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Background 

•  It is very important to be able to detect an imaging response to 
treatment in MS as imaging response often occurs before clinical 
response becomes material. 

•  However, bulk imaging measures such as the total lesion volume, the 
number of lesions, and brain parenchyma volume provide limited 
sensitivity for detecting an imaging response to treatment in MS. 
•  i.e. they are too reductive. 

•  We hypothesised that automated, high-dimensional analysis of clinical 
MRI can sensitively capture the imaging effect of an intervention. 



Approach 

•  Partition a collection of longitudinal scans in patients treated with 
natalizumab into sets that are either before or after the 
treatment boundary. 

•  Attempt to detect the treatment effect based on low- and high-
dimensional models of trajectories of change. 



Trajectories of Change 

Scan 1 Scan 2 Scan 3 Scan 4 

Treatment boundary 

Scan 5 

Total lesion volume  +ve 
Total brain volume  -ve 
Total brain disconnectome  +ve 
Number of lesions  +ve 
. 
. 
High-dimensional versions of the above 
 
 

Total lesion volume  -ve 
Total brain volume  +ve 
Total brain disconnectome  -ve 
Number of lesions  No change 
. 
. 
High-dimensional versions of the above 
 
 
 



Models 

•  Low dimensional: 
•  Total lesion volume 
•  Number of lesions 
•  Total brain volume 
•  Total brain disconnectome 
•  Age and gender 

•  High dimensional: 
•  Regional brain volumes  
•  Regional brain disconnectome map 
•  Best features from the above two 



Brain Parcellation and Lesion Segmentation 

Brain Parcellation 
 

(Cardoso et al., 
IEEE Trans Med 
Imaging, 2015) 

Level 1 
segmentation 

 
(Prados et al. ISBI 
Longitudinal MS 

Lesion 
Segmentation 

Challange, 2015) 

Final segmentation 
 

(Sudre et al. IEEE 
Trans Med Imaging, 

2015) 

T1-weighted 
structural scan 

T2-FLAIR 



Disconnectome 

Lesion mask 

“Brain, 
Connectivity, 
Behaviour” 
Toolkit 

Tractography from healthy 
subjects 

Disconnectome 
map 

Tractography image from: http://www.nrronline.org 
 



Inferential technique 

•  Classifiers: 
•  Support vector machines (rbf kernel). 
•  Extremely randomised decision trees (Tree-splitting metric: gini impurity). 

•  Bootstrapped cross-validation with fully held out test sets 



Dataset 

•  125 patients with remitting, relapsing MS  
•  Data acquired over 15 years 
•  80 female, 45 male 
•  Age at the start of treatment: mean: 38, range: 18-70 
•  166 pre-treatment, 413 post-treatment scans 
•  T1-weighted structural, and T2-FLAIR scans included 



Methods 

•  Adjusted for: 
•  Age, gender, scanner manufacturer, field strength, T1 voxel size, FLAIR 

voxel size, disease duration, and EDSS.  
•  …using residuals from Bayesian Penalised Regression Estimation. 

Figure above for the thalamus (right hemisphere) 
in a single patient. 



Results 

Fitted lines are obtained with Restricted Cubic Spline Regression 



Total lesion volume 
Pre-treatment        Post-treatment 

Total brain disconnectome 
Pre-treatment        Post-treatment 

Number of lesions 
Pre-treatment        Post-treatment 

Brain parenchyma volume 
Pre-treatment        Post-treatment 

Progression 

Recovery 
Recovery 

Recovery 

Recovery 

Volume loss 

Group-level histograms of 
trajectories for the low-
dimensional biomarkers. 

Progression 

Progression 

High-dimensional 
biomarkers are 
the equivalents 
of these for the 
various regions 
of the brain as 
opposed to the 
brain as a whole. 



Results 

•  Both the low and high-dimensional models could predict the imaging response 
to treatment: both ROC curves of both differed significantly from chance 
(P<0.01 for both). 

•  However, there was also a significant statistical difference between the ROC 
curves of the high- and low-dimensional models (P<0.01).  

•  The best high-dimensional model yielded a mean area under the ROC curve of 
0.843 (95% CI: 0.835-0.851) which was significantly higher than 0.700 (95% CI: 
0.691-0.709) obtained with the best low-dimensional model (P<0.01).  

** Two-sided, two-sample Kolmogorov-Smirnov tests. 



Results 

•  Figure left: 
•  Models are drawn in blue for the low-dimensional and red for the high-

dimensional and are: 
•  I (age and gender) 
•  II (the number of lesions) 
•  III (the total lesion volume) 
•  IV (brain volume) 
•  V (best low-dimensional) 
•  VI (regional brain volume trajectories) 
•  VII (regional disconnectome trajectories) 
•  VII (best high-dimensional).  

•  Classifiers are: SVM (unfilled bars), and ERT (filled bars). 

•  Although the ERT classifier outperformed SVM for the best models, the superior performance of the high-dimensional models was consistent 
for both classifiers. 



Results 

•  Performance of the best high-dimensional model surpassed that of the best low-
dimensional model across the entire range. 
•  Performance disparity increased with the number of patients. 
•  No evidence that a plateau had been reached. 

•  Limited gains in increasing the number of subjects if you remain low-
dimensional. 



Results 

•  Relative predictivities of the disconnectome 
trajectories vs. relative predictivities of the 
volume trajectories for the brain regions most 
influential for imaging response detection.  
•  Predictivities for each highly ranking brain 

region are in arbitrary units.  

•  The imaging features most relied upon by the 
best high-dimensional classifier were consistent 
with known patterns of lesion and parenchymal 
change in multiple sclerosis. 



Conclusion 

•  Therapeutic effects can be sensitively detected by high-
dimensional analysis of clinical neuroimaging. 

•  If it works for clinical imaging it is going to be even better for 
research imaging. 

•  We can monitor post-market much more sensitively than we 
currently do.  




