

Institut national de la santé et de la recherche médicale

How a toolkit of diverse MS lesions segmentation methods can support the translation to the clinic

F. Galassi, O. Commowick, C. Barillot

Introduction

- Multiple Sclerosis (MS):
 - Chronic inflammatory-demyelinating CNS disease
 - Lead to acute handicap in young adults (high prevalence in Brittany)
 - Most frequent CNS disease in young adults
- MRI for MS lesion evaluation:
 - clinical diagnosis
 - disease progression
 - treatment monitoring

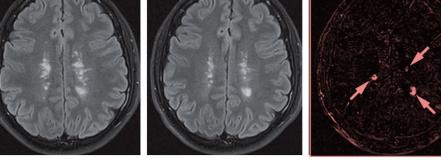
Segmentation Methods:

b)

Wattjes, M. P. et al. (2015)

- guiding clinicians in the medical decision process
 - manual segmentation:
 - time consuming task
 - intra- inter- expert variability

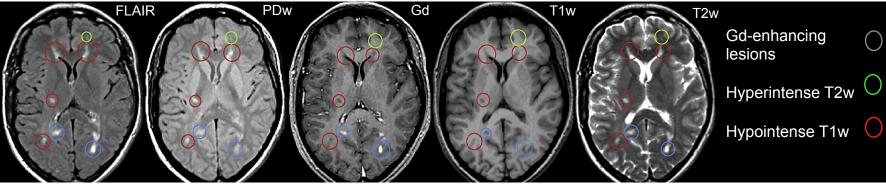
Nature Reviews | Neurology



Ínría VisAGe

Introduction

- Automatic Segmentation methods:
 - Multimodal intensity information

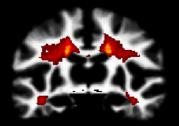


From: Garcia-Lorenzo et al. Review of automatic segmentation methods of WM lesions on conventional MRI. Medical Image Analysis, 2013.

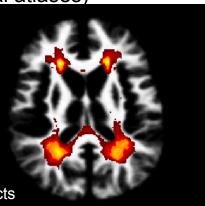
- Spatial information:
 - local neighborhood level (e.g. MRF, Graph Cut)
 - anatomical level (probability templates, topological atlases)

VisAGeS

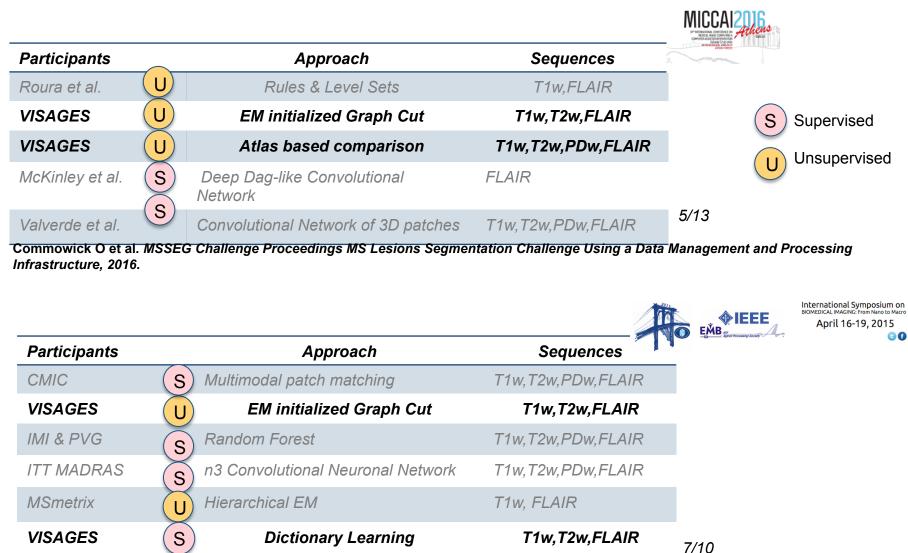
Ínría



 P_{iMS} Priors of MS lesions locations based on 72 subjects

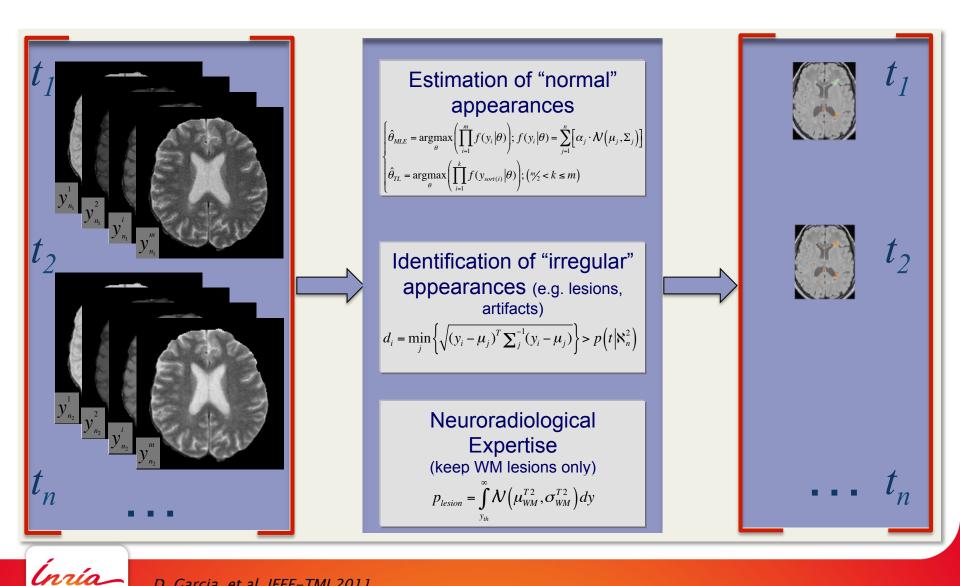


Automatic Segmentation Methods in Visages



Carass A et al. Longitudinal multiple sclerosis lesion segmentation: Resource and challenge, Neuroimage, 2017

Method #1 :MS Lesions as outliers from normal appearing brain tissues



D. Garcia. et al. IEEE-TMI 2011

EM-initialized Graph Cut:

• Estimate NABT 3-class Gaussian Mixture model (multivariate):

 $f \mathbf{y} \downarrow \mathbf{i} \quad \theta = \sum_{j=1}^{j=1} 13 \, \mathbb{I} \, \alpha \downarrow_j \, N(\mu \downarrow_j, \Sigma \downarrow_j)$

- Maximum Likelihood principle with Expectation Maximization
- MS lesions as outliers, Trimmed EM segmentation:

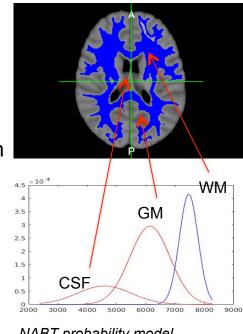
 $\mathsf{TL}(\theta) = \arg\max[i=1 \uparrow k = f \, \mathbf{y} \downarrow \mathbf{v}(\mathbf{i}) \quad \theta$

- Reject h = (n k/n) voxels with largest residuals
- Compute EM segmentation on remaining ones
- Output:

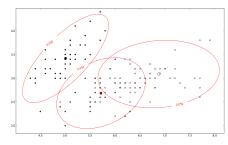
Ínría

- Mean μ and covariance Σ of each class j
- Mahalanobis distances of each voxel to each distribution:

 $d\downarrow i = \sqrt{(\mathbf{y}\downarrow \mathbf{i} - \mu \downarrow \mathbf{j})} \uparrow T \Sigma \downarrow \mathbf{j} \uparrow -1 (\mathbf{y}\downarrow \mathbf{i} - \mu \downarrow \mathbf{j})$



NABT probability model, FGM model



Mahalanobis distance, 3 classes.

D. Garcia. et al. IEEE-TMI 2011

EM-initialized Graph Cut:

- Image as a Graph:
 - Weight of a n-link represents voxels similarity
 - Compute the optimal cut between MS lesions and background

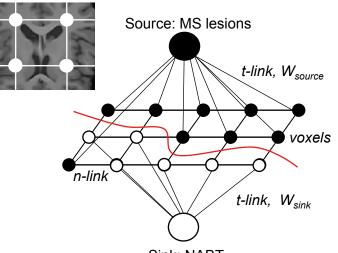
t-links weights:

Ínnía

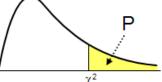
VisAGeS

- $\chi 12$ p-value *Mahalanobis* : probability not to fit into NAB
- MS lesions have high p-value Mahalanobis • $W \downarrow sink = \beta(1 - \min_{\text{Intensities prior}} (p - valueMahalanok)$
- Distinguish from other outliers using hyperintensity

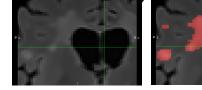
<u>rce=min{p-valueMahalanobis,W↓T2W,W↓FLAIR}</u>



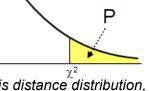
Sink: NABT



Mahalanobis distance distribution, p-value

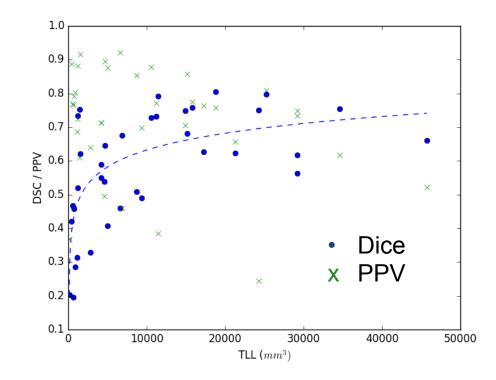


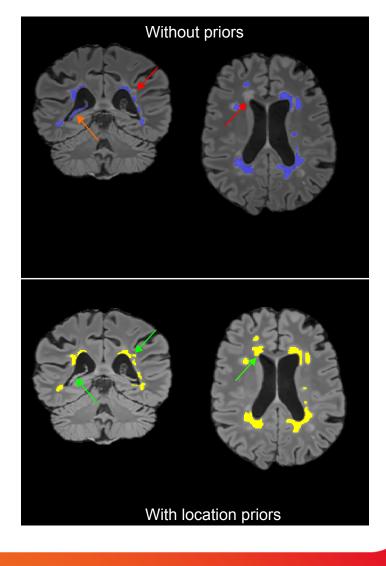
MS hyperintensity, FLAIR mage



EM-initialized Graph Cut:

- Limitations: tuning of parameters for different lesion loads.
- Accuracy increases with TLL
- Priors can improve accuracy



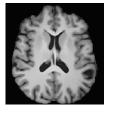


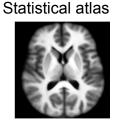
Method #2 : Atlas-based comparison segmentation

- **Approach**: MS lesions as outliers to normal control subjects
- Intensity normalization:
 - Estimate NABT 3-class GM model (multivariate):

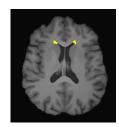
f y i $\theta = \sum_{j=1}^{j=1} 13 \text{ and } j N(\mu \downarrow j, \Sigma \downarrow j \text{ Intensity})$ Normalized Patient

- using Notsu et al. γ -loss EM robust to outliers
- Output: Mean μ and covariance Σ of each class
 - Linear regression on means for normalization
- Output: intensity-normalized image patients



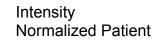


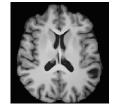
Healthy Control Subjects

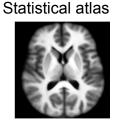


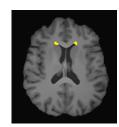
Atlas-based comparison segmentation

- Three steps segmentation:
 - Registration on healthy controls
 - Non-linear registration
 - Voxel-wise computation (Mahalanobis distance)
 - Patient vs Controls mean and variance
 Derivation of p-value of abnormality presence
 - Corrected for multiple comparisons
 - Post-processing :
 - remove lesions too small or touching the brain border
 - keep lesions inside a probable lesions mask
 - Towards a locally multivariate approach
 - A contrario approach [Maumet et al. Neuroimage 2016]



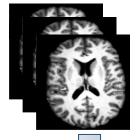






Ínría Visages

Healthy Control Subjects



Machine learning: Probabilistic One Class SVM for Automatic Detection of MS Lesions

Goal: Propose an automatic framework for MSL Detection based on multichannel MRI patch based information

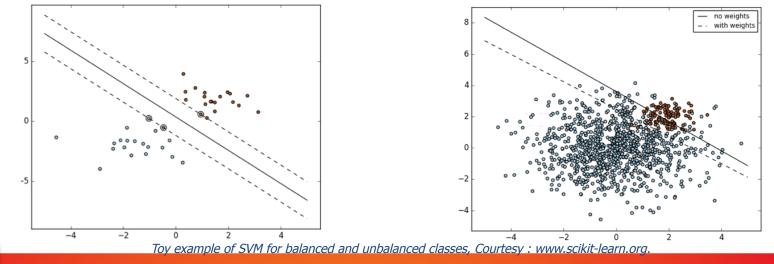
State-of-the-art machine learning algorithms:

- SVM [Vapnik et al.1995], Logistic Regression [Zhang et al.2002], Neural Network...
- Works well in practice when training examples in classes are balanced

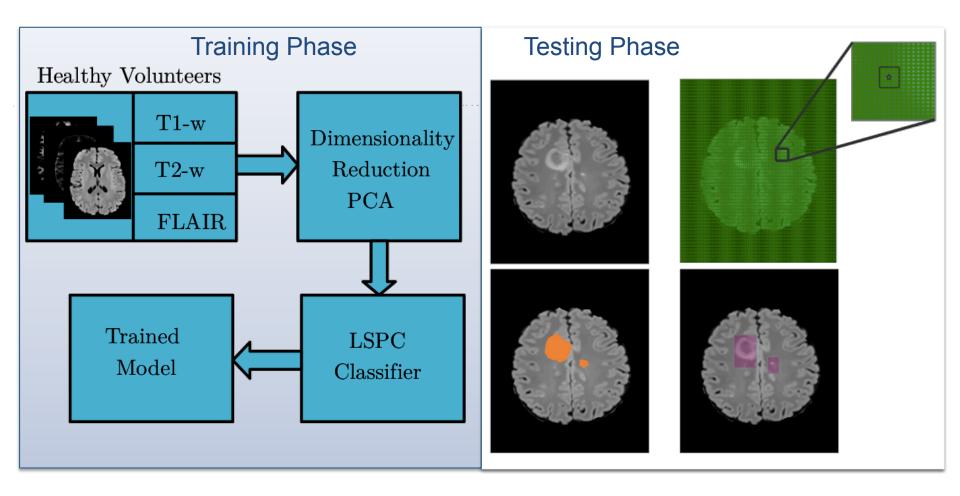
If not ?

Ínnía

- Class Imbalance \Rightarrow under-/over-fitting of the Classifier [Chawala 2005]
- Class imbalance between Normal Brain Tissues and MS lesions
- Solution : A higher misclassification penalty on the minority class (MS lesion)

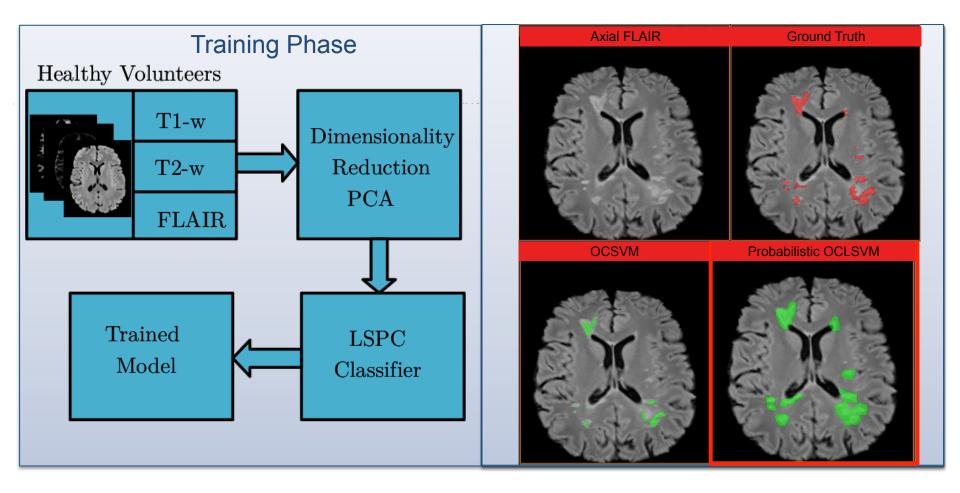


Method #3 : Probabilistic One Class SVM for Automatic Detection of MS Lesions



[Karpate et al, 2015]: Probabilistic One Class Learning for Automatic Detection of MS Lesions. Proceedings of ISBI 2015

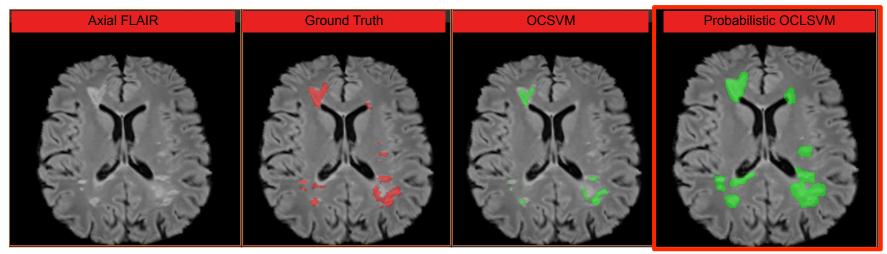
Method #3 : Probabilistic One Class SVM for Automatic Detection of MS Lesions



[Karpate et al, 2015]: Probabilistic One Class Learning for Automatic Detection of MS Lesions. Proceedings of ISBI 2015

Method #3 : Probabilistic One Class SVM for Automatic Detection of MS Lesions

- Goal: Robust detection of lesions as deviation from normal appearing tissues
- Challenge: overcome learning approaches problems with MS lesions
 - Two-class imbalance problem (much more normal samples than lesions)
- Contributions:
 - Robust spatio-temporal multi-modal intensity normalization for T1-Gd and longitudinal MS lesion detection
 - One class learning for lesion detection from multidimensional MRI
 - Dimensionality reduction of the feature space
 - Lesions modeled as the complementary of the normal class
 - Testing by comparing patient patches characteristics to the pdf of the normal class

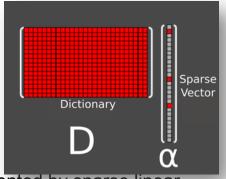


[Karpate et al. 2015]: Probabilistic One Class Learning for Automatic Detection of MS Lesions. Proceedings of ISBI 2015

Method #4 : Detection of MS lesions via competitive Dictionary Learning

- Goal: New sparse representation and dictionary learning method for classification
- Challenge: competitive dictionary learning
 - One dictionary per class, classification decision based on reconstruction error
 - Representative Dictionary Learning : good for denoising, inpainting, ... How to optimize DL for classification
- Sparse Representation: SR represents signals using linear combination of few basis elements in a set of redundant basis functions:
 - SR is an optimization problem (ε is an approximation error):

$$\min_{\alpha} \|\alpha\|_{0} \ s.t. \ \mathbf{x} = \mathbf{D}\alpha \ or \ \|\mathbf{x} - \mathbf{D}\alpha\|_{2}^{2} \leq \varepsilon$$



• Related Dictionary learning (DL) : Finds D such that each signal can be represented by sparse linear combination of its atoms: $\sum_{m=1}^{m} ||_{m} c_{m} = \mathbf{D} c_{m} c_{m} ||_{m} c_{m}$

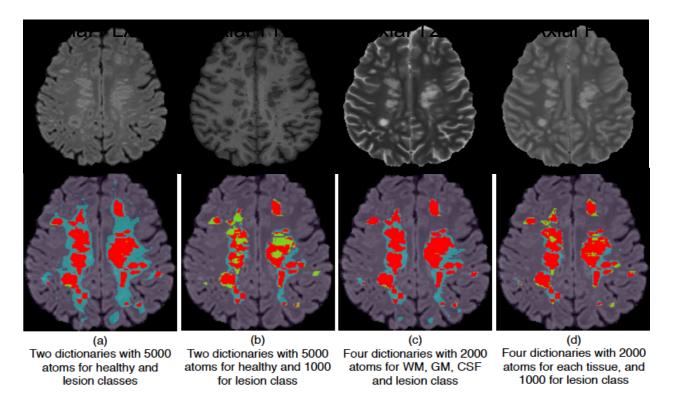
$$\min_{\mathbf{D}^{c},\left\{\alpha_{i}^{c}\right\}_{i=1,...,m}}\sum_{i=1}^{c}\|\mathbf{x}_{i}^{c}-\mathbf{D}^{c}\alpha_{i}^{c}\|_{2}^{2}+\lambda\|\alpha_{i}^{c}\|_{1}$$

Classification using DL: find k classes such as : $k = \arg\min_{c} \|\mathbf{y} - \mathbf{D}^{c} \alpha^{c}\|_{2}^{2}$

[Deshpande et al, 2015]: Classification of Multiple Sclerosis Lesions using Adaptive Dictionary Learning. Computerized Medical Imaging and Graphics, (Dec.), 2015

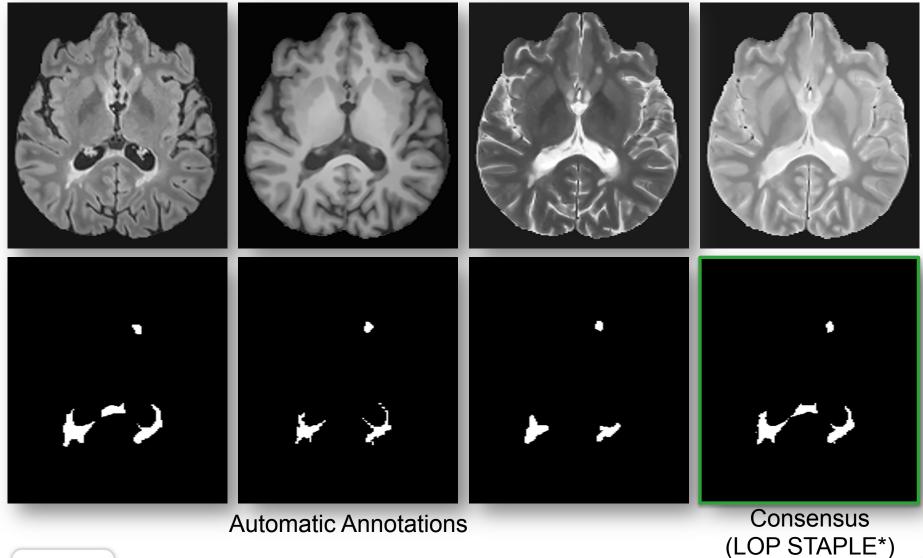
Method #4 : Detection of MS lesions via competitive Dictionary Learning

- Goal: New sparse representation and dictionary learning method for classification
- Contribution:
 - Adaptation of dictionary size to a class complexity: improved over standard DL or discriminative methods
 - Detection of MS Lesions by classification on multimodal MRI images



[Deshpande et al, 2015]: Classification of Multiple Sclerosis Lesions using Adaptive Dictionary Learning. Computerized Medical Imaging and Graphics, (Dec.), 2015

Σ *method*_{*i*} : Merging MS lesions Annotations



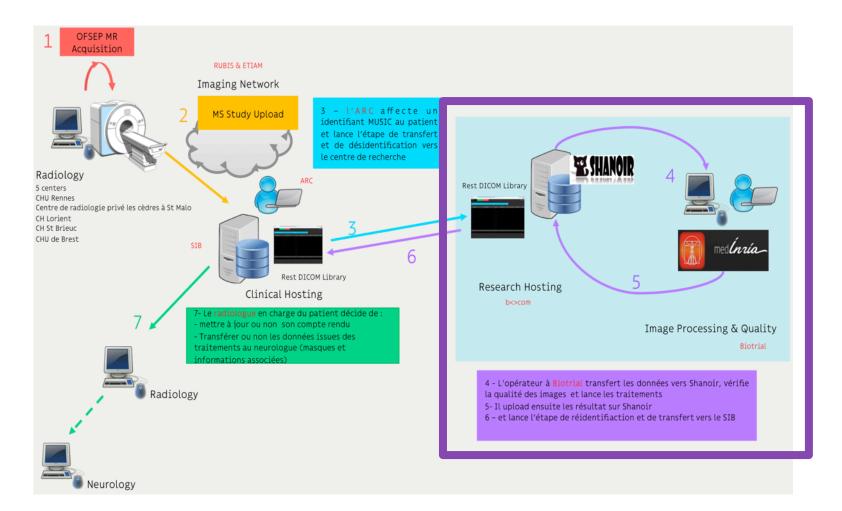
Akhondi-Asl A, Hoyte L, Lockhart ME, Warfield SK. A Logarithmic Opinion Pool Based STAPLE Algorithm For The Fusion of Segmentations With Associated Reliability Weights, IEEE Trans Med Imaging. 2014

Conclusions

• Challenges:

- Multicenter datasets, Availability (MICCAI challenges)
- Several manual segmentations (STAPLE,...)
- Accuracy: Multiple metrics (DSC, F1,...)
- Robustness: Large multicenter database (MUSIC) combination of methods to compensate for limitations of each methods
 - ???

MUSIC étape 4 : analyse des images



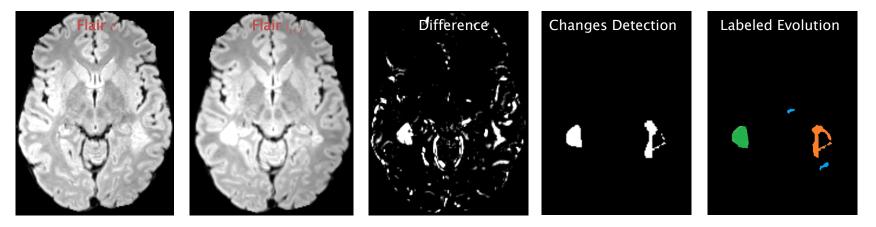
Ínría

MUSIC étape 4 : analyse des images

Contrôle qualité des images

Segmentation des lésions

Détection de l'évolution des lésions



Basées sur algorithmes développés au laboratoire,

VisAGeS

Etape 4 : une étape délicate...

Validation et amélioration de l'outil de segmentation

- Financement d'un poste d'ingénieur de recherche pendant 2 ans
- PHRC inter-régional obtenu en 2016

ETUDE POCADIMS

Performance d'un outil d'aide au diagnostic des lésions visualisées en IRM dans le diagnostic et le suivi de la SEP (CADIMS) en pratique clinique

Objectif principal

Evaluer, en aveugle, la performance diagnostique de l'outil CADIMS du projet MUSIC pour la détection de lésions de SEP sur des IRM cérébrales réalisées en corratique courante en comparaison à un consensus d'expert.