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• Tissue segmentation
– Anatomical Priors

• Morphometry
– VBM/TMB

Propagation via a Group Mean
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Propagation via a Group Mean

• Advantages:
– Efficient
– Unified space

• Comparison
• Resampling
• Learning

– Compresses information

• Disadvantages
– Compresses information
– Can be biased towards certain morphologies
– Not ideal for inter-subject matching

• Frequency, appearance, diffeomorphic path

5

Groupwise Propagation

Geodesic Information propagation

Natural Morphological 
Variability Pa

tho
log

y

Pairwise propagation



6

• Label Fusion
– How to propagate/fuse
– Morphology differences

Information propagation in Neuroimaging



Propagation via Pairwise

• Advantages:
– Flexible
– Very accurate
– Less biased
– Uncompressed information

• Disadvantages
– Less efficient
– Maybe too flexible
– Can be biased
– Not ideal for inter-subject matching

• Appearance?
• Diffeomorphic?
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“Information only propagates between images if they are 
morphologically similar to each other”

Geodesic Information Flows

• Does not resample the images to a standard space

• Its pairwise, symmetric and unbiased by construction 
• Geodesic information propagation 
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• Let          be the label at image i and location v

• Using a weighted voting strategy we have

• As higher proximity to the source of information will result in 
higher weights, the information will propagate faster using G, 
analogously to a fast marching wave front propagation.

Application to Label Fusion
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Fig. 3. Left) Implicit manifold with the neighbourhood defined as all the
data points within a certain distance. Note that if the manifold is sparse, some
data points might be disconnected. Right) Diagram representing the observed
and unobserved connections (in blue and green respectively) and distances
from the standpoint of the data point a.

with t being a heat kernel temperature that will determine
the speed and the distance the information can diffuse.

C. The distance metric

The heat kernel decay function is based on the assumption
that one can calculate a distance between two nodes in the
graph. For the graph to be undirected, this distance should be at
least a semi-metric, respecting the coincidence and separation
axioms and symmetry. In a medical imaging framework, and
more specifically in neuroimaging, the local distance between
images should take into account both local morphology and
local image similarity. To achieve this goal, Gerber et al. [18]
propose the use of coordinate transformations as a distance
metric that informs about the object’s morphology. These
coordinate transformations map an image Yi to an image Yj

by finding the optimal transformation Tij that maximises some
cost function. In order to be a semi-metric, this coordinate
transformation has to be symmetric, inverse consistent and
diffeomorphic. In our work, we use a symmetric variant of
a non-rigid free-form registration algorithm [21]. Under the
symmetry and diffeomorphism constraints, the transformation
Tij = T

�1
ji and Tij � Tji = Id, with T

�1 being the inverse of
the transformation, � being the composition operator and Id
the identity transformation. In order to remove the smoothly
varying local affine component of the transformation that
characterises the global anatomical shape differences, the low
frequency component of the transformation is removed. From
the remaining high-frequency version of the transformation,
one can then find the displacement field Fij that describes
how much (in mm) a voxel ~v in Yi had to move in order to
match the corresponding voxel Tij(~v) in Yj .

Even though this displacement field will describe the mor-
phological differences between the brains, we also combine
it with an intensity similarity metric in order to assess the
local similarity between the images after transformation [22].
This similarity term is necessary to characterise both the
local differences in tissue appearance due to pathology (e.g.
damaged white matter (WM) in dementia) and also some
possible local registration errors. The local similarity between
an image Yi and an image Yj transformed by Tij , denoted by
Lij , can be calculated as the local sum of squared differences
(LSSD) between the intensity in these images, using a cubic

B-spline kernel as a local smoothing function. We combine
the two metrics together by setting

Dij(~v) = ↵Lij(~v) + (1� ↵)Fij(~v), (2)

with ↵ being a relative weight, meaning that both a low
displacement and a low LSSD are necessary to obtain a low
distance Dij(~v) between images. The intensity images Y are
z-scored before estimating L in order to balance the influence
of L and F in the metric.

D. Geodesic distance estimation

When diffusing the information through the implicit graph,
Eq. 2 assumes that the distance between the nodes, and thus
the quality of the available information is only dependent
on their pairwise distance between position ~v in image i

and its neighbours Tij(~v). However, one should note that
in theory, nodes that are closer to the source of information
should have more accurate segmentations, as the extrapolation
error is lower. It would thus be ideal if this accuracy metric
was also used for the information flow process. In order
to do so, let a vector Gi, indexed by Gi(~v), characterise
the geodesic distance between position ~v in image i and
the closest source of information in image j. Let K be a
set of all images that are sources of information, i.e. they
have pre-defined augmentative information. Assuming that the
Euclidean distance Gi(~v) = 08i 2 K, then the geodesic
distance at position Gj(~v) can be calculated as the shortest
path from all i 2 K following the implicit graph structure.

In the geodesic information flow framework, due to the
implicit nature of the graph, one does not have access to the
full graph structure. Thus, one cannot directly estimate Gi(~v).
Instead, Gi(~v) can be obtained by iteratively solving at every
voxel of every image i /2 K,

Gi(~v) = argmin
(j2Dij(~v)<dt)

(Gj(Tij(~v)) +Dij(~v)) (3)

i.e., the geodesic distance at the voxel ~v and image i is equal
to the smallest value of the neighbour’s geodesic distance
Gj(Tij(~v)) plus the pairwise distance Dij(~v), for all neigh-
bouring nodes. Note that for all i /2 K, the geodesic distance
is initially set to Gi(~v) = +1

III. APPLICATION TO LABEL FUSION

The two previous sections have defined the neighbourhood
graph and the distance metric. This section will make use of
the graph structure to introduce the concept of propagating
information between neighbouring nodes of the graph.

Let L be a set of vectors, with the i-th vector of this set
denoted by Li. Each vector Li has its ~v-th element denoted by
Li(~v), representing the associated augmentative information at
location ~v for image Yi. This vector is initially only defined
for i 2 K, and the aim of the information propagation step is
to obtain an estimate of L for i /2 K.

As the realm of observations at each spatial location is
limited by its closest neighbours, the best approximation for
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data flow is given by a normalised weighted sum of the
information available within the neighbourhood. Thus,

Li(~v) =

P
Wij(~v)Li;(Tij(~v))P

Wij(~v)
, (4)

solved for all i /2 K, i.e. for all datasets where the informa-
tion is not defined. Here, Tij(~v) is the spatially transformed
coordinate ~v into the space of image Yj , mapped using the
previously described transformation. The information flow is
thus governed by the heat kernel-derived weights Wij(~v). Note
that if Gj(Tij(~v)) = +1 for all the neighbours of i at voxel ~v,
then

P
Wij = 0, and subsequently Li(~v) will not be defined.

However, this is not a problem as Gi(~v) (see Eq. 3) will
also be +1, meaning that image i will always have a weight
Wji = 08 i 6= j. Note that Eq. 4 is only valid for floating point
data propagation. The same equation can be re-formulated
in a weighted label fusion scheme, by making Li(~v) equal
to p(Li(~v), l), representing the probability that location ~v in
image i has label l, and equivalently for Lj(Tij(~v)). Both Eq.
4 and Eq. 3 are solved iteratively for all i /2 K.

Optionally, in order to take the geodesic distance into
account as a uncertainty weight, one can also reformulate Eq.
1 as

Wij(~v) = exp

✓
�(Gj(Tij(~v)) +Dij(~v))

t

◆
, (5)

Using Eq. 5, if i is an unsolved or disconnected node, then
Wji(~v) = 0 as e

�1 = 0. Similarly, a source node i will
have weight dependent only on Dij(~v). As higher proximity
to the source of information will result in higher weights,
this new way to reconstruct the information will propagate
the information faster (than if G = 0), analogously to a fast
marching wave front propagation.

IV. APPLICATION TO TISSUE SEGMENTATION

The segmentation model is defined as

⌥̂ = argmax
⌥

logP (⌥|Y,W, T ) _ argmax
⌥

logP (Y,W, T,⌥),

with ⌥ = {⌥1,⌥2, . . . ,⌥Ni ,⌥
⇤
1,⌥

⇤
2, . . . ,⌥

⇤
k} being a vector

of the model parameters for all the subjects and ⌥i =
{µi1, . . . , µik,⌃i1, . . . ,⌃ik, ci1, . . . , cim} is a vector of model
parameters for subject i, where k is the number of tissue
classes, m is a basis function coefficient defined later in this
section and ⌥⇤

k = {µ⇤
k,⌃

⇤
k} are population-wide priors over

the model parameters. As previously defined in sections II-B,
II-C and II-D , Y , W and T are observations comprising
the image intensities of each subject, the similarities between
subjects and their pairwise coordinate mappings respectively.

As with most probabilistic segmentation frameworks, the
estimation of the optimal model parameters can be simplified
by introducing a latent variable (hidden) L denoting the
image segmentation. Therefore, for the sake of computational
tractability, the maximum a posteriory (MAP) problem can be
rewritten as

⌥̂ = argmax
⌥

log

2

4
X

L,W

P (Y,W, T, L,⌥)
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A graphical representation of the overall model can be seen
in Fig. 4.

Fig. 4. The graphical model of the proposed framwork with the respective
replication boxes over all the voxels and over all the subjects in a database.

A. Expectation
The Q-function is thus defined as

Q(⌥|⌥n) =EL|Y,W,T,⌥n [logP (Y,W, T, L,⌥)]

_
X

i

X

k

X

j

P (likj |yikj ,⌥n
i ,Wi, Ti,⌥i)

·
⇥
logP (yij |⌥i) + logP (⌥i|⌥⇤

i )

+ logP (likj |Wi, Ti) + logP (W ) + logP (T )
⇤

While a priori knowledge about the distribution of W , ⌥i

and T would be useful, for the sake of simplicity this work
assumes that P (W ), P (⌥i|⌥⇤

i ) and P (T ) are uniformly
distributed. The intensity data likelihood is modelled as a
multi-variate Gaussian distribution, allowing the segmentation
of multimodal data (T1-,T2-weighted, etc.), where

P (yij |⌥i) = (2⇡)�
d
2 | ⌃k |�

1
2 exp

✓
�1

2
X

T
ikj⌃

�1
ik Xikj

◆

Xikj = yij � µik � �ij �i =
X

m

cim�im

This formulation assumes that yij is the log-transformed
version of the observations in order to make the multiplicative
nature of the MRI intensity non-homogeniety (INU) field
additive. INU is modelled as a linear combination of m

smoothly varying basis functions �im = {�(i)1, ...,�(i)m}
and cim coefficients.

The posterior of the model at iteration n is also defined as

P (likj |yij ,⌥n
k ) =

P (yij |⌥k)P (likj |Wij , Tij)P (⌥k)P
k0 P (yij |⌥k)P (lik0j |Wij , Tij)P (⌥k0)

B. Spatially variant prior over L

The prior over the labels

P (likj |Wij , Tij) = P (likj |Nij ,Sij , Hi,Wij , Tij) (6)

are introduced as an MRF prior over the hidden data, where
Nij are the first-order spatial neighbours of pixel j in image
i, Hi is an energy matrix defined as in [1], and Sij are the
first order mapped locations from pixel j in image i to the
corresponding locations on the space of the other images. This
prior has two components, one enforcing spatial smoothness
of the segmentation and the other one enforcing smoothness



Information Propagation for Labels



Some experiments

• Hammers
• 30 subjects, young controls
• Parcellation into 82 labels
• Leave-one-out cross validation
• Comparison to MAPER

• ALBERT
• 20 T1- and T2-weighted MRI images
• 5 term subjects and 15 preterm subjects
• 50 key structures
• Advantages of using multimodal data

• Oasis/Neuromorphometrics
• 35 Subjects
• 143 regions
• Ability to extrapolate results
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a leave one out approach on the 30 young controls. Then,
the accuracy of information extrapolation accuracy will be
characterised by propagating the brain segmentations from the
elderly control group to the MCI and AD patients. Note that
this validation does not attempt to show that the proposed al-
gorithm is better than state-of-the-art methodologies, but only
to show the benefits of geodesic propagation in detriment of
pairwise propagation, as the geodesic propagation framework
can be used with most fusion methodologies.

A. Multi-label propagation accuracy
The accuracy of propagating information through a geodesic

path was compared to MAPER [11]. The results for MAPER
were kindly provided by Rolf Heckemann. As the amount of
parcelations available for validation is limited, a leave-one-
out cross validation was performed only on the 30 young
controls that have manual brain parcelations. One should
note that the limited availability of segmentations restricts
the range of morphological variability in the propagation,
thus not representing the real performance when segmenting
morphologically dissimilar subjects.

In this paper, the Dice score was used as a measure of
accuracy. The mean Dice scores per structure for the the
leave-one-out cross validation are shown in Table I. Out of
83 structures, 15 structures had a significantly higher Dice
score using the Geodesic information Flow when compared to
MAPER, while only two structures (lingual gyrus and superior
parietal gyrus) where better segmented in MAPER. The mean
Dice score over all structures and all patients for the proposed
method (0.8182) was significantly higher (p < 10�4) than in
MAPER (0.8089) using a two-tailed paired t-test. An example
of the propagation to a highly atrophied subject from the ADNI
database is shown in Fig. 7.

B. Information Extrapolation Accuracy
In the previous subsection, the accuracy of propagating

information through a geodesic path was limited to a morpho-
logically similar set of subjects. Thus, the previous validation
will not capture the ability to extrapolate information to
anatomically disparate subjects. The information extrapolation
accuracy is thus assessed by using only a subset (the elderly
control group) of all the manual brain segmentations. This
morphologically clustered set of data is then used to segment
both the MCI and AD groups, assumed in this work to be
morphologicaly less similar than the subjects within the train-
ing propulation. The proposed geodesic propagation algorithm
is compared to a direct propagation algorithm based on the
locally weighted majority voting algorithm with a inverse
exponential weight proposed by Yushkevich et al. [23]. This
algorithm was chosen due to its similarities with the proposed
technique (pairwise vs. geodesic weighted majority voting).

The results are presented in Fig. 6 and Fig. 7 , with
segmentation accuracy measured using Dice similarity. The
mean (std) Dice score for the proposed geodesic method was
0.941(0.008) and 0.949(0.008) for the AD and MCI groups
respectively while for the direct method, the mean (std) Dice
score was 0.934(0.009) and 0.942(0.008) for the AD an MCI

TABLE I
MEAN DICE COEFFICIENT FOR A SET OF KEY STRUCTURES, COMPARING

THE PROPOSED METHOD (GIF) WITH MAPER [11]. STATISTICALY
HIGHER MEAN DICE IS SHOWN IN BOLD FONT. ONLY A LIMITED NUMBER
OF STRUCTURES ARE SHOWN DUE TO RESTRICTIVE SPACE AVAILABILITY.

Structure Unilateral Structures
GIF MAPER p-value

All Structures 0.8182 0.8089 < 10�4

Corp. callos. 0.8805 0.8674 < 10�4

Brainstem 0.9531 0.9377 < 10�4

Structure Left Side
GIF MAPER p-value

Hippocampus 0.8442 0.8335 0.0046
Amygdala 0.8263 0.7922 < 10�4

Cerebellum 0.9712 0.9664 0.0020
Caudate nucl. 0.8985 0.8923 0.0370
Nucleus acc. 0.7582 0.6834 < 10�4

Putamen 0.9071 0.8916 < 10�4

Thalamus 0.9210 0.8879 < 10�4

Pallidum 0.8564 0.7661 < 10�4

Lateral vent. 0.9020 0.8985 0.0009

Structure Right Side
GIF MAPER p-value

Hippocampus 0.8249 0.8211 0.2120
Amygdala 0.8245 0.7830 < 10�4

Cerebellum 0.9734 0.9678 < 10�3

Caudate nucl. 0.9020 0.8955 0.0279
Nucleus acc. 0.7326 0.6707 < 10�4

Putamen 0.9109 0.8959 < 10�4

Thalamus 0.9206 0.8852 < 10�4

Pallidum 0.8551 0.7672 < 10�4

Lateral vent. 0.9124 0.9084 0.0018

groups respectively. This represents a statistically significant
(p < 10�4) increase in segmentation accuracy when using a
two-tailed paired t-test for statistical comparison. Note that one

MCI_Direct MCI_Geodesic AD_Direct AD_Geodesic

0.91

0.92

0.93

0.94

0.95

0.96

Fig. 6. Dice scores for direct and geodesic propagation of brain mask.

Fig. 7. An example of the propagation of the structural parcelation to
an atrophied subject (ID:1049) from the ADNI database. Note the correct
ventricle segmentation and the smooth deep grey matter parcelation.
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Oasis Experiment
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TABLE III
DICE OVERLAP STATISTICS BETWEEN EACH METHOD AND THE SILVER-STANDARD WHEN DOING A LEAVE-ONE-OUT CROSS VALIDATION (TOP) AND

USING ONLY 5 SUBJECTS AS TRAINING SAMPLES (BOTTOM). THE HIGHEST MEAN IS IN BOLD. ALL P-VALUES EXCEPT BETWEEN FU-GIF ON THE DEEP
GM REPRESENT STATISTICALLY SIGNIFICANT INCREASE IN ACURACY FOR GIF. FU OUTPERFORMS BOTH GW AND GIF ON THE DEEP GM.

Full Cortical GM Cortical WM Cerebellar GM Cerebellar WM Deep GM
Data FU GW GIF FU GW GIF FU GW GIF FU GW GIF FU GW GIF

Average 0.863 0.912 0.925 0.879 0.930 0.940 0.924 0.927 0.933 0.880 0.905 0.921 0.894 0.825 0.849
Std 0.018 0.025 0.018 0.011 0.015 0.013 0.019 0.029 0.016 0.007 0.008 0.008 0.009 0.019 0.014

p-value <10-4 <10-4 - <10-4 <10-4 - <10-3 <10-4 - <10-4 <10-4 - <10-4 <10-4 -
Limited Cortical GM Cortical WM Cerebellar GM Cerebellar WM Deep GM

Data FU GW GIF FU GW GIF FU GW GIF FU GW GIF FU GW GIF
Average 0.833 0.805 0.915 0.848 0.832 0.936 0.916 0.881 0.912 0.877 0.866 0.933 0.873 0.789 0.844

Std 0.017 0.043 0.023 0.010 0.039 0.015 0.011 0.018 0.014 0.018 0.033 0.022 0.040 0.083 0.027
p-value <10-4 <10-4 - <10-4 <10-4 - <10-4 <10-4 - <10-4 <10-4 - <10-4 <10-4 -

mentation accuracy follows the same algorithmic comparison,
leave-one-out methodology, similarity metric and statistical
test used in Section VI-A, but with the OASIS data.

A second experiment tests the ability to segment morpho-
logically dissimilar subjects. For this purpose, the 5 youngest

Fig. 9. Dice overlap coeficient for the BrainWeb-based results on GIF data.
See Table VI-A for the quantitative results.

Fig. 10. From left to right) A T1-weighted image from the OASIS
database and its corresponding manual segmentation, segmentation using
label fusion, using a groupwise population prior and using GIF from the
leave-one-out experiment. The first two and last two rows correspond to
subjects OAS1 0285 and OAS1 0083, respectively. The purple and blue
circles highlight areas with noticeable variations between methods. Note the
extent of the periventricular WM dammage in subject OAS1 0083.

female subjects in the database (age range = 18-20, 100%
females) were chosen as training subjects and the remaining
30 subjects (age range = 20-90, 63% females) were used as
test subjects. One should bear in mind that in this test the
training data is highly biased to a very specific age group and
gender. For the GW method, a new groupwise population prior
was created from the 5 training subjects. Both the GIF and FU
methods used the 5 subjects as sources of information in the
GIF framework. The same similarity metric and statistical tests
were used for segmentation accuracy estimation.

The population statistics for both experiments are shown in
Fig. III - top. Using the Wilcoxon Signed-Rank test the pro-
posed method (GIF) achieved statistically significantly higher
(p < 10�4) Dice overlap in the cortical GM and WM and in
the cerebellar GM and WM for both experiments.

VII. DISCUSSION

This work proposes a framework for information propaga-
tion between a population of images. This framework can
be exploited for multiple applications, ranging from tissue
segmentation and structural parcelation to morphometric anal-
ysis and image synthesis. Here, we apply the GIF framework
to the problems of multi-atlas label propagation and tissue
segmentation and demonstrate improved performance, mainly
in the presence of morphological differences between the
training and testing population.

More specifically, the application to multi-atlas propagation
problem showed a small but still significant increase in per-
formance, when compared to MAPER, for a leave-one-out
(section V-A) experiment with relatively limited morphologi-
cal variability . One should note that GIF was not compared
to other more advanced fusion techniques as the proposed
geodesic propagation framework is agnostic to the fusion
strategy, i.e. GIF could be combined with any other fusion
technique by changing Eq. 4. Interestingly, section V-B, which
aims at propagating a set of brain mask from control subjects
to pathological subjects, demonstrates that geodesic propaga-
tion can improve the overall performance when compared to
direct pairwise propagation. Visual inspection (e.g. see Fig.
7) shows good quality results even in the presence of large
scale atrophic processes and pathology. Nonetheless, further
validation on subjects with larger morphological variability is
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TABLE III
DICE OVERLAP STATISTICS BETWEEN EACH METHOD AND THE SILVER-STANDARD WHEN DOING A LEAVE-ONE-OUT CROSS VALIDATION (TOP) AND

USING ONLY 5 SUBJECTS AS TRAINING SAMPLES (BOTTOM). THE HIGHEST MEAN IS IN BOLD. ALL P-VALUES EXCEPT BETWEEN FU-GIF ON THE DEEP
GM REPRESENT STATISTICALLY SIGNIFICANT INCREASE IN ACURACY FOR GIF. FU OUTPERFORMS BOTH GW AND GIF ON THE DEEP GM.

Full Cortical GM Cortical WM Cerebellar GM Cerebellar WM Deep GM
Data FU GW GIF FU GW GIF FU GW GIF FU GW GIF FU GW GIF

Average 0.863 0.912 0.925 0.879 0.930 0.940 0.924 0.927 0.933 0.880 0.905 0.921 0.894 0.825 0.849
Std 0.018 0.025 0.018 0.011 0.015 0.013 0.019 0.029 0.016 0.007 0.008 0.008 0.009 0.019 0.014

p-value <10-4 <10-4 - <10-4 <10-4 - <10-3 <10-4 - <10-4 <10-4 - <10-4 <10-4 -
Limited Cortical GM Cortical WM Cerebellar GM Cerebellar WM Deep GM

Data FU GW GIF FU GW GIF FU GW GIF FU GW GIF FU GW GIF
Average 0.833 0.805 0.915 0.848 0.832 0.936 0.916 0.881 0.912 0.877 0.866 0.933 0.873 0.789 0.844

Std 0.017 0.043 0.023 0.010 0.039 0.015 0.011 0.018 0.014 0.018 0.033 0.022 0.040 0.083 0.027
p-value <10-4 <10-4 - <10-4 <10-4 - <10-4 <10-4 - <10-4 <10-4 - <10-4 <10-4 -

mentation accuracy follows the same algorithmic comparison,
leave-one-out methodology, similarity metric and statistical
test used in Section VI-A, but with the OASIS data.

A second experiment tests the ability to segment morpho-
logically dissimilar subjects. For this purpose, the 5 youngest

Fig. 9. Dice overlap coeficient for the BrainWeb-based results on GIF data.
See Table VI-A for the quantitative results.

Fig. 10. From left to right) A T1-weighted image from the OASIS
database and its corresponding manual segmentation, segmentation using
label fusion, using a groupwise population prior and using GIF from the
leave-one-out experiment. The first two and last two rows correspond to
subjects OAS1 0285 and OAS1 0083, respectively. The purple and blue
circles highlight areas with noticeable variations between methods. Note the
extent of the periventricular WM dammage in subject OAS1 0083.

female subjects in the database (age range = 18-20, 100%
females) were chosen as training subjects and the remaining
30 subjects (age range = 20-90, 63% females) were used as
test subjects. One should bear in mind that in this test the
training data is highly biased to a very specific age group and
gender. For the GW method, a new groupwise population prior
was created from the 5 training subjects. Both the GIF and FU
methods used the 5 subjects as sources of information in the
GIF framework. The same similarity metric and statistical tests
were used for segmentation accuracy estimation.

The population statistics for both experiments are shown in
Fig. III - top. Using the Wilcoxon Signed-Rank test the pro-
posed method (GIF) achieved statistically significantly higher
(p < 10�4) Dice overlap in the cortical GM and WM and in
the cerebellar GM and WM for both experiments.

VII. DISCUSSION

This work proposes a framework for information propaga-
tion between a population of images. This framework can
be exploited for multiple applications, ranging from tissue
segmentation and structural parcelation to morphometric anal-
ysis and image synthesis. Here, we apply the GIF framework
to the problems of multi-atlas label propagation and tissue
segmentation and demonstrate improved performance, mainly
in the presence of morphological differences between the
training and testing population.

More specifically, the application to multi-atlas propagation
problem showed a small but still significant increase in per-
formance, when compared to MAPER, for a leave-one-out
(section V-A) experiment with relatively limited morphologi-
cal variability . One should note that GIF was not compared
to other more advanced fusion techniques as the proposed
geodesic propagation framework is agnostic to the fusion
strategy, i.e. GIF could be combined with any other fusion
technique by changing Eq. 4. Interestingly, section V-B, which
aims at propagating a set of brain mask from control subjects
to pathological subjects, demonstrates that geodesic propaga-
tion can improve the overall performance when compared to
direct pairwise propagation. Visual inspection (e.g. see Fig.
7) shows good quality results even in the presence of large
scale atrophic processes and pathology. Nonetheless, further
validation on subjects with larger morphological variability is
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leave-one-out experiment. The first two and last two rows correspond to
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test subjects. One should bear in mind that in this test the
training data is highly biased to a very specific age group and
gender. For the GW method, a new groupwise population prior
was created from the 5 training subjects. Both the GIF and FU
methods used the 5 subjects as sources of information in the
GIF framework. The same similarity metric and statistical tests
were used for segmentation accuracy estimation.

The population statistics for both experiments are shown in
Fig. III - top. Using the Wilcoxon Signed-Rank test the pro-
posed method (GIF) achieved statistically significantly higher
(p < 10�4) Dice overlap in the cortical GM and WM and in
the cerebellar GM and WM for both experiments.

VII. DISCUSSION

This work proposes a framework for information propaga-
tion between a population of images. This framework can
be exploited for multiple applications, ranging from tissue
segmentation and structural parcelation to morphometric anal-
ysis and image synthesis. Here, we apply the GIF framework
to the problems of multi-atlas label propagation and tissue
segmentation and demonstrate improved performance, mainly
in the presence of morphological differences between the
training and testing population.

More specifically, the application to multi-atlas propagation
problem showed a small but still significant increase in per-
formance, when compared to MAPER, for a leave-one-out
(section V-A) experiment with relatively limited morphologi-
cal variability . One should note that GIF was not compared
to other more advanced fusion techniques as the proposed
geodesic propagation framework is agnostic to the fusion
strategy, i.e. GIF could be combined with any other fusion
technique by changing Eq. 4. Interestingly, section V-B, which
aims at propagating a set of brain mask from control subjects
to pathological subjects, demonstrates that geodesic propaga-
tion can improve the overall performance when compared to
direct pairwise propagation. Visual inspection (e.g. see Fig.
7) shows good quality results even in the presence of large
scale atrophic processes and pathology. Nonetheless, further
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Fig. 1. Generative model of the observed data, with the observed values represented
by shaded circles, parameters by shaded rounded-rectangles, and hidden/integrated
variables as white circles. Boxes represent replication plates, while the dashed-line
boxes annotates the components of the inlier and outlier models.

2.2 Outlier prior estimates

Given the above observation model, one can then estimate the most probable
label L, characterising if a certain location belongs to the inlier or outlier class,
given by

L̂ ⇡ argmax
L

p(l|ỹ, x̃, j,X , ✓) / argmax
L

p(ỹ, x̃, j|l,X , ✓)p(l|✓)p(✓)

= argmax
L

Y

i2⌦

p(ỹi, x̃i, j|li,X , ✓)p(li|✓)p(✓),

where p(✓) is the prior distribution of the parameters ✓, here assumed to be

non-informative, and p(lk
i
|✓) = ⇡k

1
ZMRF

e
��UMRF (lki ,G) is the combination of a

population prior given the location of the brain and smoothness prior given by
a probabilistic extension of a Potts-model-based Markov Random Field (MRF),
optimised using a mean field theory approximation, as described in [9]. As we
are only interested in outliers within the brain, ⇡O = 0.5 ⇤ (⇡GM + ⇡WM ) and
⇡I = 1 � ⇡O, i.e. a voxel has a prior probability of 0.5 to be an outlier if it is
located within the brain region, defined by non-rigidly registered ⇡WM and ⇡GM

ICBM SPM priors (www.fil.ion.ucl.ac.uk/spm/). In the MRF, �=0.5, G is
a matrix with the diagonal equal to 0 and the o↵ diagonal equal to 1 and ZMRF

is a normalising partition function. The expectation-maximisation algorithm is
used to optimise the MRF and the other only free parameter w. The value of
w is initialised to 0.9, as a large percentage of the brain should be part of the
inlier model, and optimised using the following closed-form update equation
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with t representing the current iteration. After optimisation, the voxelwise es-
timate of p(li|ỹi, x̃i, j,X , ✓) provides information about the location of outlier
regions as it represents the probability that the voxel in the patch centred at i

intensity outliers but no WML. This was achieved by lesion filling [12] the 20
datasets using the manual WML segmentations, which replaces the WML hyper
intensities with normal WM intensities. A leave-one-out cross validation was then
used to segment the lesions, where for each one of the 20 subjects, the remaining
N = 19 lesion filled T1-FLAIR pairs were used as templates X , avoiding bias
due towards a subject’s morphology.

Example results are depicted in Fig. 3. Using both the Dice score and lesion
volume as accuracy measures, the proposed method obtained a Dice score of
0.45 and a volume R

2 between estimated and the gold standard volume of 0.94,
while the OSM [5] method obtained a mean Dice score of 0.38 and a R

2 of 0.55.
As the Dice score errors were Gaussian distributed (tested using the one-sample
Kolmogorov-Smirnov test on the residuals), a one-tailed T-test was chosen to
assess the presence of statistical significant di↵erences in the Dice score. Under
this test statistic, the proposed method achieved statistically significantly higher
(p < 10�4) Dice overlap when compared to the OSM technique.

3.3 Localisation of highly abnormal tumour data

In order to test the robustness of the algorithm to extreme pathologies, to vari-
ations in image quality and contrast, and to large outliers in the histogram
matching approach, and, at the same time, assess its impact on the local noise
model estimates, the proposed algorithm was applied to localise pathological
(outlier) regions in high grade tumour data from the BRATS 2013 tumour seg-
mentation database. The 20 lesion filled T1 and FLAIR images from section 3.2
were used as the templates of non-pathological datasets X . Results for the first
two subjects (0301 and 0302) of the training database are presented in Fig. 4.
Even with large di↵erences in image contrast, the presence of large lesions and
large deformations and low contrast in both T1 and FLAIR images, the proposed
algorithm was able to localise the non-healthy regions of the image without any

Fig. 4. Tumour localisation using MICCAI BRATS2013 data. Left to right) T1 and
FLAIR MRI, synthetic FLAIR using the mode of p(ỹi, x̃i, jn|lIi ,X , ✓) assuming x̃ is ob-
served, the inlier model p(ỹi, x̃i, jn|lIi ,X , ✓) and outlier segmentation p(lOi |ỹi, x̃i, j,X , ✓).
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In order to test the robustness of the algorithm to extreme pathologies, to vari-
ations in image quality and contrast, and to large outliers in the histogram
matching approach, and, at the same time, assess its impact on the local noise
model estimates, the proposed algorithm was applied to localise pathological
(outlier) regions in high grade tumour data from the BRATS 2013 tumour seg-
mentation database. The 20 lesion filled T1 and FLAIR images from section 3.2
were used as the templates of non-pathological datasets X . Results for the first
two subjects (0301 and 0302) of the training database are presented in Fig. 4.
Even with large di↵erences in image contrast, the presence of large lesions and
large deformations and low contrast in both T1 and FLAIR images, the proposed
algorithm was able to localise the non-healthy regions of the image without any

Fig. 4. Tumour localisation using MICCAI BRATS2013 data. Left to right) T1 and
FLAIR MRI, synthetic FLAIR using the mode of p(ỹi, x̃i, jn|lIi ,X , ✓) assuming x̃ is ob-
served, the inlier model p(ỹi, x̃i, jn|lIi ,X , ✓) and outlier segmentation p(lOi |ỹi, x̃i, j,X , ✓).

Fig. 2. Brainweb Moderate MS model. Left to right) T1 and T2 MRI, groundtruth
lesion segmentation and the proposed lesion segmentation, folowed by the inlier ob-
servation model p(ỹi, x̃i, jn|lIi ,X , ✓) and the outlier prior p(lOi |ỹi, x̃i, j,X , ✓). Note that
the outlier prior combines p(ỹi, x̃i, jn|lIi ,X , ✓) and the label priors.

and severe MS lesion loads respectively, and equivalently, a Dice overlap of 41.8,
51.6 and 65.5 for the proposed method. Note the dramatic increase in accuracy,
mainly for the mild MS model. No statistical comparison was performed for this
experiment because only three MS models are available in Brainweb.

3.2 Quantitative assessment using patient data

This validation aims to determine quantitatively the accuracy of type 2 diabetes
white matter lesion (WML) segmentation using the proposed segmentation al-
gorithm and the classical OSM method [5]. For this study, the 20 brain images
from the MRBrainS2013 challenge, comprised of both controls and Type 2 dia-
betes patients (mean age 71±4 years) with WML, were acquired on a 3T Philips
scanner with a 3D T1 (1 ⇥ 1 ⇥ 1mm), and fluid attenuated inversion recovery
(FLAIR) image (0.96 ⇥ 0.95 ⇥ 3mm) were obtained. Further details about the
acquisition and data preprocessing (bias field correction and T1-FLAIR regis-
tration) is described in [11] and in the MRBrainS2013 website. Manual WML
segmentation was performed on FLAIR images.

With the aim of segmenting only pathological FLAIR hyperintense WML
and not the non-pathology-related hyperintense choroid plexus, or the hypo-
intense iron accumulation in the globus pallidus (see the manual segmentation
in Fig. 3), the template observations X should to contain some non-pathological

Fig. 3. Subject 4 and 18 of the MRBrainS database. From left to right) T1 and FLAIR
MRI, gold standard lesion segmentation, OMS segmentation, the proposed segmenta-
tion and the outlier prior p(lOi |ỹi, x̃i, j,X , ✓).
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the outlier prior combines p(ỹi, x̃i, jn|lIi ,X , ✓) and the label priors.
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segmentation was performed on FLAIR images.

With the aim of segmenting only pathological FLAIR hyperintense WML
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in Fig. 3), the template observations X should to contain some non-pathological

Fig. 3. Subject 4 and 18 of the MRBrainS database. From left to right) T1 and FLAIR
MRI, gold standard lesion segmentation, OMS segmentation, the proposed segmenta-
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Complex Pathologies Subtle Pathologies

Possible triage system for acute pathology?
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Voxel-wise subject-specific analysis

• Subject-specific Z-maps

17

T1 images overlaid with the selected ROIs (top) and the patient-specific Z-
scores (bottom) for a representative subject of each condition.

Clinically 
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Z maps
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NC: normal control - PNFA: progressive nonfluent aphasia - SD: semantic dementia 
LPA: logopenic progressive aphasia - PCA: posterior cortical atrophy



Advantages/Disadvantages

• Disadvantages:
– Computational complexity - 1h30min @ 8 cores (pairwise registration)

• Can be greatly speed up - scales linearly with the # of cores

• Advantages (Methods):
– Flexible - multiple applications, e.g. Image synthesis, sVBM

– Geodesic - Implicitly handles limited training data

– Accuracy - Geodesic propagation provide highest accuracy 

– Unbiased - Symmetry by construction

• Advantages (Software):
– Fully automated while still allowing QC 

– Windows/Linux/OSX support

– Will be part of NiftySeg

18



UCL TIG Translational Pathway
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Population Analysis

• Select:
• Large Radiologically normal population

• 40000 Radiologically Normals or 6207 Asserted Normals
• Research grade database (ADNI?)

• ~500 controls
• Regional GLM with Age, Sex, TIV and Scanner as covariates

20

MRI Imaging Delineation Population Distribution



Quantitative Neuroradiology Initiative

• Patient-specific phenotyping tools for clinical data

• The Data

–Can be low resolution (slice thick. 3/5/7mm)

–Artefacts 

–Inconsistent scanning parameters

–Inconsistent availability of modalities

• Homogenising data acquisition across sites

–Quality Control/Assurance, data identification

• Extracted metadata is integrated into a clinical report

• Collaboration with ION & NHNN

21



Translation to Clinical Usage 

• Automatic generation of QNI report using clinical data
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Translation to Clinical Usage 

• Automatic generation of QNI report using clinical data
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Translation to Clinical Usage 

• Automatic generation of QNI report using clinical data
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Translation to the Real World

• Validation and Safety Case

• Stringent testing process to support the 
safety case

• Need to test in relevant environment

• Broad accuracy study

• Integration into the Neuroradiological workflow

–  Deploy results into reporting platform

– Disease specific biomarkers

– Available at reporting time (HPC)

–  Push to patient health care record

– Available to referring physician

– Retrievable for longitudinal analysis
25



NiftyNet 
An open-source community-driven framework 

for neural networks in medical imaging

www.niftynet.io



      What is NiftyNet?

• An open-source library for convolutional networks in medical image 
analysis


• Apache-2.0 licensed 

• Easy-to-customise interfaces of network components

• Dissemination of architectures and pre-trained models

• Support for 2-D, 2.5-D, 3-D, 4-D inputs

• Multiple-GPU and tensorboard support

• Implementation of SOTA networks, loss functions, samplers, etc

27

= ✕ Medical image domain knowledge



What is NiftyNet?
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TOC

• MultiGPU Driver

• I/O


– Volume loader

– Augmentation

– Patch sampling

– Outputs Aggregation 

• Network model

– Params. management

– Layer operations

– Loss functions


• Evaluation


• Applications


• Model Zoo
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I/O: Image Loader

• Multi image-format loader

– Uses tf.data API 


• Supports multimodal inputs

– Internally or externally

– Resolution matching


• Handling a set of image volumes

– Subject or filename grouping

– Handling missing modalities


• Preprocessing

– Handling NIfTI/MHD/DICOM file 
headers


• Resampling

• Reorientation

• Lazy Sampling


– Intensity normalisation
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I/O: Window Sampling and Output Agregation

• Window properties

– Size in “voxels”

– Size in “mm”

– Augmentation by composition


• Sampling

– Uniform

– Label Constrained


• Sample only from areas with specific labels

• Prescribe certain label sampling rates 


– Frequency Sampler

• Sample a location given an externally defined map

• Sample from locations with large errors


• Aggregation

– Uniform & Overlapping (Effective Receptive Field)

– Uncertainty Sampling
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I/O: Data augmentation

• Training with data augmentation

– Application-dependent


• Geometrical augmentation

– Rotation, Translation, Mirror

– Random elastic deformation

– Biologically-inspired elastic 
deformation


• Intensity augmentation

– Histogram/Physics 

– Noise

– Point-spread-function

– Artefacts

– Pathology/lesions

32
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Network: Designing loss functions

• Losses:

– Categorical


• Cross-Entropy

• Dice (Standard, Generalised, Wasserstein)

• Sensitivity/Specificity


– Continuous

• L2/L1

• Huber


– Adversarial

– Variational


• KLD

• Metrics


– Image-wide

– Voxel-wise 

– Weighted & probabilistic losses
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Network: Architectures

• Image-to-image: 2D, 3D, 4D 
(multimodal)


– UNet

– VNet

– Highway Network 

– DeepMedic

– HighResNet


• Generative/AutoEncoders

– AE, dAE, VAE

– GAN


• Image-to-label


• Multi-task
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Evaluation: Standardised and Validated

• Tensorboard Integration

• Image-level


– Categorical 

• Overlap: Dice/Jaccard

• Distance: Hausdorf/MSD

• Statistical: Sensitivity/Specificity/Recovery


– Continuous

• Direct: Mean Absolute Error/L2

• Perceptual: PSNR/SSIM


• Object Level (Categorical)

– Volume: Size

– Overlap, Distance and Statistical 
metrics


– F1 stats

• Pixel-level


– Generation of error maps

• Hyperparameter Optimisation


– Grid, Random and Divide-and-Conquer 
Search
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Application: Definition 

• Define task-specific elements

– loss functions

– window sampling schemes

– augmentation models

– networks

– aggregators 


• Connect data stream


• Define behaviour during

– Training

– Inference

– Evaluation
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      Long-term goal

• A popular repository of successful deep learning models


– Model zoo (under construction)


– Integration into popular pipeline infrastructures, e.g NiPype


– Offer a baseline general-purpose implementation for “simple” 

segmentation, regression classification tasks


• Training general medical image convnet models on large medical image 

repositories


– Medical ImageNet


• NiftyNet as a consortium of research groups

– WEISS, CMIC, HIG


– Other groups are planning to join
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      Further information

• Website: www.niftynet.io

• Slack: niftynet.slack.com

• Mailing List: nifty-
net@live.ucl.ac.uk


• Paper

– Gibson and Li et al., (2017); 
NiftyNet: a deep-learning 
platform for medical imaging;


– arXiv: 1709.03485
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