

High-fidelity Imaging Response Detection in Multiple Sclerosis

Dr Baris Kanber, Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London

Background

- It is very important to be able to detect an imaging response to treatment in MS as imaging response often occurs before clinical response becomes material.
- However, bulk imaging measures such as the total lesion volume, the number of lesions, and brain parenchyma volume provide limited sensitivity for detecting an imaging response to treatment in MS.
 - i.e. they are too reductive.
- We hypothesised that automated, high-dimensional analysis of clinical MRI can sensitively capture the imaging effect of an intervention.

Approach

- Partition a collection of longitudinal scans in patients treated with natalizumab into sets that are either before or after the treatment boundary.
- Attempt to detect the treatment effect based on low- and highdimensional models of trajectories of change.

Trajectories of Change

Scan 3

Total lesion volume +ve Total brain volume -ve Total brain disconnectome +ve Number of lesions +ve

High-dimensional versions of the above

Treatment boundary

Total lesion volume -ve Total brain volume +ve Total brain disconnectome -ve Number of lesions No change

High-dimensional versions of the above

Models

• Low dimensional:

- Total lesion volume
- Number of lesions
- Total brain volume
- Total brain disconnectome
- Age and gender
- High dimensional:
 - Regional brain volumes
 - Regional brain disconnectome map
 - Best features from the above two

Brain Parcellation and Lesion Segmentation

Disconnectome

Lesion mask

Tractography from healthy subjects

Tractography image from: http://www.nrronline.org

"Brain, Connectivity, Behaviour" Toolkit

Disconnectome map

Inferential technique

- Classifiers:
 - Support vector machines (rbf kernel).
 - Extremely randomised decision trees (Tree-splitting metric: gini impurity).
- Bootstrapped cross-validation with fully held out test sets

Dataset

• 125 patients with remitting, relapsing MS

- Data acquired over 15 years
- 80 female, 45 male
- Age at the start of treatment: mean: 38, range: 18-70
- 166 pre-treatment, 413 post-treatment scans
- T1-weighted structural, and T2-FLAIR scans included

Methods

Figure above for the thalamus (right hemisphere) in a single patient.

• Adjusted for:

- Age, gender, scanner manufacturer, field strength, T1 voxel size, FLAIR voxel size, disease duration, and EDSS.
- ...using residuals from Bayesian Penalised Regression Estimation.

Fitted lines are obtained with Restricted Cubic Spline Regression

Total lesion volume

Pre-treatment

Total brain disconnectome Pre-treatment

Post-treatment

Brain parenchyma volume

Group-level histograms of trajectories for the lowdimensional biomarkers.

> High-dimensional biomarkers are the equivalents of these for the various regions of the brain as opposed to the brain as a whole.

Number of lesions

- Both the low and high-dimensional models could predict the imaging response to treatment: both ROC curves of both differed significantly from chance (*P*<0.01 for both).
- However, there was also a significant statistical difference between the ROC curves of the high- and low-dimensional models (P<0.01).
- The best high-dimensional model yielded a mean area under the ROC curve of 0.843 (95% CI: 0.835-0.851) which was significantly higher than 0.700 (95% CI: 0.691-0.709) obtained with the best low-dimensional model (*P*<0.01).

** Two-sided, two-sample Kolmogorov-Smirnov tests.

- Figure left:
 - Models are drawn in *blue* for the low-dimensional and *red* for the high-dimensional and are:
 - I (age and gender)
 - II (the number of lesions)
 - III (the total lesion volume)
 - IV (brain volume)
 - V (best low-dimensional)
 - VI (regional brain volume trajectories)
 - VII (regional disconnectome trajectories)
 - VII (best high-dimensional).
 - Classifiers are: SVM (unfilled bars), and ERT (filled bars).

• Although the ERT classifier outperformed SVM for the best models, the superior performance of the high-dimensional models was consistent for both classifiers.

- Performance of the best high-dimensional model surpassed that of the best lowdimensional model across the entire range.
 - Performance disparity increased with the number of patients.
 - No evidence that a plateau had been reached.
- Limited gains in increasing the number of subjects if you remain lowdimensional.

- Relative predictivities of the disconnectome trajectories vs. relative predictivities of the volume trajectories for the brain regions most influential for imaging response detection.
 - Predictivities for each highly ranking brain region are in arbitrary units.
- The imaging features most relied upon by the best high-dimensional classifier were consistent with known patterns of lesion and parenchymal change in multiple sclerosis.

Conclusion

- Therapeutic effects can be sensitively detected by highdimensional analysis of clinical neuroimaging.
- If it works for clinical imaging it is going to be even better for research imaging.
- We can monitor post-market much more sensitively than we currently do.

References					
<u>Rojkova</u> et al.	Atlasing the frontal lobe connections and their variability due to age and education: a spherical deconvolution tractography study.	Brain <u>Struct Funct</u> .	2016	221(3)	1751-66
<u>Thiebaut</u> de <u>Schotten</u> et al.	A <u>lateralized</u> brain network for <u>visuospatial</u> attention.	Nat Neurosci.	2011	14(10)	1245-6
Klein et al.	Evaluation of 14 <u>nonlinear</u> deformation algorithms applied to human brain MRI registration.	Neuroimage	2009	46(3)	786-802
Avants et al.	A reproducible evaluation of <u>ANTs</u> similarity metric performance in brain image registration.	Neuroimage	2011	54(3)	2033-44
Wang et al.	Diffusion Toolkit: A Software Package for Diffusion Imaging Data Processing and Tractography	Proc. Intl. Soc. Mag. Reson. Med.	2007		3720
Thiebaut de Schotten et al.	Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography.	Neuroimage	2011	54(1)	49-59
Thiebaut de Schotten et al.	From Phineas Gage and Monsieur Leborgne to H.M.: Revisiting Disconnection Syndromes.	Cereb Cortex	2015	25(12)	4812-27
Oliphant T.E.	A Bayesian perspective on estimating mean, variance, and standard-deviation from data	http://scholarsarchive. byu.edu/facpub/278	2006		
Geurts et al.	Extremely randomized trees	Mach Learn	2006	63(1)	3-42
Chang and Lin	LIBSVM : a library for support vector machines.	ACM Transactions on Intelligent Systems and Technology	2011	2	1-27
Pedregosa et al.	Scikit-learn: Machine Learning in Python	JMLR	2011	12	2825-2830
Modat et al.	Fast free-form deformation using graphics processing units	Computer methods and programs in biomedicine	2009	98(3)	2009
<u>Kanber</u> et al.	An integrated imaging informatics software platform to improve the analysis of clinical trials and research data in MS	ECTRIMS	2016		