video
Supplementary video material demonstrates that our proposed
model is effective for both facial video generation and facial video
editing. In particular, it shows that the proposed model:

• can generate coherent facial videos which capture enough
of the motion to yield high fidelity movement,

• separates motion information from the subject’s appear-
ance

• allows for easily real-time manipulation of individual fea-
tures in a direct and intuitive manner, and

• generalises feature manipulation over poses and expres-
sions.

4 CONCLUSION
This paper has proposed a novel vision transformer architecture
and training regime for facial video generation and editing. Our
model is based on a contrastive training approach to disentangle em-
bedding vectors. We have shown that our model yields embeddings
with isolated semantic interpretations allowing ease of editing, yet
maintaining connected natural motions.

5 FUTUREWORK
These preliminary results focus on low-resolution videos. Future
work will focus on extending the model to generate high-resolution
and high-quality videos, and bilateral disambiguation along the 3
ambiguous dimensions.
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