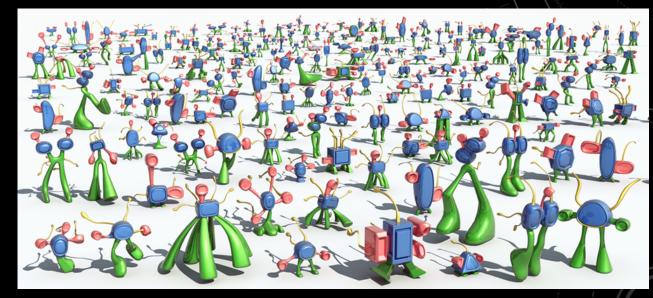


An integrated software solution for improving neuroimaging data archival, management, and processing

- The experience from the Queen Square MS Centre

Dr Baris Kanber, Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London



Why was such a solution required?

- There were increasing numbers of methods available for processing neuroimaging data.
- Additionally, increasingly larger datasets were being acquired in clinical trials and research projects.
- It was difficult and cumbersome to manually manage and process such large datasets with different, and often linked, processing methods.

Figure: Irons, tele-aliens, and chairs. Copyright © Interdisciplinary Research Center, School of Computer Science and Technology, Shandong University

Why was such a solution required?

- Often, data and processing efforts were duplicated by researchers and it was difficult for a new-starter to make sense of what data and results were already available to him/her.
- Furthermore, variations between software versions and pipeline parameters used by researchers could bias the results.
 - Controlling for inter-operator variability required time and effort.

Background

Tree structure for imaging data management:

- Adequate for small projects
 - Project root
 - Patient A
 - Visit 1
 - DICOM files
 - NIFTIs
 - Files resulting from processing
 - Minit 2
 - Visit 2
 - ..
 - Patient B
 - Patient C
 - ...

Background

• Becomes troublesome for larger projects or in multi-user environments

Example

0801_T1vol/
0901_DTI/
0902/
1001_b0/
1101/
1201/
1301_MT/
A1120130_B7033991-2010-00475_344776560_000601_000006-DC-Gm.roi
cortcomp_475/
DTI_analysis_FSL/
fill_t1_lesions/
FlairasDIR.nii
FlairasPSIR.nii
mtr-vbm/
outputResult.nii
PSIR-lobar-masks/
roi_varun/
T2_222_bet.nii

• The directories starting with numbers appear to be individual scans but it is pretty much anybody's guess what the rest of the files/directories are.

B0060473-2012-01536/0801_T1vol:

20120305_101354MR001SAGT13DGRE1mmisoSENSEA9380733s801a1008.nii.gz

B0060473-2012-01536-T1vol_axial.roi

B0060473-2012-01536_T1vol_ROImask.hdr

B0060473-2012-01536_T1vol_ROImask.img

co20120305 101354MR001SAGT13DGRE1mmisoSENSEA9380733s801a1008.nii.gz o20120305_101354MR001SAGT13DGRE1mmisoSENSEA9380733s801a1008_mixeltype.nii o20120305 101354MR001SAGT13DGRE1mmisoSENSEA9380733s801a1008 mixeltype.nii.gz o20120305_101354MR001SAGT13DGRE1mmisoSENSEA9380733s801a1008.nii.gz o20120305 101354MR001SAGT13DGRE1mmisoSENSEA9380733s801a1008 pve 0.nii o20120305_101354MR001SAGT13DGRE1mmisoSENSEA9380733s801a1008_pve_0.nii.gz o20120305 101354MR001SAGT13DGRE1mmisoSENSEA9380733s801a1008 pve 1.nii o20120305_101354MR001SAGT13DGRE1mmisoSENSEA9380733s801a1008_pve_1.nii.gz o20120305_101354MR001SAGT13DGRE1mmisoSENSEA9380733s801a1008_pve_2.nii o20120305 101354MR001SAGT13DGRE1mmisoSENSEA9380733s801a1008 pve 2.nii.gz o20120305_101354MR001SAGT13DGRE1mmisoSENSEA9380733s801a1008_pveseg.nii o20120305 101354MR001SAGT13DGRE1mmisoSENSEA9380733s801a1008 pveseg.nii.gz o20120305_101354MR001SAGT13DGRE1mmisoSENSEA9380733s801a1008_seg_0.nii.gz o20120305 101354MR001SAGT13DGRE1mmisoSENSEA9380733s801a1008 seg 1.nii.gz o20120305 101354MR001SAGT13DGRE1mmisoSENSEA9380733s801a1008 seg 2.nii.gz o20120305_101354MR001SAGT13DGRE1mmisoSENSEA9380733s801a1008_seg.nii o20120305_101354MR001SAGT13DGRE1mmisoSENSEA9380733s801a1008_seg.nii.gz

• Inside a sub-directory, there appear to be many files that are either duplicated or look very similar.

B0060473-2012-01535/fill_t1_lesions: Which scan is this?

B0060473-2012-01536_t1vol_axial.nii

B0060473-2012-01536_t1vol_bet_mask.nii

B0060473-2012-01536_t1vol_bet_mixeltype.nii.gz

B0060473-2012-01536_t1vol_bet.nii

 $B0060473\mapstoremath{-}2012\mapstoremath{-}01536\mapstoremath{-}t1\mbox{vol}\mbox{bet}\mbox{pve}\mbox{-}0.nii.gz$

B0060473-2012-01536_t1vol_bet_pve_1_c100.nii.gz

B0060473-2012-01536_t1vol_bet_pve_1.nii.gz

B0060473-2012-01536_t1vol_bet_pve_2.nii.gz

B0060473-2012-01536 t1vol bet pveseg.nii.gz

B0060473-2012-01536_t1vol_bet_seg_0.nii.gz B0060473-2012-01536_t1vol_bet_seg_1.nii.gz B0060473-2012-01536_t1vol_bet_seg_2.nii.gz B0060473-2012-01536_t1vol_bet_seg.nii.gz B0060473-2012-01536_T1vol_ROImask.hdr B0060473-2012-01536_T1vol_ROImask.img new_lfill_analyze/

Also exist in the upper level directory

PROBLEMS

- Data duplication
- Carrying out processing which has been done before
- Making sense of the data, and processing results that are available
- Processing/using wrong files

In essence,

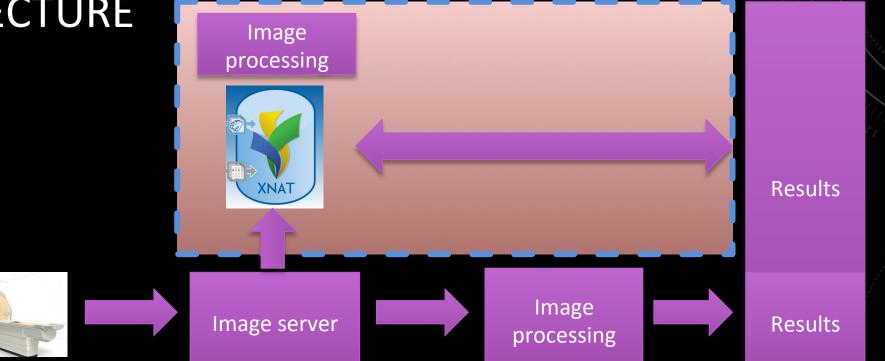
• Having a tree structure for imaging data and processing results is good practice but it is much better if it is actively managed...

l will,

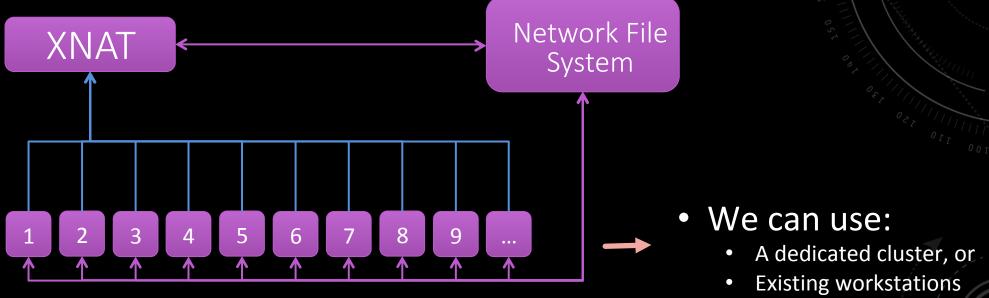
- Present the Queen Square MS Centre XNAT Platform
- Highlight our pleasant experience with it

11111

Methods


• Details to be presented by Dr Marc Modat later this afternoon.

ARCHITECTURE



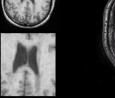
Processing Nodes (minimal Linux, 8GB Memory, 40 GB disk)

— Communications link

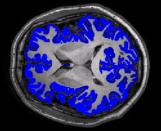
11111

—— Data link

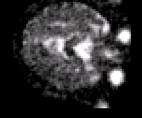
- We currently have 20 projects, 1123 subjects, and 3953 MRI sessions.
- ~10 users.



• Examples of automated processes we carry out:



lesion filling



brain parcellations and tissue segmentation

cortical thickness

mapping

brain sodium concentration maps

min

segmentations of hippocampi

The experience

- We no longer experience the problems commonly encountered in manual processing methods such as the processing of the wrong data, the use of wrong flags or parameters.
- We are saving a lot of time: during the automated processing, we use our time to work on other things.

Other benefits

- A central repository for everyone
- Avoids duplication of data and efforts
- Users can be assigned appropriate access rights to individual projects
- Ability to also store non-imaging data (e.g. clinical data, spreadsheets)

Other benefits

- Setup and run pipelines depending on project and requirements
- View data online, download or upload
- Can be searched easily

Overall,

• The automated system for cataloguing, archiving, and processing neuroimaging data has been more time- and resource-efficient than the manual methods that were previously in use.

Finally,

- Introduction of this service has helped to standardize results across studies, as the same processing pipelines, software versions and parameters are used for all the processing.
- We now have a centralised location for all the data and processing results for new studies.
- New starters can easily get access to the existing results, which has increased the speed and efficiency of this process.
- This has been very cost-effective: we used the existing computational resources in the MS Centre.

