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ABSTRACT
In recent years, there has been a surge in studies on Human and
Autonomous Agent (AA) teams (HAT) within Human-Computer
Interaction (HCI). However, the current literature lacks unbiased
evaluations of applied AA or AI teammates compared to human
counterparts in HAT settings. Existing evaluations are often influ-
enced by participants’ prior experiences and expectations, rather
than providing a current assessment. To address this gap, we con-
ducted a single-blind preliminary study, assessing the perceptions
of 10 participants in Human-Human and Human-AA teams using
the Paladins Multiplayer Online Games (MPOG) platform.

CCS CONCEPTS
• Human-centered computing → Collaborative and social
computing.

KEYWORDS
Human-AA team, Human-AI team, Human-computer interaction,
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1 INTRODUCTION
In the past few years, the HCI community has seen a massive in-
crease in the development and implementation of AI or AA as
teammates in HATs [11, 19, 27, 29, 30]. In these collaborative ap-
plications, the teams are often defined as consisting of at least one
human cooperating with at least one AA [13]. The AA in such
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teams is a computer entity having a partial or high level of self-
governance in terms of decision-making, adaptation, and communi-
cation [5, 15, 17]. It also performs shared tasks to achieve the same
valued goals [3, 13, 22]. Existing perception studies, involving AI
teammates, have focused on expectations [32], receptiveness and
acceptance [1, 6, 24], expertise level [31], team cognition [14, 25],
preference of learned or rule based agent [28], adaptive capabilities
of AI affecting performance and cohesiveness [8], decision making
strategy affecting team-efficacy [16], trust [2, 9], trust and ethics
[26] and others.

In these studies, except [28], the participants are aware of their
teammate being an AA [1, 14, 16, 25, 31] or surveys and interviews
are conducted to collect thoughts on past and future aspects of
an AA as a teammate [2, 6, 8, 9, 24, 26]. In both the scenarios, the
studies and their outcomes are immensely influenced by the par-
ticipants’ perceptual history of what they thought AA teammates
were and their future expectations on how they are supposed to
be [6, 24, 32]. They contribute in paving the path for development
and enhancement of future AA or AI teammates. However, the con-
temporary literature does not address the evaluation of the already
applied AA or AI teammates when compared to a human teammate
in the MPOG, or other areas. Further, any such comparisons made
are biased by participants’ past perception and future expectations
of AA or AI teammates rather than the participants giving opinion
of the current application. This exhibits a shortcoming in valida-
tion of the progress of application of AA or AI as a teammate in
comparison to the human teammate.

2 PROPOSED STUDY DESIGN
We designed a within subject study using Paladins, a first per-
son shooting (FPS) game and a semi-popular MPOG, to simulate
two sessions of dyads of human-human (HH) teams and human-
AA (HA) teams with participants being unaware of who or what
their teammates were. Paladins’ inbuilt AA was used for the ex-
periment. Paladins is played through representation of players as
avatar, which support in activating embodiment and presence psy-
chology to facilitate trust [21] and also enables the AA teammate
to be viewed as a team member and not as a tool [20] because it
embodies a similar avatarized form as the human participants, ex-
hibits interdependence [18] and can independently pursue courses
of action through self governance [12]. Since, the participants are
not aware or informed of who or what their teammates were, the
opinions on their team, teammates and themselves would pertain
purely on the game experience with their teammate.
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2.1 Experiment Environment
We used Paladins for our experiment, creating four unique Steam
accounts for gameplay. Each team had two selected hero avatars:
Viktor and Ash. Custom game sessions were initiated using the
"PLAY-CUSTOM" option with the "Onslaught" game type, chosen
for its simplicity. Team size was set at "2 v 2" in the North American
region, with "Open Draft" draft mode, no spectators, and disabled
"Store" and "Loadouts" features. We selected the "Foreman’s Rise"
arena for its simplicity. A password was assigned to each session.
To introduce the autonomous agent, researchers joined the game
session briefly before exiting, enabling the level 10 autonomous
agent to take over.

2.2 Experiment Design
Our within-subject experiment involved a 10-minute tutorial in
Paladins for all participants, followed by two 10-minute gameplay
sessions, or until one team collected all tickets to win. Participants
were unaware of their teammate’s identity in both sessions. To
counterbalance within-subject effects, we alternated human and AA
teammates. Each session consisted of two teams of two players. In
the non-experimental side, both players were humans with Viktor
and Ash avatars. In the experimental side, all participants used
Viktor avatars, and their teammate, in both human and AA sessions,
used the Ash avatar (Figure 1). The session with a human teammate
served as our baseline, while the session with the AA teammate
was our intervention.

Figure 1: A schematic diagram showing the details about the
HH and HA sessions.

2.3 Data Collection
Following the sessions, participants filled out a gameplay experi-
ence questionnaire and a team experience questionnaire [10]. Both
included Likert scale and NASA Task Load Index (TLX) surveys [7].
Gameplay sessions were screen-recorded for analysis, capturing
damage and shielding scores for participants and their teammates.
A 10-15 minute interview gathered insights into participants’ over-
all experiences, perceptions of teammates, game interface, controls,
and team-related factors like communication, performance, shared
mental models, and situation awareness. Two main metric types
assessed the HH and HA teams: objective performance metrics (e.g.,
damage and shielding scores) and subjective or human-centered
metrics (e.g., situation awareness, workload, interdependence). Ob-
jective metrics are task-dependent and primary for human-AA
teams. Subjective metrics consider human-centered factors and
provide quantitative insights, supporting a deeper understanding
of perceptions.

2.4 Research Questions
Guided by our motivation and experiment design, our study ad-
dressed the following research questions; RQ1: What perceptions
emerge from the game experience and performance in HH and HA
teams in Paladins, without knowledge of their teammate’s identity?
RQ1.a: Specifically, how are cognitive load, performance, effort,
frustration, interdependence, and situation awareness perceived?
RQ2: How do these aspects contribute to the formed perceptions?

3 PILOT STUDY AND CONCLUSION
An initial data gathering involved 10 participants (1 female) [23].
The age range of these participants spanned from 18 to 32 years
(M=24.6, SD=4.65).

Such a design was implemented to find out the perceptions
formed in terms of cognitive load, performance, effort, frustra-
tion, interdependence and situation awareness, in the given con-
dition. These aspects contributed to the perceptions the partici-
pants formed, during the gameplay experience with their assigned
teammate. These perceptions were self-reported by the partici-
pants through the Likert scale and NASA TLX surveys. The results
show that cognitive load had a negative impact on the experience,
whereas low effort and frustration level, with a higher interde-
pendence and situational awareness when with AA teammates
showed positive experience. The key results in this study are as
follows- (1) participants felt higher mental load and temporal de-
mand when teamed up with AA teammates, (2) participants re-
ported the same level of mental effort for both the sessions (human-
human and human-AA), (3) participants expressed more frustration
when teamedwith a human, (4) participants felt that they performed
better when teamed with an AA, (5) participants perceived that the
AA teammate wasmore affected by them than the human teammate,
and (6) participants reported higher perceived self-awareness and
higher perceived teammate’s awareness, when with AA teammates.

The current study stands out for its experiment design, wherein,
the participants were blinded regarding the details of their team-
mate. This step up, unlike the previous works in this area, ensured
unbiased perception of the participants whilst evaluating their
teammate, irrespective of whether the teammate was an AA or a
human. Based on this study, an interesting question can be raised
about previous research works - for instance, would Demir et al.
[4] obtain similar results (higher performance of the AA even with
instabilities in coordination), if Demir et al. [4] were to conduct
their same study with an exception of participants being unaware
of their teammate, human or AA.

It would be worthwhile to re-conduct the study with a larger and
more representative sample size and verify if the same outcome is
obtained. In addition, the experiment design could be expanded to
add another condition to have a 2 by 2 mixed-method study with
one variable being characteristic of teammate (human and AA) and
another variable could be teammate’s visibility (blinded and aware),
that is, HH and HA team and participant not aware of who/what
their teammate is versus HH and HA team and participant aware
of who/what their teammate is. This could enable validation of
the outcome within the contextual area and could possibly pro-
vide significant results which could be very beneficial to the HCI
community.
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