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A set of Direct Numerical Simulations in a heated square cavity invoking the Boussinesq approximation
was carried out at Rayleigh numbers ranging between 108 and 1011 and Prandtl number of 0.71. The three
dimensional configurations studied represent an infinitely deep cavity, thus corresponding to a statisti-
cally two-dimensional flow with an imposed temperature varying linearly on the horizontal walls. In
such configuration, the Rayleigh number, and therefore turbulence intensity, is the highest ever reached.
The database presented herein includes first and second order statistical moments as well as full
Reynolds stresses, turbulent heat fluxes and temperature variance budgets. The latter are extremely rare
for buoyancy driven flow configurations and are therefore believed to be valuable to the turbulence mod-
elling community. The analysis of the data collected thus focuses on aspects of relevance to the Reynolds
averaged modelling of such flows. The effect of increasing the Rayleigh number on the flow statistics,
Nusselt number predictions and thermal stratification is investigated. The most important aspect influ-
encing the behaviour of the budgets was found to be the displacement of the position of the maximum
of temperature variance towards the inner zone of the boundary layer. Such difference in behaviour
between the thermal and velocity boundary layers introduces regions of negative production in the bud-
gets that tend to increase with the Rayleigh number. The production of turbulence by buoyancy is also
found to be of the same order of magnitude as other budget terms at all Rayleigh numbers.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Buoyancy-driven flows are ubiquitous in the environment as
well as in many industrial configurations. Common examples of
such industrial applications include double-glazed windows,
passive cooling systems for electronic components and possibly
nuclear reactor emergency cooling systems. Rectangular differen-
tially heated cavities have the advantage to be very simple from
a geometrical point of view whilst embodying complex physics
of interest: spatially developing buoyant boundary layers in the
presence of thermal stratification. The present paper focuses on
cavities where the main temperature difference is applied between
the vertical walls, yielding a mean horizontal gradient of tempera-
ture between the walls. This case is different from the Rayleigh-
Bénard type convection where the temperature gradient is aligned
with the gravity vector in an unstable manner. The purpose of the
present work is to provide an analysis of the physics of buoyancy
driven flow in a differentially heated cavity with a Reynolds
averaged modelling perspective. Rectangular vertical differentially
heated cavities have been a topic of interest for decades now.
The work of Batchelor [1], who studied analytically the limiting
case of very tall cavities at low Rayleigh number, was the first on
the topic. Other early studies such as the pioneering work by Elder
[2,3] on high aspect ratio cavities were mainly experimental and
focused on the identification of the different flow regimes obtained
when varying the Rayleigh and Prandtl number. Three flow
regimes were identified experimentally: steady laminar flow,
unsteady laminar flow and fully turbulent flow. A large body of
work has been focused on the characterisation of such flow
regimes as a function of the dimensionless numbers governing
the flow. When the fluid satisfies the Boussinesq approximation,
a simple normalisation of each term of the Navier-Stokes equation
shows that the flow is fully characterised by the Rayleigh number,
the Prandtl number and the aspect ratio of the cavity. Due to the
limited computational resources, numerical solutions of differen-
tially heated cavity flows were originally limited to very low
Rayleigh number well within the laminar regime. These early
calculations were two-dimensional, usually based on the
streamfunction-vorticity formulation of the Navier-Stokes
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equations and relying on the Boussinesq approximation to account
for buoyancy effects on the flow [4,5]. Most of the numerical
results obtained in the laminar regime were consistent with each
other. For instance, the results obtained by De Vahl Davis [6] using
Richardson’s extrapolation for a square cavity with Rayleigh num-
ber between 103 and 106 are still widely used for code validation
purposes. Other studies such as the work of Chenoweth and Pao-
lucci [7] studied the behaviour of the flow in cavities of various
aspect ratio with variable fluid properties. They observed that the
flow loses its centro-symmetry when departing from a Boussinesq-
type fluid and proposed flow regime maps. Much attention in the
literature has been paid to the identification of the mechanisms
triggering the transition to unsteadiness and later to turbulence.
This was initially done by studying the stability of two-
dimensional solution of the Navier-Stokes equation [8,9] when
introducing small perturbations. It was later shown by Henkes
and Le Quéré [10] that the critical Rayleigh number was lower
when considering a three-dimensional cavity with periodic bound-
ary conditions in the third direction and applying a three-
dimensional perturbation. The critical Rayleigh number was found
to depend on the aspect ratio of the cavity [8] and also on the
boundary conditions applied to the horizontal walls. Two classic
extreme configurations can be found in the literature: adiabatic
horizontal wall and perfectly conducting ones (linear variation of
temperature between hot and cold side of the cavity), with the for-
mer representing the vast majority. Henkes and Le Quéré [10]
showed that the critical Rayleigh number for the conducting
square cavity is around 2� 106 whereas the more recent study of
Xin and Le Quéré [11] showed that the critical Rayleigh number
in an adiabatic three-dimensional square cavity is around
1:55� 107, which is more than one order of magnitude lower than
the critical Rayleigh number observed by the same authors in the
two-dimensional case. As regards the fully turbulent flow regime,
numerical analysis by Direct Numerical Simulation (DNS) has
been impossible for a very long time because of the limited
computational resources available and the particular complexity
of the problem. Indeed, differentially heated cavity flows often
have, in their fully turbulent regime, a quiescent stratified core
and very thin buoyant boundary layers along the walls, which
demand large computational resources. A very large number of
early studies considered the two-dimensional form of the
Navier-Stokes equation in the fully turbulent regime [12,9]. It is
only in the last decade that accurate solution of the three
dimensional problem emerged, firstly with the publication of
increasingly resolved large-eddy simulations (LES) [13,14],
supported by the publication of experimental data [15–17] fol-
lowed by direct numerical simulations. A large number of direct
numerical simulations in tall differentially heated cavities (aspect
ratios between 4 and 5) with increasing Rayleigh number were
published in the last decade by the same group of researchers
using mostly a fourth order finite volume scheme [18–22]. The
square cavity remains a rather rarely tackled case in the literature
because of its additional computational cost associated with the
higher Rayleigh numbers for the transition to turbulence to occur
compared with tall cavities. The combination of these aspects
makes the simulation of square cavities at Rayleigh number in
the fully turbulent regime very difficult to achieve. Even nowadays,
many publications on such configuration are limited to LES results
[23–25] or two-dimensional DNS. Sergent et al. [26] used
Chebyshev collocation to carry out DNS of a fully three-
dimensional box of square cross section with no slip walls on each
of the six faces with aspect ratio 0.2 for the depth of the cavity.
Puragliesi and Leriche [27] studied the flow in differentially heated
cubic cavity at Rayleigh number of 109. To the authors’ knowledge,
this is the highest Rayleigh number ever considered for a true
three-dimensional Direct Numerical Simulation for a differentially
heated cavity of unit aspect ratio.

From an engineering standpoint, Computational Fluid Dynamics
approaches relying on Reynolds Averaged Navier Stokes (RANS)
equations are normally used. Application of standard turbulence
models such as the k� emodel associated with standard wall func-
tions was made in differentially heated cavity some time ago [28].
However, numerous studies over the years have shown that appli-
cation of turbulence models that were initially developed for
forced convection flows is inappropriate due to the specific aspects
of buoyancy driven flows such as the coexistence of laminar and
turbulent regions and the presence of large scale structures. A
review of the limitations of single-point mathematical closure
when simulating buoyancy driven flow was carried out by Hanjalic
[29]. The recent developments of second-moment closure
approaches [30–32] focusing on buoyancy driven flows still relies
heavily on very simple configurations such as mixed convection
in a channel and vertical differentially heated channels [33–35],
where the very important turbulent budget data are available at
only fairly low Rayleigh number. Very few examples of turbulent
budget calculations are presented in publications dealing with
the more complicated case of rectangular differentially heated cav-
ities. To the authors’ knowledge, Barhaghi and Davidson [36] are
the only ones to present the full budgets using LES, making the
results only qualitative as mentioned by the authors themselves.

In the present paper, Direct Numerical Simulation results for a
Prandtl number equal to 0.71 and Rayleigh numbers varying
between 108 and 1011 in a differentially heated square cavity with
prescribed temperature on the horizontal walls are presented. In
addition to the first and second order statistical moments, the full
budgets of each component of the Reynolds stress tensor are pre-
sented as well as the budgets of the turbulent heat fluxes and tem-
perature variance. The decision to focus on the square
configuration was motivated by the fact that historically the appli-
cation of classic turbulence models to this configuration resulted in
the largest degree of discrepancy with experiments. In such config-
uration the two vertical buoyant boundary layers do not interact
with each other as they can do in taller cavities via shear in the
core of the domain, which makes its modelling more challenging
for single point closure turbulence models. Unlike the more recent
literature on the topic [37–39] that tends to focus on the coupling
between conduction through the walls of the cavities, radiative
effects and even particle transport in the fluid, at fairly low Ray-
leigh numbers, the present work focuses on reaching high Rayleigh
numbers to provide important insights from a turbulence mod-
elling standpoint. The analysis presented herein focuses on data
of relevance to the RANS modelling framework and does not pro-
vide a quantitative analysis of low frequency unsteadiness inher-
ent to such flows. Despite a significant dwindling of academic
research focusing on RANS models in aid of LES or hybrid
approaches, these models will remain the industry standard for
the foreseeable future. It is therefore very important to provide
accurate data relevant to this modelling framework that can be
used to validate and improve the latest developments in field
(see [40,31,41] for instance). The data presented herein and avail-
able on the ERCOFTAC classic database are therefore expected to be
a valuable resource for the turbulence modeling community as
such data are very scarce for buoyancy driven flow configurations
other than the simple vertical differentially heated channel.

The paper is organised as follows. In Section 2, the computa-
tional methodology will be presented as well as the flow configu-
rations. Then, in Section 3, the influence of the Rayleigh number on
the flow with a prescribed linear temperature variation on the
horizontal wall is investigated. The latter includes comparison of
first order moments with scaling laws, analysis of the evolution
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of the Nusselt number and level of thermal stratification together
with a detailed examination of each component of the Reynolds
stresses, turbulent heat fluxes and temperature variance budgets
of the buoyant boundary layer in the vicinity of the hot wall.
Fig. 1. Computational domain (not to scale) and coordinate system used in each
directions.
2. The computational method

2.1. Computational domain and governing equations

In the present paper a three dimensional computational domain
is considered for all the calculations, as illustrated in Fig. 1. The
dimensions of the cavity in each direction are Lx; Ly and Lz. The
paper being focused on square cavity flows, Lx ¼ Ly ¼ H for all con-
figurations. The focus is on the case where the flow is statistically
two-dimensional so that periodic boundary condition can be
applied in the z-direction of the domain. The depth of the cavity
is adjusted to minimize the computational cost of the simulation
at a given Rayleigh number whilst ensuring that the turbulence
correlation length in the z-direction is shorter than half of the cav-
ity depth. This corresponds to a cavity infinitely long in the z-
direction. The cavity is filled with an incompressible Newtonian
fluid of thermal diffusivity a, kinematic viscosity m and thermal
expansion coefficient b. To account for the variation of density with
temperature, the Boussinesq approximation is invoked. The effect
of radiation is not considered in the present simulations.

The governing equations can be written in the following form
using Cartesian tensor notations and the skew-symmetric form of
the momentum equations solved:
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where u ¼ ui; i 2 s1;3tð Þ; p; h; x and t respectively denote the nor-
malised velocity, piezometric pressure, temperature, position and
time. The gravity vector is chosen such that g=g ¼ ð�1; 0;0Þ with
g denoting its magnitude. If the superscript H denotes the corre-
sponding physical quantities, then the relationships between the
physical and normalised quantities are as follows:

uH ¼ aRa1=2

H
u pH ¼ a2Ra

H2 p hH ¼ hDhH þ hHavg

tH ¼ H2Ra�1=2

a
t xH ¼ Hx ð4Þ

The fluid Prandtl number Pr is defined by m=a and the Rayleigh

number Ra by gbDhHH3
� �

= mað Þ. hHavg and DhH in Eq. (4) denote the

average temperature in the cavity and the temperature difference
applied between the walls respectively. In the remainder of the
paper, the components of the position vector x will be denoted by
x; y; zð Þ and unless index notations are used, the components of
the velocity vector u will be denoted by u;v ;wð Þ for simplicity.

As regards the boundary conditions, the wall at y ¼ 0 and y ¼ 1
are kept at a constant temperature h ¼ þ0:5 and h ¼ �0:5, respec-
tively, and have a no slip boundary condition u ¼ 0. The lower and
upper walls of the cavity at x ¼ 0 and x ¼ 1 also have zero slip
ðu ¼ 0) for the velocity. As mentioned in the introduction, the sim-
ulations will represent a cavity with highly conductive horizontal
walls, which corresponds to a linear temperature profile
hðyÞ ¼ 0:5� y, applied as Dirichlet boundary condition. On the
front and back of the cavity at z ¼ 0 and z ¼ Lz=H, periodic
boundary conditions are applied.

2.2. Numerical scheme

In the present paper the governing equations presented in the
previous section are solved using the open-source DNS code incom-
pact3d developed by Laizet and Lamballais[42]. This code is opti-

mised to maintain good scalability up to O 105
� �

computational

cores [43]. The governing equations are discretised using a sixth
order compact finite difference scheme [44]. The momentum equa-
tions are solved using a skew-symmetric form, which is known to
minimize aliasing errors while remaining energy preserving [45].
The time advancement is made using a third-order Runge-Kutta
scheme along with a three stage fractional step method. The Pois-
son equation arising for pressure at each substep to enforce conti-
nuity is solved with a direct method based on the concept of
modified wavenumber in spectral space. In order to avoid spurious
oscillations, a partially staggered arrangement for pressure and
velocity nodes is used. For more details about the implementation
of the numerical methods and the formulation of the streching
function used to handle non-uniformmeshes, the reader is referred
to Laizet and Lamballais [42]. The code has been extensively vali-
dated over the last ten years for purely hydrodynamic, heat trans-
fer [46] and buoyancy driven flow configurations [47]. Further
validation of the code is carried out here for the specific case of a
differentially heated cavity at Ra ¼ 2� 109 in a 4:1 cavity with adi-
abatic horizontal walls and the results are compared against the
DNS of Trias et al. [19] in appendix 1. The implementation of the
data processing procedures to calculate the full turbulent budgets
were extensively validated against reference channel flows DNS as
presented in Sebilleau [41].

2.3. Statistical averaging of the data and domain dimensions

For each simulation, when possible, a snapshot of the flow
obtained at a lower Rayleigh number was interpolated onto the
mesh and used as initial condition. The flow was then developed
in time until a statistically steady state was reached.
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In the remainder of the paper, various statistically averaged
results are presented. The averaging procedure is carried out in
time and space in the homogeneous z- direction. The average of
any quantity /ðx; tÞ is denoted by an overbar and is mathematically
defined by:

/ðx; yÞ ¼ 1
Dtavg

1
Lz

Z
z

Z
t
/ðx; y; z; tÞdt dz ð5Þ

The symmetry of the flow around the cavity centre
ðx; yÞ ¼ ð0:5;0:5Þ is also used to improve the convergence of the
statistics for the budgets only. The corresponding fluctuating part
of /ðx; tÞ is simply defined by /0ðx; tÞ ¼ /ðx; tÞ � /ðx; yÞ. In order
to make the notations simpler, the average velocity components
and average temperature will be simply denoted by U;V ;Wð Þ
and H.

Because of the very large number of derivatives to compute to
obtain the full budgets, collecting statistics at every timestep was
found to slow down the simulation by no less than an order of
magnitude. The collection of statistical data in time was therefore
effected every ten timesteps during the simulation. The conver-
gence of the statistical data was ensured by examining the compo-
nents of the budget of the v 0v 0 Reynolds stress as the number of
collected statistical samples increased. This component was found
to be the slowest to converge and therefore provided the most con-
servative measure.

Another very important choice to make for each simulation is
the domain dimension in the z-direction where the periodic
boundary conditions are applied. For each simulation, the two-
point correlation in space of all the velocity components and tem-
perature was computed at several ðx; yÞ positions in the cavity to
ensure the turbulent field was uncorrelated at a separation of a
half-period. The two-point correlation in space of a quantity
/ðx; tÞ is defined by:

R//ðx; y; rÞ ¼ /0ðx; y; z; tÞ/0ðx; y; zþ r; tÞ
/0ðx; y; z; tÞ2

ð6Þ

Graphs showing appropriate decay of the two point correlation
in the z-direction for each velocity component as well as for tem-
perature are shown in Fig. 3 for each Rayleigh number simulated.
Table 1
Summary of all the simulations presented in the present paper. Dtdev indicate the simulatio
uniform H ¼ 0 initial condition for DNS1. For all other simulation (DNS2 to DNS4), it repre
simulation onto the new mesh. bs refers to the parameter b for the stretching function de

Simulation Ra Pr Lz=H Nx � Ny � Nz

DNS1 1:0� 108 0:71 1.0 513� 257� 128

DNS2 1:58� 109 0:71 0.4 1025� 513� 128

DNS3 1:0� 1010 0:71 0.3 2049� 1025� 128

DNS4 1:0� 1011 0:71 0.15 2593� 1459� 192

Fig. 2. Computed grid to Kolmogorov length scale ratio DxDyDzð Þ1=3=g (a)R
In cases where multiple simulations were carried out at the same
Rayleigh number, the two-point correlation is only shown for the
largest domain.

A summary of all the simulations carried out in the present
work is given in Table 1. The mesh was carefully chosen to ensure
that all turbulent fluctuations down to the Kolmogorov scale are
resolved. A grid dependence study is presented in appendix 2 at
Ra ¼ 1:58� 109 for a case detailed in Sebilleau [41] with a slightly
different temperature profile on the horizontal walls. Similar
refinement is then applied to cases with higher Rayleigh number.
In addition to this, the computed gridspace to Kolmogorov length

ratio DxDyDzð Þ1=3=g (g denoting the Kolmogorov length scale) is
given in Fig. 2 to show that all dissipative scales are properly
resolved for each Rayleigh number. The time-step is chosen such
that it remains within the stability limits of the fully explicit
time-advancement, which can become particularly computation-
ally expensive because of the limit imposed by the viscous terms.
The satisfaction of the latter is also sufficient to resolve accurately
all the turbulent time scales.

3. Results and discussion

In the present section, the aforementioned simulations based
on a linear temperature profile applied on the top and bottom
walls are considered in order to study the influence of the Rayleigh
number. This boundary condition was chosen in place of the more
classic adiabatic boundary conditions because, in the present
square cavity configuration, adiabatic conditions yield an almost
entirely laminar cavity with only small turbulent regions at the
top left and bottom right corners. With this boundary condition,
the achieved turbulence levels are higher at equivalent Rayleigh
number than the adiabatic counterpart which helped reaching
unprecedented turbulence levels for such flow. This point is very
important as most of the available DNS data on buoyancy driven
flows suffer from low-Re effects that affect turbulence modelling.

3.1. Nusselt number prediction

From an engineering perspective, the mean Nusselt number
on the vertical walls, which represents the global heat transfer
n time before the beginning of the averaging procedure. The time indicated is from a
sents the simulation time starting from an interpolation of a snapshot of the previous
fined in equation (53) of Laizet and Lamballais [42].

bs Dt Horizontal BC Dtdev Dtavg

0.09 7� 10�4 linear 200 350

0.1 7� 10�4 linear 50 150

0.09 3� 10�4 linear 50 120

0.05 2� 10�4 linear 25 55

a ¼ 1:0� 108(b) Ra ¼ 1:58� 109(c) Ra ¼ 1:0� 1010 (d) Ra ¼ 1:0� 1011.



Fig. 3. Two point correlation in the z-direction for several ðx; yÞ positions in the cavity and different Rayleigh number: (a) Ra ¼ 108; (b) Ra ¼ 1:58� 109 (c) 1010 (d) 1011

( ðx; yÞ ¼ ð0:2;0:01Þ ðx; yÞ ¼ ð0:2;0:05Þ ðx; yÞ ¼ ð0:5;0:01Þ ðx; yÞ ¼ ð0:5;0:05Þ ðx; yÞ ¼ ð0:8;0:01Þ ðx; yÞ ¼ ð0:8;0:05Þ).

Table 2
Summary of some integral quantities obtained for each simulation.

Simulation DNS1 DNS2 DNS3 DNS4

Ra 1� 108 1:58� 109 1:0� 1010 1:0� 1011

hNuhoti 25.3 61.1 110.6 230.7
hNu coldi 25.3 60.8 111.5 231.6

hNu bottomi 12.8 26.3 41.6 85.1
hNu topi 12.8 26.3 42.1 84.4
hShi 0.42 0.49 0.41 0.36
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coefficient between the hot and cold wall of the cavity, is impor-
tant. The computed mean Nusselt number on each of the walls of
the cavity are summarised in Table 2 and are defined as follows:
hNu hoti ¼ �
Z 1

0

@H
@y

ðx;0Þdx; hNu coldi ¼ �
Z 1

0

@H
@y

ðx;1Þdx ð7Þ

hNu bottomi ¼ �
Z 1

0

@H
@x

ð0; yÞdy; hNu topi ¼ �
Z 1

0

@H
@x

ð1; yÞdy ð8Þ

A very large body of work has focused in the past establishing
correlations giving the mean Nusselt number as a function of the
Rayleigh and Prandtl number for Rayleigh-Benard convection.
However, as mentioned by Trias et al. [20], the case of laterally
heated cavities has attracted much less attention from the scien-
tific community. In the case of a vertical buoyant boundary layer,
there are two limiting cases for Nusselt correlations: Nu � Ra1=4

for the laminar case and Nu � Ra1=3 for the fully turbulent case.



Fig. 4. Comparison of the Nusselt number distribution along the cavity hot wall with different scaling: Ra ¼ 108 Ra ¼ 1:58� 109 Ra ¼ 1010

Ra ¼ 1011.

Fig. 5. Visualisation of the turbulent flow structures in the vicinity of the cavity vertical hot wall at Ra ¼ 1011: (a) Scalar contour of instantaneous Nusselt number fluctuation
Nu0 with iso-temperature fluctuation h0 ¼ 0:07 is shown in grey; (b) Scalar contour of instantaneous streamwise wall shear stress fluctuation s0w;x and iso-surface Q ¼ 150 in
grey. (The colorbar scales are saturated and symmetric around zero for visualisation purposes). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 6. Characteristic flow structures arising from the ejection of a buoyant plume from the lower horizontal wall of the cavity rising along vertical hot wall of the cavity for
the case at Ra ¼ 108: (a) Instantaneous Nusselt number fluctuations Nu0; (b) Instantaneous Nusselt number fluctuations with isosurface of Q = 8 (in grey) and iso-temperature
fluctuation h0 ¼ 0:05 (in blue); (c) Contour of streamwise wall shear stress fluctuation on the hot wall s0w;x (The colorbar scales are saturated and symmetric around zero for
visualisation purposes). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. From left to right: DNS1, DNS2, DNS3 and DNS4. On the top row, instantaneous temperature distribution hðx; y; Lz=2; tÞ. On the bottom row, average temperature
distribution Hðx; yÞ.
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In the present case, a least square regression gives
Nu ¼ 0:0691Ra0:3203. The latter is in very close agreement with
the aforementioned one-third power law for fully turbulent vertical
buoyant boundary layers. In comparison, Trias et al. [20] obtained

Nu ¼ 0:182Ra0:275 for differentially heated cavity of aspect ratio 4
and adiabatic horizontal walls. In their configuration most of the
vertical boundary layer remained laminar, which explains the
power law exponent being closer to the one-fourth laminar law.

The mean Nusselt number profiles along the hot wall of the cav-
ity are presented in Fig. 4. It can be observed that in the lower part
of the cavity x < 0:3ð Þ, the profiles tend to follow a Ra1=4 scaling
whereas in the upper part they tend to follow the fully turbulent
Ra1=3 scaling law. The correlation is also in very good agreement
with Yu et al. [48] in a square cavity with adiabatic horizontal
boundary conditions for Rayleigh numbers between 103 and 107.
Yu et al. [48] obtained Nu ¼ 0:13Ra0:31 and conjectured that the
power law exponent obtained is independent of the flow regime
(laminar or turbulent). The presence of thermal stratification in
the core and thin buoyant boundary layers near the wall are sup-
posedly sufficient to obtain a near one-third scaling law also



Fig. 8. Comparison of mean velocity at different cavity height : Ra ¼ 108 Ra ¼ 1:58� 109 Ra ¼ 1010 Ra ¼ 1011.
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obtained in Rayleigh–Benard convection and other natural convec-
tion systems. The present results tend to agree with this
hypothesis.

3.2. Coherent flow structures

The present flow pattern is characterised by vertical thermal
stratification in the core where the flow remains almost quiescent
with four boundary layers near the walls. The main difference
between the present and the more common configuration (with
horizontal adiabatic walls) is the presence of unstable density gra-
dients in the vicinity of the horizontal walls in the bottom left and
top right corners of the cavity. The latter triggers the ejection of
buoyant plumes transported toward the vertical walls by clock-
wise circulation in the cavity. These plumes, clearly visible in the
top panels of Fig. 7 for all the Rayleigh numbers considered, are
the reason why the transition to turbulence occurs at a lower Ray-
leigh number than in the adiabatic case. They also enhance the
level of turbulence by destabilising the vertical buoyant boundary
layers. Whereas in an adiabatic case a clear transition from laminar
to turbulence would occur along the vertical wall, in the present
case, turbulent structures can be observed along the entire vertical
wall as illustrated in Fig. 5b. Moreover, a clear thickening of the
turbulent region can be observed in the last panel in Fig. 5 around
x � 0:35. This thickening of the turbulent region is associated with
turbulence enhancement that corresponds to the local maxima in
Nusselt number observed in Fig. 4 around the same x-position
along the hot wall. As the Rayleigh number is increased the loca-
tion of turbulence enhancement moves closer to the bottom wall.
The scalar contour of instantaneous Nusselt number fluctuation
in Fig. 5a and iso-temperature fluctuation contour show elongated
structures along the vertical x-direction. These structures corre-
spond to hot buoyant plumes ejected from the horizontal walls ris-
ing along the vertical wall. Such structures are still noticeable in
the upper part of the hot wall where the level of turbulence is
much higher. They are associated to streaks of negative Nusselt
number fluctuation and positive streamwise wall shear stress fluc-
tuation. This is shown in Fig. 5 for the highest Rayleigh number but
are present for all the simulated Rayleigh numbers. A focus on a
buoyant hot plume is shown in Fig. 6 for the case at Ra ¼ 108.
The iso-temperature fluctuation contours shown in blue represents
the envelope of the buoyant plume surrounded by two counter-
rotating vortices (in grey with arrows indicating the rotation of
the vortices). These counter-rotating vortices are bringing colder
fluid from the core towards the hot wall, which increases the
temperature gradient and therefore explains the locally high
positive Nusselt fluctuation observed underneath. These structures
are clearly visible at Ra ¼ 108 as there is almost no turbulence in
the outer region of the boundary layer at such Rayleigh number.
However, similar structures can still be observed in the high
Rayleigh number cases.

3.3. First and second order statistics

The first aspect, which is characteristic of cavity configurations,
is the formation of a thermal stratification in the core of the cavity
as illustrated and discussed qualitatively in the previous section.
Fig. 8 gives the horizontal velocity and temperature distribution
at the cavity midwidth for the four values of Rayleigh number con-
sidered. As the Rayleigh number is increased, the velocity bound-
ary layers along the horizontal cavity walls become thinner and
the proportion of the core region where the velocity tends to zero
increases. The variations of the level of thermal stratification can
be quantified using the mean stratification parameter denoted
hSHi and defined by:

hSHi ¼ @H
@x

0:5;0:5ð Þ ð9Þ

The computed values of the mean stratification parameter are
summarised in Table 2. The stratification parameter tends to
decrease when the Rayleigh number is increased, with the excep-
tion of the case at Ra ¼ 108 where the level of turbulence is extre-
mely low. An opposite trend was observed by Trias et al. [20,21] in
a 4:1 tall cavity with adiabatic horizontal walls. They conjectured
that the variation of hSHi is related to the upstream displacement
of the position of transition to turbulence in the vertical boundary
layers. Analysis of the data from the same authors shows that even
at their highest Rayleigh number the two vertical boundary layers
are laminar at the cavity midheight, where the mean stratification
parameter is calculated. In the case of a square cavity, for the three
largest Rayleigh number both vertical boundary layers are turbu-
lent at the cavity midheight. This difference could explain the
opposite trends and it would be interesting to see the evolution
of the stratification at higher Rayleigh number in this 4:1 cavity.

Vertical buoyant boundary layers have attracted much less
attention than forced convection boundary layers or even horizon-
tal buoyant boundary layers in a Rayleigh Bénard convection con-
figurations. The experimental work from Tsuji and Nagano [49,50]
measuring first and second order moments in a vertical buoyant
boundary layer in the vicinity of a hot plate in a quiescent



Fig. 9. Comparison of first order moments with scaling laws from [52] at different cavity heights ðx0 ¼ 0:1� 0:3� 0:5� 0:7� 0:9Þ: (a) Temperature H� ( H� ¼ y�

H� ¼ 0:427 lnðy�Þ þ 1:93 H� ¼ 0:427 lnðy�Þ þ 2:65) (b) Velocity U� ( U� ¼ @U�
@y� jwy� � 1

2H0y�
2 þ 1

6 y
�3

U� ¼ CPr
rt

y� C lnðy�Þ � 2½ � þ D�H�
0

� �þ E lnðy�Þ þ F) ( Ra ¼ 108 Ra ¼ 1:58� 109 Ra ¼ 1010 Ra ¼ 1011).

Table 3
Summary of normalisation factors used to convert quantities normalised by Eq. (4)
into classic wall units. All the wall derivatives are computed locally and not averaged
over the entire wall.

Quantity to normalise Normalisation factor

Distance y
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���1=2
w

Velocity u
Ra1=4Pr�1=2@U

@y

����1=2

w
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Ra1=4Pr1=2@U

@y

���1=2
w

@H
@y

����1

w

Terms in budget of u0
iu

0
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����2

w

Terms in budget of u0
ih

0
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w
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@y

����1

w

Terms in budget of h0h0 Ra1=2Pr@H@y
����2

w
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environment remains a reference nowadays. Contrary to forced
convection boundary layers where the existence of a logarithmic
law of the wall is widely accepted, in buoyant boundary layers,
consistent scaling laws over a wide range of configurations do
not seem to exist. The temperature profiles expressed in viscous
wall units do exhibit a near wall region where the relationship
Hþ ¼ Pr yþ is valid. This region extends up to 5 wall units approx-
imately, which is similar to the forced convection case. However, as
shown by [49], the validity of the linear profile Uþ ¼ yþ in the near
wall region does not extend beyond yþ ¼ 1. Since then, various
attempts have been made to obtain inner and outer scaling laws
for velocity and temperature. The work of George and Capp [51],
based on a two-layer approach and dimensional analysis of a ver-
tical buoyant boundary layer, obtained a one third power law for
temperature in a vertical buoyant boundary layer, which was later
observed in the DNS profiles of Versteegh and Nieuwstadt [33].
However, the one third power law proposed by the same authors
for the velocity was not found to hold. More recently Holling and
Herwig [52] adopted a new approach based on the use of a single
gradient diffusion hypothesis to model the Reynolds shear stress in
the mean momentum equation. With such approximation, they
were able to integrate the latter and propose an outer scaling
law for velocity profiles. The scaling was selected here for compar-
ison with the simulations as it represents one of the only work
based on multiple experiments including the buoyant boundary
layer of Tsuji and Nagano [49], the tall cavity measurement of Betts
and Bokhari [53], and the square cavity from Ampofo and
Karayiannis [17]. Holling and Herwig [52] obtained the following
inner and outer scaling law for temperature (H denotes dimen-
sioned quantities to remain consistent with the notations intro-
duced in Eq. (4)):

H�
inner ¼ y� and H�

outer ¼ C lnðy�Þ þ D ð10Þ
where

y� ¼ yH

lHref
H� ¼ TH

TH
ref

ð11Þ



Fig. 10. Comparison of diagonal terms of the Reynolds stress tensor at different cavity heights ðx0 ¼ 0:1� 0:3� 0:5� 0:7� 0:9Þ ( Ra ¼ 108 Ra ¼ 1:58� 109

Ra ¼ 1010 Ra ¼ 1011) : (a) u0u0 (b) v 0v 0 (c) w0w0 .

Fig. 11. Comparison of the position of the extrema of velocity, Reynolds stress, turbulent heat flux and temperature variance along the vertical buoyant boundary layer along
the cavity hot wall ( Umax � u0u0

max j v 0v 0
max r u0v 0

max u0h0max v 0h0max h0h0max): (a) Ra ¼ 108 (b) Ra ¼ 1:58� 109.
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Fig. 12. Comparison of second order moments at different cavity heights ðx0 ¼ 0:1� 0:3� 0:5� 0:7� 0:9Þ ( Ra ¼ 108 Ra ¼ 1:58� 109 Ra ¼ 1010

Ra ¼ 1011): (a) u0h0þ (b) v 0h0þ (c) h0h0þ .
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and

TH
ref ¼

a2

gb
� @TH

@yH

�����
�����
3

w

0
@

1
A1=4

lHref ¼
TH
ref

j @TH=@yHjw
ð12Þ

They calibrated the coefficients of the outer law using the DNS
data from [34] and suggested values of C ¼ 0:427 and D ¼ 1:93.
The profiles obtained are plotted in Fig. 9a and compared with
the inner and outer scaling laws given in Eq. (10). The linear rela-
tionship for the inner region exists for y� < 2 approximately. A log
region develops in the outer layer in the upper part of the cavity for
higher Rayleigh numbers. The coefficient D ¼ 1:93 seems inappro-
priate in the present configuration and a corrected value of 2.65
appears to give a much better agreement. When [52] compared
their scaling laws with the experimental data of [17] they observed
worse discrepancy among all the aforementioned experimental
and numerical database considered. The present comparison
seems to agree with their observation.

As regard the velocity profiles, the following inner and outer
scaling laws were derived by the same authors:
U�
inner ¼

@U�

@y�

����
w

y� � 1
2
H0y�

2 þ 1
6
y�

3 ð13Þ

U�
outer ¼

CPr
rt

y� C lnðy�Þ � 2½ � þ D�H0ð Þ þ E lnðy�Þ þ F ð14Þ

where

U� ¼ uH

UH
ref

with UH
ref ¼

gbTH3

ref

m
� @TH

@yH

�����
�����
�2

w

ð15Þ

and:

H0 ¼ TH
w � TH

0

� �
=TH

ref E ¼ 0:49
@U�

@y�

����
w

� 2:27

F ¼ 1:28
@U�

@y�

����
w

þ 1:28 ð16Þ

rt denotes a turbulent Prandtl number chosen equal to 0.9
Comparison between the present computations and the velocity

scaling laws is given in Fig. 9b. The inner velocity scaling is in good



Fig. 13. Comparison of the position of the extrema of velocity, Reynolds stress, turbulent heat flux and temperature variance along the vertical buoyant boundary layer along
the cavity hot wall ( Umax � u0u0

max j v 0v 0
max r u0v 0

max u0h0max v 0h0max h0h0max): (a) Ra ¼ 1010 (b) Ra ¼ 1011.

308 F. Sebilleau et al. / International Journal of Heat and Mass Transfer 123 (2018) 297–319
agreement with the DNS data for y� < 2 approximately. The outer
scaling, however, exhibits a rather poor agreement with the com-
puted DNS profiles. The outer scaling velocity profile was found
to the be very sensitive to the empirically calibrated coefficients.
This is a very undesirable feature when aiming at universal scaling
laws that could be used as wall functions for CFD. Such observation
justifies the direction taken in recent years by the turbulence mod-
elling community focusing now on wall integrated approaches
instead of wall functions. Since no obvious advantage was found
when plotting the results using scaling parameters specific to
buoyancy driven flows [51,52,54], classic viscous wall units
denoted by the superscript + are used in the remainder of the
paper. A summary of the normalisation factors applied to convert
various quantities based on the normalisation given by Eq. 4 into
wall units is given in Table 3.

Second order statistical moments are given at different cavity
heights in Figs. 10, 12 and 14. The u0u0 profile tends to exhibit some
degree of self similarity in the upper part of the boundary layer
where the turbulence is most developed. At the highest Rayleigh
number, an intermediate region with an almost constant value of
u0u0 does appear. The values of v 0v 0 and w0w0 for the case at
Ra ¼ 108 are extremely small when compared to the streamwise
component u0u0, which confirms that the fluctuations are mainly
caused by the streamwise motion of the buoyant plumes rising
along the vertical wall. As regards the w0w0 component, which
was rarely shown in previous cavity publications, the maximum
is located in the outer layer, at the edge of the quiescent stratifica-
tion. The shear stress component u0v 0 exhibits, at the three highest
Rayleigh numbers, a negative region in the vicinity of the wall
before becoming positive. This feature in the near wall region
was also observed by Barhaghi and Davidson [36] in the tall 5:1
cavity and by Versteegh and Nieuwstadt [33] in the infinite vertical
channel. As it will be seen in the next section, the explanation for
such phenomenon lies in the sign of the total production of shear
stress u0v 0 near the wall. As regards the turbulent heat fluxes, a
mild negative near wall region appears at the highest Rayleigh

number for the u0h0 component. Similar observation was made by
Barhaghi and Davidson [36] in the transitional region of their
boundary layer but not in the developed part as observed here.

A very important aspect of buoyant boundary layers, which has
significant consequences on the variation of the production terms
in the budgets, is the relative position of Reynolds stresses and tur-
bulent heat fluxes extrema within the boundary layer. In a forced
convection boundary layer all the Reynolds stresses and turbulent
heat fluxes maxima are located within the buffer layer. In the case
of a differentially heated infinite vertical channel, all the Reynolds
stresses are maximum in the middle of the channel. In the present
case the situation is rather different as illustrated in Figs. 11 and
13. At the lowest Rayleigh number all the maxima are located in
the outer layer (beyond the velocity maximum) with the turbulent
heat fluxes and temperature variance extrema remaining close the
velocity maximum. The v 0v 0 and u0v 0 extrema are the furthest from
the wall and close to the outer edge of the boundary layer. These
observations are in agreement with Barhaghi and Davidson [36].
When the Rayleigh number is increased, the v 0v 0 and u0v 0 maxima
tend to follow each other and to move further away from the veloc-

ity maximum whilst the components u0h0;v 0h0 and h0h0 tend to
remain near it. The maximum of u0u0 is located in a more interme-
diate position approximately between the velocity maximum and
the position of the v 0v 0 and u0v 0 maxima at the edge of the bound-
ary layer.

3.4. Turbulence budgets

First and second order moments are very important quantities
to provide engineering predictions but they are not sufficient on
their own to help the development of new turbulence models.
The term by term analysis of the transport equations usually
modelled and solved within the Reynolds averaged (RANS) frame-
work is very important. Analysis of the turbulence budget in
forced convection channel flows has been the backbone of turbu-
lence modelling in the last decades. However, there is little atten-
tion given in the literature to such data for buoyancy driven
flows. Boudjemadi et al. [55], Versteegh and Nieuwstadt [33]
and more recently Kis and Herwig [35] computed the full turbu-
lence budgets at moderate Rayleigh number in a vertical differen-
tially heated channel. To the authors’ knowledge only the LES
calculation of Barhaghi and Davidson [36] for a 5:1 vertical differ-
entially heated cavity presents partial, qualitative budgets for nat-
ural convection in a differentially heated enclosure. In the
following section each term in the exact transport equation for
the Reynolds stresses, turbulent kinetic energy, turbulent heat
flux and temperature variance are presented. As the mean flow
varies spatially in two spatial dimensions, the budgets will be
analysed only at x ¼ 0:8 in the vicinity of the hot wall where
the vertical buoyant boundary layer is most developed. In order



Fig. 14. Comparison of Reynolds shear stress u0v 0at different cavity heights ðx0 ¼ 0:1� 0:3� 0:5� 0:7� 0:9Þ ( Ra ¼ 108 Ra ¼ 1:58� 109 Ra ¼ 1010

Ra ¼ 1011): (a) Full profile in the vicinity of the hot wall (b) zoom on the near wall profile exhibiting negative shear stress regions.

Fig. 15. Comparison of the budget of u0u0þ at x ¼ 0:8 : (a) Pþ
11 Gþ

11 Pþ
11 (b) �eþ11 Dtþ

11 Dmþ
11 . The different Rayleigh numbers are

indicated by different line thickness ( Ra ¼ 108 Ra ¼ 1:58� 109 Ra ¼ 1010 Ra ¼ 1011) Vertical lines indicate the position of the velocity
maximum at given x-position: �Ra ¼ 108

j Ra ¼ 1:58� 109 N Ra ¼ 1010
. Ra ¼ 1011Þ.
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to illustrate the spatial evolution of the flow along the hot wall
boundary layer, the budget of turbulent kinetic energy will be
presented at three cavity heights x ¼ 0:2; x ¼ 0:5 and x ¼ 0:8.
The associated database contains the complete statistical data at
multiple positions in the cavity.
In what follows, the term inner layer will be used to denote the
region of the buoyant boundary layer between the wall and the
velocity maximum and the term outer layer will be used to denote
the region extending from the velocity maximum to the quiescent
cavity core.



Fig. 16. Comparison of the budget of v 0v 0þ at x ¼ 0:8 : (a) Pþ
22 Pþ

22 �eþ22 (b) Dtþ
22 Dmþ

22 . The different Rayleigh numbers are indicated by
different line thickness ( Ra ¼ 108 Ra ¼ 1:58� 109 Ra ¼ 1010 Ra ¼ 1011) Vertical lines indicate the position of the velocity maximum at given
x-position: �Ra ¼ 108

j Ra ¼ 1:58� 109N Ra ¼ 1010
.Ra ¼ 1011).

Fig. 17. Comparison of the budget of w0w0þ at x ¼ 0:8 : (a) Pþ
33 �eþ33 (b) Dtþ

33 Dmþ
33 . The different Rayleigh numbers are indicated by different line

thickness ( Ra ¼ 108 Ra ¼ 1:58� 109 Ra ¼ 1010 Ra ¼ 1011) Vertical lines indicate the position of the velocity maximum at given x-position:
�Ra ¼ 108

j Ra ¼ 1:58� 109 N Ra ¼ 1010
. Ra ¼ 1011).
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3.4.1. Reynolds stress budgets
The exact Reynolds stress transport equation using the nor-

malised formulation of the Navier–Stokes equations introduced
earlier is given by:

@u0
iu

0
j

@t
þUk

u0
iu

0
j

@xk|fflfflffl{zfflfflffl}
Cij

¼ � u0
iu

0
k

@Uj

@xk
þ u0

ju
0
k

@Ui

@xk

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pij

�Pr u0
jh

0gi þ u0
ih

0gj

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Gij

� u0
i

@p0

@xj
þ u0

j

@p0

@xi

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pij

� 2Pr
Ra1=2

@u0
i

@xk

@u0
j

@xk|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
eij

þ Pr

Ra1=2
@2u0

iu
0
j

@xk@xk|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Dmij

�@u0
iu

0
ju

0
k

@xk|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Dt
ij

ð17Þ
Each of the terms in the above equation can be determined from
the results of the DNS and all the budgets are plotted using the
classic viscous wall units normalisation as presented in Table 3.
The convective terms Cij are not represented as they are very small
and tend to reduce the clarity of the graphs presented below. How-
ever, all the terms are included in the database for completeness.

The budget of the component u0u0 is given in Fig. 15. In the
vicinity of the wall ðyþ < 3Þ, the turbulent dissipation e11 is bal-
anced by the viscous diffusion Dm

11 and pressure redistribution term
P11. At the wall the pressure redistribution term vanishes and
therefore e11 and Dm

11 are exactly in balance, which is expected
when considering the Taylor series expansion of the budget terms
near the wall. The production by shear has a very interesting pro-
file with two peaks and a negative region in between. It can be
approximated by the following dominant term:



Fig. 18. Comparison of the budget of u0v 0þ at x ¼ 0:8 : (a) Pþ
12 Gþ

12 Pþ
12 (b) �eþ12 Dtþ

12 Dmþ
12 . The different Rayleigh numbers are

indicated by different line thickness ( Ra ¼ 108 Ra ¼ 1:58� 109 Ra ¼ 1010 Ra ¼ 1011) Vertical lines indicate the position of the velocity
maximum at given x-position: �Ra ¼ 108

j Ra ¼ 1:58� 109 N Ra ¼ 1010
. Ra ¼ 1011).
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P11 � �2u0v 0 @U
@y

ð18Þ

The first peak in the inner layer is explained by the existence of
a region of negative shear stress u0v 0 near the wall, for sufficiently
high Rayleigh numbers. For all Rayleigh numbers the change of
sign of the shear stress u0v 0 occurs before the velocity maximum,
thus yielding a negative P11 region since both u0v 0 and @U=@y are
positive. As the Rayleigh number is increased, the distance from
the vertical wall at which the turbulent shear stress becomes pos-
itive tends to increase. At the same time, the point where the ver-
tical velocity reaches its maximum gets closer to the walls. The
combination of both of these effects yields a narrowing of the
region where both u0v 0 and @U=@y are positive, which explains
why the region where P11 is negative tend to disappear as the Ray-
leigh number increases.

The v 0v 0 component of the Reynolds stress tensor is a very small
contributor to the total turbulent kinetic energy, which is domi-
nated by the u0u0 term discussed above, but remains important.
Indeed, this component appears in the production term of the
shear stress u0v 0. The budget of v 0v 0, showed in Fig. 16, is the most
difficult to compute accurately and the slowest to converge statis-
tically. In the near wall region, all the terms tend to zero asymptot-
ically and very close to the wall ðyþ < 5Þ the turbulent dissipation
e22 is balanced by the viscous diffusion term Dm

22. The shear produc-
tion P22 is very small since the mean velocity V is very close to zero
in most of the boundary layer. In the outer part of the boundary
layer, the two dominant terms are the pressure redistribution term
P22 and the dissipation term e22. P22 acts as a source term redis-
tributing energy from the u0u0 component where turbulence is pro-
duced by shear and buoyancy. The turbulent diffusion term Dt

22 is
significant and reaches a negative minimum when the pressure
redistribution term is highest. This term thus acts as a draining
term helping the transfer of energy from the highly turbulent cen-
tral region of the boundary layer to both the inner layer and outer
edge of the boundary layer.

The budget of w0w0 is given in Fig. 17. Because of the span-
wise homogeneity of the present flow, the production terms
P33 and G33 in the budget of w0w0 are exactly zero. At the wall
the viscous diffusion Dm

33 exactly balances the turbulence
dissipation e33. The main source term is the pressure redistribu-
tion term P33. Away from the wall, this term is in balance with
the dissipation rate e33 and all other terms in the budget are
zero or negligible.

The budget of u0v 0 is the only other component where the terms
of production by shear and buoyancy are not zero or negligible. The
production by shear can be approximated by the following:

P12 � �v 0v 0 @U
@y

ð19Þ

The Reynolds stress v 0v 0 is positive over the entire buoyant
boundary layer by definition. In the inner part of the boundary
layer the gradient of velocity @U=@y is positive thus yielding the
negative production P12 as observed in Fig. 18. Beyond the position
of the velocity maximum, the gradient @U=@y becomes negative
yielding a positive shear production term. The buoyancy produc-

tion is proportional to the turbulent heat flux component v 0h0,
which has a magnitude approximately three times smaller than

the other turbulent heat flux component u0h0. The direct conse-
quence is that the buoyancy production term G12 has a fairly small
magnitude when compared to the shear production P12 term. This
was not the case for the u0u0 budget. In addition to this, the total
production ðP12 þ G12Þ is negative in the inner layer, which is con-
sistent with the negative shear stress observed earlier as illustrated
in Fig. 14. When the Rayleigh number is increased, the negative
shear production region in the inner layer becomes more pro-
nounced whereas the positive shear production region in the outer
layer tends to decrease. In the outer layer the pressure term acts as
a sink term compensating almost the entire shear production. To a
lesser extent, the turbulent diffusion Dt

12 also acts as a draining
term when the shear production is maximum and transfers energy
to the outer edge of the boundary layer and around the location of
the maximum velocity.

3.4.2. Turbulence kinetic energy budget
Classic two-equation turbulence models include a transport

equation for the turbulent kinetic energy. The exact form of the
equation given in Eq. (20) is obtained by taking one half of the
sum of the exact transport equations for the diagonal terms of
the Reynolds stress tensor:



Fig. 19. Comparison of the budget of turbulent kinetic energy kþ at x ¼ 0:2;0:5;0:8 in the vicinity of the hot wall : (a) Pþ
k Gþ

k Dpþ
k (b) �eþ

Dtþ
k Dmþ

k . The different Rayleigh numbers are indicated by different line thickness ( Ra ¼ 108 Ra ¼ 1:58� 109 Ra ¼ 1010 Ra ¼ 1011).
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Fig. 20. Comparison of the budget of u0h0þ at x ¼ 0:8 : (a) Pþ
h1 Gþ

h1 Pþ
h1 (b) �eþh1 Dtþ

h1 Dmþ
h1 þ Daþ

h1 . The different Rayleigh numbers
are indicated by different line thickness ( Ra ¼ 108 Ra ¼ 1:58� 109 Ra ¼ 1010 Ra ¼ 1011).

Fig. 21. Comparison of the budget of v 0h0þ at x ¼ 0:8 : (a) Pþ
h2 Pþ

h2 (b) �eþh2 Dtþ
h2 Dmþ

h2 þ Daþ
h2 . The different Rayleigh numbers are

indicated by different line thickness ( Ra ¼ 108 Ra ¼ 1:58� 109 Ra ¼ 1010 Ra ¼ 1011).
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The spatial evolution of the turbulent kinetic energy bud-
get along the hot wall buoyant boundary layer is illustrated in
Fig. 19. As mentioned earlier, along the hot wall, the largest con-
tributor to the kinetic energy budget is the u0u0 component. This
explains the large similarity between the budget of kinetic energy
and the budget of u0u0 at the same location in Fig. 15.

Budget Eq. (17) was written without the historical split of
velocity-pressure gradient Pij as the sum of pressure-diffusion
and pressure-strain. As the latter is traceless, only pressure diffu-
sion remains in the turbulent kinetic energy budget. The pressure
diffusion term Dp

k arises from the wall normal pressure diffusion
Dp

22. The observed contribution of the pressure diffusion term Dp
k

near the wall is much larger than in a fully developed channel flow
where this term is almost negligible when compared to other
terms.

As regards the spatial development of the turbulent kinetic
energy budget term, the most important aspect is the magnitude
of the buoyancy production in the lower part of the cavity
ðx ¼ 0:2Þ. This term is actually the dominant production mecha-
nism in the boundary layer. From a turbulence modelling perspec-

tive, this means that underestimation of u0h0 will lead to a serious
under prediction in the turbulent kinetic energy level and most
probably a delay in the location of turbulence enhancement
observed in Fig. 5b and in the local extrema in Nusselt number
illustrated in Fig. 4.

3.4.3. Turbulent heat flux budgets

The transport equation for turbulent heat flux u0h0 is given in Eq.
(21) and its budget presented in Fig. 20. Barhaghi and Davidson



Fig. 22. Comparison of the budget of h0h0þ at x ¼ 0:8 : (a) Pþ
hh �eþhh(b) Dtþ

hh Daþ
hh . The different Rayleigh numbers are indicated by different line

thickness ( Ra ¼ 108 Ra ¼ 1:58� 109 Ra ¼ 1010 Ra ¼ 1011).

Table 4
Summary of the simulation parameters used for the simulation of the Trias cavity.

Ra 2� 109

Pr 0:71
Lx=H; Ly=H; Lz=H
� � ð1:0;0:25;0:25Þ

ðNx;Ny;NzÞ ð1025;513;128Þ
Dt 6� 10�4

bs 0:05
Dtdev 250
Dtavg 550
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[36] did not provide the budget for this component arguing it is
unimportant, because in the mean temperature equation solved
in a RANS framework, this term vanishes in the divergence of the
turbulent heat fluxes. However, as discussed earlier, this compo-
nent was shown to be very important for the predictions of the
buoyancy production term both in the u0u0 budget and more
importantly in the turbulent kinetic energy budget. The term is
therefore extremely important even within the common frame-
work of two-equations based eddy-viscosity models.
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The shear production term exhibits a negative minimum in the

inner layer and a positive maximum in the outer layer. This pro-
duction term can be approximated as follows:

Ph1 � �u0v 0 @H
@y

� v 0h0
@U
@y

ð22Þ

Both terms in Eq. (22) are important. The large negative values in
the inner region mostly arises from the second term in Eq. (22)

because v 0h0 is positive across the entire boundary layer and
@U=@y is positive in the inner layer. Since @H=@y is negative up to
the edge of the outer layer, the first term can also be negative in
the vicinity of the wall in the case where u0v 0 is negative. This occurs
only at the highest Rayleigh numbers as seen in Fig. 14. This
explains the amplification of the negative production region as
the Rayleigh number is increased. The second aspect that tends to
contribute to this phenomena is the position of the maximum of

v 0h0 illustrated in Figs. 11 and 13. For all Rayleigh numbers the max-

imum of v 0h0 is in the outer layer but as the Rayleigh number is
increased, the gap between the maximum velocity and the maxi-

mum of v 0h0 tends to reduce. This yields higher value of v 0h0 in the
region where @U=@y is positive, therefore enhancing the negative
contribution of the second term in Eq. (22).

In comparison, the budget of v 0h0 is much simpler as shown in
Fig. 21. The two dominant terms in balance are the production
Ph2 and the pressure term Ph2. The production term Ph2 can be
approximated as follows:

Ph2 � �v 0v 0 @H
@y

ð23Þ

The variation of temperature gradient are significant only in the
outer region of the boundary layer, which explains why the Ph2

profile resembles the v 0v 0 profile for approximately yþ < 10. The
other terms of the budget are mostly negligible for yþ > 10. Very
close to the wall, the turbulent dissipation eh2 is in balance with
the viscous diffusion term Dm

h2. In the outer layer, as the Rayleigh
number increases, the magnitude of the turbulent diffusion term
Dt

h2 tends to decrease.

3.4.4. Temperature variance budget

The normalised transport equation for temperature variance h0h0

is given in Eq. (24). The associated budget is shown in Fig. 22.

@h0h0

@t
þ Uk

h0h0

@xk|fflfflffl{zfflfflffl}
Chh

¼ �2 h0u0
k

@H
@xk

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Phh

� 2

Ra1=2
@h0

@xk

@h0

@xk|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
�ehh

þ 1

Ra1=2
@2h0h0

@xk@xk|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Da
hh

þ @h0h0uk

@xk|fflfflffl{zfflfflffl}
Dt
hh

ð24Þ
Apart from the lowest Rayleigh number, the temperature vari-

ance presents the highest level of self-similarity among all the bud-
gets based on the present wall units inner scaling. This is in



Fig. 23. Comparison of the first order moments against the DNS data of Trias [19] at different cavity heights (x0 ¼ 0:1� 0:2� 0:3� 0:4� 0:5� 0:6� 0:7� 0:8� 0:9Þ: (a)
Mean vertical velocity U (b) Mean temperature H ( Data of Trias Present simulation).

Fig. 24. Comparison of the Nusselt number and temperature stratification against the DNS data of Trias [19]: (a) Mean Nusselt number Nu ðx;0Þ (b) Mean temperature
stratification H x;0:125ð Þ ( Data of Trias Present simulation).
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Table 5
Summary of the simulations used to assess the grid-dependence of the results. Same notation as in Fig. 1 and Table 1 are used.

Simulation Lz=H Nx � Ny � Nz bs Dt Dtdev Dtavg

Mesh 1 0.8 513� 513� 128 0.12 1:0� 10�3 100 125

Mesh 2 0.4 1025� 1025� 64 0.12 2:5� 10�4 20 100

Mesh 3 0.4 1025� 513� 128 0.1 7� 10�4 20 160

Fig. 25. First order moments comparison between meshes ( Mesh 1 Mesh 2 Mesh 3): (a) and (b) Mean temperature at cavity mid-height; (c) and (d)
Mean vertical velocity at cavity mid-height; (e) Mean temperature profile at cavity mid-width; (f) Nusselt number on the hot wall.

316 F. Sebilleau et al. / International Journal of Heat and Mass Transfer 123 (2018) 297–319
agreement with the observations made earlier about the mean
temperature and temperature variance profiles. The production
term Phh can be approximated:

Phh � �v 0h0
@H
@y

ð25Þ

The peak of production is in the outer layer for all Rayleigh num-
bers except 108, which is in agreement with the observations made
in Figs. 11 and 13 regarding the position of the maximum of tem-
perature variance. Near the wall, as expected from the Taylor
expansion of the budget terms, the turbulent dissipation ehh and
the viscous diffusion Dm

hh are dominant and exactly in balance at
the wall. The turbulent diffusion term Dt

hh is non negligible, even
at the highest Rayleigh number and acts as a sink term around
the location of the production extrema. It redistributes energy to
the inner layer, which is represented by a maximum around yþ � 5.



Fig. 26. Second order moments comparison at cavity mid-height in the vicinity of the hot wall ( Mesh 1 Mesh 2 Mesh 3): (a) urms (b) v rms (c) u0v 0

(d) hrms (e) u0h0 (f) v 0h0 .
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4. Conclusion

In the present paper, a set of highly resolved Direct Numerical
Simulations was carried out in a differentially heated cavity under
the Boussinesq approximation for Prandtl number Pr ¼ 0:71 and
Rayleigh numbers ranging between 108 and 1011. This includes
the highest Rayleigh number ever reached numerically in a square
cavity configuration.

High Rayleigh number effects were investigated in the more
ideal configuration where a linear temperature variation is pre-
scribed on the horizontal walls. The computations include first
and second order statistical moments as well as the full budgets
of all second order moments. These budgets revealed the impor-
tance of the buoyancy production terms over the entire range of
Rayleigh numbers covered in the present paper. This highlights
the importance of the modelling of the turbulent heat flux compo-
nent perpendicular to the temperature gradient, which is known to
be the most difficult to represent accurately. Another interesting
observation arose from the simulation at the highest Rayleigh

number. A negative region of u0h0 appeared in the vicinity of the
vertical wall for Ra ¼ 1011. Such negative values of streamwise
heat flux were observed in 5:1 cavities by both Barhaghi and
Davidson [36] and Trias et al. [20,21], but only in the transitional
range of their boundary layers. In the present case, this is observed
in the part of the boundary layer where turbulence is most
developed.

The motivation for the present paper was to contribute to the
understanding of the flow physics in square differentially heated
cavity from a turbulence modelling perspective, knowing that this
configuration has been, over the years, one of the most challenging



Fig. 27. Computed grid to Kolmogorov length scale ratio DxDyDzð Þ1=3=g obtained for
the simulation on mesh 3.
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to model with single-point closure. The database associated with
the present paper is therefore expected to be a valuable contribu-
tion to the turbulence modelling community for both the bench-
marking of existing turbulence models and the development of
new models.
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Appendix A. Validation of the DNS code incompact3d for the
simulation of buoyancy driven flows in differentially heated
cavities

In order to demonstrate the ability of incompact3d to accurately
predict the flow in differentially heated cavities, a comparison was
carried out against the existing and acknowledged DNS simulation
of Trias [19] in a 4:1 cavity with adiabatic boundary conditions on
the horizontal walls. The simulation parameters used for the sim-
ulation with incompact3d are given in Table 4 below.

The dimensions of the domain as well as the time averaging
window used are simply taken as it is from Trias et al. [19]. The
excellent agreement with Trias et al. [19] of the present simulation
is shown in Figs. 23 and 24.
Appendix B. Grid dependence study at Ra ¼ 1:58� 109

As mentioned in Section 2.3, a grid dependence study specific to
the simulation of the flow in a differentially heated cavity was
1 http://www.imperial.ac.uk/admin-services/ict/self-service/research-support/hpc/
.

carried out on three different meshes on a similar case presented
in greater detail by Sebilleau [41]. The simulation parameters used
are defined in Table 5 below. The comparison of the first and sec-
ond order statistical moment obtained for the three different
meshes is presented in Figs. 25 and 26 and shows an indisputable
grid convergence of the results. The computed grid to Kolmogorov
length scale ratio obtained in the present analysis is shown in
Fig. 27. The values are of the same order as what is presented in
Fig. 2 for the four simulations representing the core of the paper
and therefore strengthen the confidence in the new data obtained
at high Rayleigh number.
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