Workshop in Multiple Sclerosis

Translating engineering innovation into the clinic 30th - 31st January 2018, University College London, London

THE CENTRAL VEIN SIGN

Dr Rosa Cortese

Clinical Research Associate

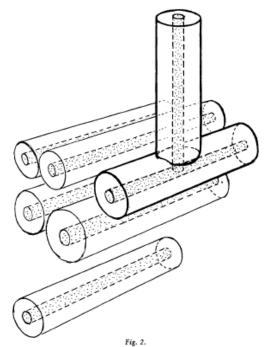
NMR Research Unit - Queen Square Multiple Sclerosis Centre

Department of Neuroinflammation, UCL Institute of Neurology

The Central Vein Sign Outline

- Background
- The Central Vein Sign in MS vs NMOSD
- Future work

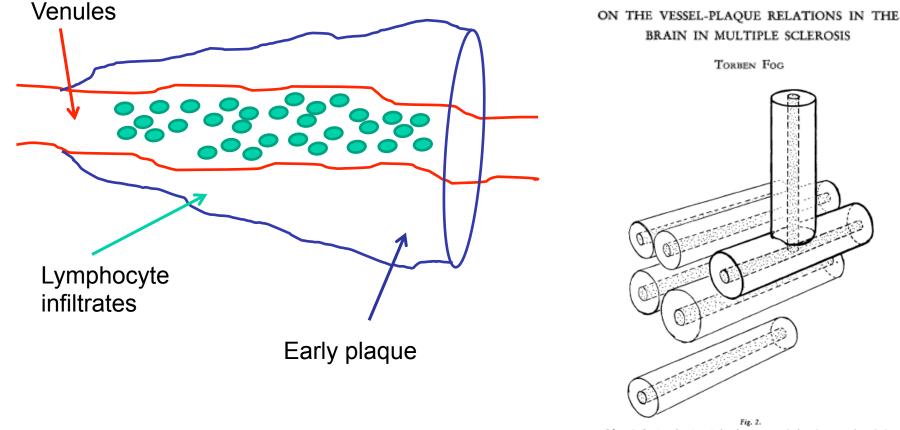
The Central Vein Sign Outline


- Background
- The Central Vein Sign in MS vs NMOSD
- Future work

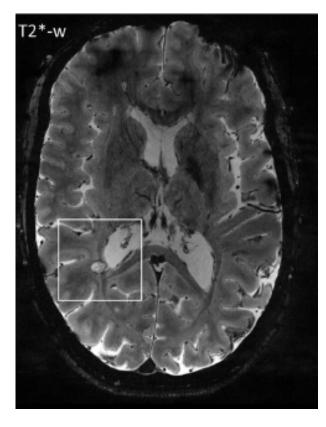
The Central Vein Sign in MS

1963

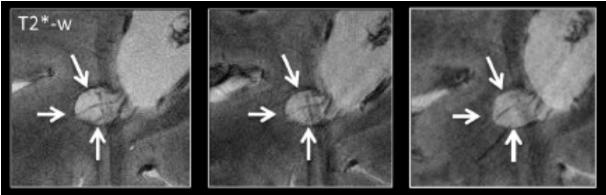
ON THE VESSEL-PLAQUE RELATIONS IN THE BRAIN IN MULTIPLE SCLEROSIS


TORBEN FOG

Schematic drawing of periventricular plaque, composed of single perivascular cylinders. Prolongation around a vessel perpendicular to the longitudinal axis is demonstrated.

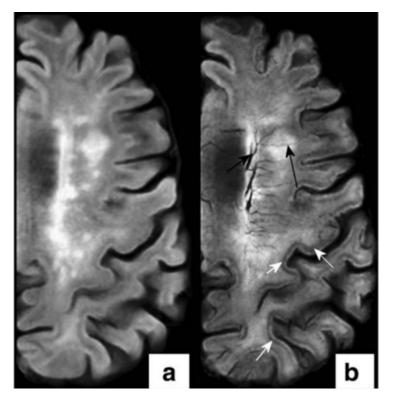

The Central Vein Sign in MS

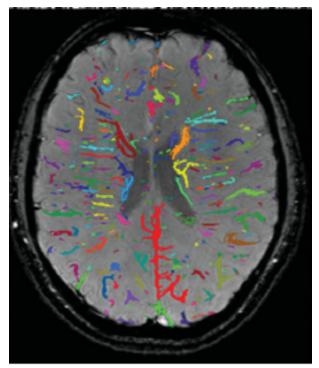
1963



Schematic drawing of periventricular plaque, composed of single perivascular cylinders. Prolongation around a vessel perpendicular to the longitudinal axis is demonstrated.

The Central Vein Sign in MS




7T T2*-weighted gradient-echo

Filippi et al, Lancet Neurol 2016

The Central Vein Sign in MS

Grabner et al. J. Magn. Reson. Imaging 2011

Susceptibility Weighted Imaging (SWI) a **3T** enhances the contrast between tissue and allows the visualization of the anatomic relationship between the cerebral WMLs and the penetrating veins.

The Central Vein Sign in MS

The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative

Pascal Sati¹, Jiwon Oh^{2,3}, R. Todd Constable⁴, Nikos Evangelou⁵, Charles R. G. Guttmann⁶, Roland G. Henry⁷, Eric C. Klawiter⁸, Caterina Mainero⁹, Luca Massacesi¹⁰, Henry McFarland¹, Flavia Nelson¹¹, Daniel Ontaneda¹², Alexander Rauscher¹³, William D. Rooney¹⁴, Amal P. R. Samaraweera⁵, Russell T. Shinohara¹⁵, Raymond A. Sobel¹⁶, Andrew J. Solomon¹⁷, Constantina A. Treaba⁹, Jens Wuerfel¹⁸, Robert Zivadinov¹⁹, Nancy L. Sicotte²⁰, Daniel Pelletier²¹ and Daniel S. Reich¹ on behalf of the NAIMS Cooperative

2016

Box 2 | Radiological definition of a central vein

A central vein exhibits the following properties on T2*-weighted images:

- Appears as a thin hypointense line or small hypointense dot
- Can be visualized in at least two perpendicular MRI planes, and appears as a thin line in at least one plane
- Has a small apparent diameter (<2 mm)
- Runs partially or entirely through the lesion
- Is positioned centrally in the lesion (that is, located approximately equidistant from the lesion's edges and passing through the edge at no more than two places), regardless of the lesion's shape

Exclusion criteria for lesions:

- Lesion is <3 mm in diameter in any plane
- Lesion merges with another lesion (confluent lesions)
- Lesion has multiple distinct veins
- Lesion is poorly visible (owing to motion or other MRI-related artefacts)

The Central Vein Sign in MS

Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria

Alan J Thompson, Brenda L Banwell, Frederik Barkhof, William M Carroll, Timothy Coetzee, Giancarlo Comi, Jorge Correale, Franz Fazekas, Massimo Filippi, Mark S Freedman, Kazuo Fujihara, Steven L Galetta, Hans Peter Hartung, Ludwig Kappos, Fred D Lublin, Ruth Ann Marrie, Aaron E Miller, David H Miller, Xavier Montalban, Ellen M Mowry, Per Soelberg Sorensen, MarTintoré, Anthony L Traboulsee, Maria Trojano, Bernard M J Uitdehaaq, Sandra Vukusic, Emmanuelle Waubant, Brian G Weinshenker, Stephen C Reingold, Jeffrey A Cohen

High-priority areas for research:

«The role in MS diagnosis of techniques to distinguish MS lesions from T2 hyperintensities in other condition (e.g. **central vein sign** on susceptibility weighted imaging)...is being explored»

The Central Vein Sign Outline

- Background
- The Central Vein Sign in MS vs NMOSD
- Future work

Aim of the study

To assess the discriminatory value of the perivenous distribution of brain white matter lesions in NMOSD and MS on susceptibility weighted imaging (SWI) at 3T

Cortese et al, Neurology 2018 (in press)

The Central Vein Sign in MS vs NMOSD

Neuromyelitis optica spectrum disorder (NMOSD) is a severe, disabling disease of the CNS primarily affecting spinal cord and

optic nerves

The Central Vein Sign in MS vs NMOSD

NMOSD is different from Multiple Sclerosis (MS)

Table	Comparison of characteristic MRI findings between NMOSD and MS		
	NMOSD	MS	
Spinal cord	Longitudinally extensive lesion (\geq 3 vertebral segments)	Short, often multiple lesions	
	Central/gray matter involvement	Peripheral/asymmetrical/often posterior	
	T1 hypointensity common on acute lesions	T1 hypointensity rare	
Optic nerve	Long-length/posterior-chiasmal lesions	Short-length lesions	
Brain	Periependymal lesions surrounding the ventricular system (wide-based along the ependymal lining)	Dawson fingers (perpendicular to ventricles)/S-shaped U-fiber lesions, inferior lateral ventricle and temporal lobe lesions	
	Hemispheric tumefactive lesions	Cortical lesions	
	Lesions involving corticospinal tracts	Perivenous lesions	
	"Cloud-like" enhancing lesions	Ovoid or ring/open-ring enhancing lesions	
Others	Normal-appearing tissue involvement may be limited to lesional tracts and associated cortex	Normal-appearing white matter manifests tissue damage using special MRI techniques	
	Lesional myo-inositol reduced on MRS	Lesional N-acetyl-aspartate reduced on MRS	

Abbreviations: MRS = magnetic resonance spectroscopy; MS = multiple sclerosis; NMOSD = neuromyelitis optica spectrum disorder.

MS-like lesions may appear in 10% to 12.5% of NMOSD patients

Kim et al, Neurology 2015

The Central Vein Sign in MS vs NMOSD

Treatments used in MS may exacerbate NMOSD

OBSERVATION

Interferon Beta Treatment in Neuromyelitis Optica

Increase in Relapses and Aquaporin 4 Antibody Titers

Jacqueline Palace, DM; Maria Isabel Leite, DPhil; Angela Nairne, MRCP; Angela Vincent, FRCPath Arch Neurol. 2010:67(8):1016-1017

Failure of Natalizumab to Prevent Relapses in Neuromyelitis Optica

Ingo Kleiter, MD; Kerstin Hellwig, MD; Achim Berthele, MD; Tania Kūmpfel, MD; Ralf A. Linker, MD; Hans-Peter Hartung, MD; Friedemann Paul, MD; Orhan Aktas, MD; for the Neuromyelitis Optica Study Group

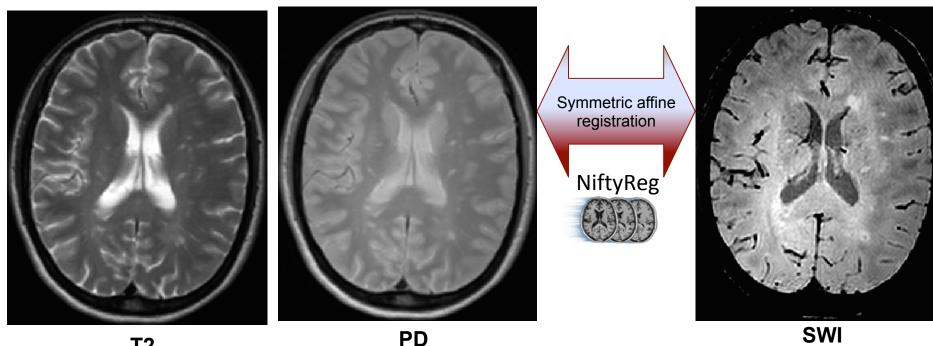
Arch Neurol. 2012;69(2):239-245

Case Study	MULI IPLE SCLER OSIS JO URNAL	LSM
Development of extensive brain lesions following fingolimod (FTY720) treatment in a patient with neuromyelitis optica spectrum disorder		5 r(s) 2012 permission: /journalsPermissions.nav /1352458511431973 om
lu-Hong Min. Byoung loon Kim and Kwang Ho Lee		

Line Central Vein Sign in MS vs NMOSD

Cohort description

	NMOSD(*)	RRMS(**)	HC
No. of patients	18	18	25
Gender (male/ female)	4/14	4/14	7/18
Age, y, mean [± SD]	52.5 [±2.8]	41.8 [±2.8]	37.1 [±2.4]
Disease duration, years, mean [± SD]	8.6 [± 7.3]	9 [± 6.4]	NA
EDSS, median (range)	5 (2 - 6.5)	2.5 (1 – 7.5)	NA


*

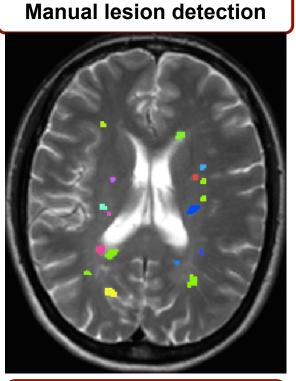
2006 Revised criteria for NMO

**2010 Diagnostic criteria for MS

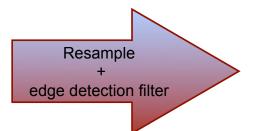
The Central Vein Sign in MS vs NMOSD

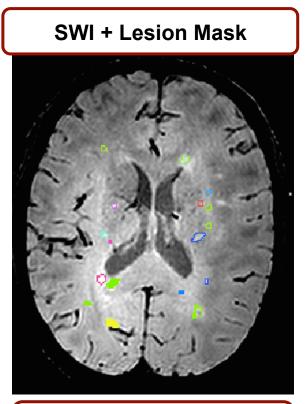
Methods: image analysis

T2


SWI

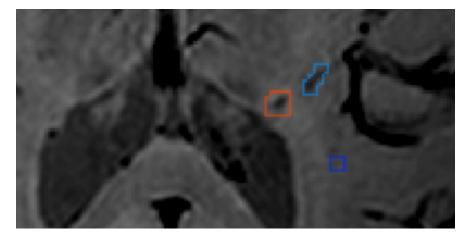
Brain MRI: Philips Achieva 3T


3D-FFE sequence with shifted echo (voxel size 1x1x1 mm³, reconstructed to $0.5 \times 0.5 \times 0.5$ mm³).


The Central Vein Sign in MS vs NMOSD

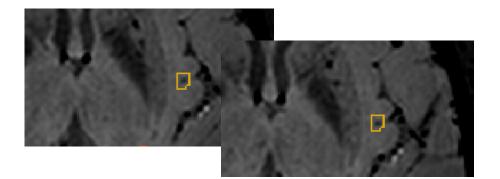
Methods: image analysis

Infratentorial Periventricular Subcortical



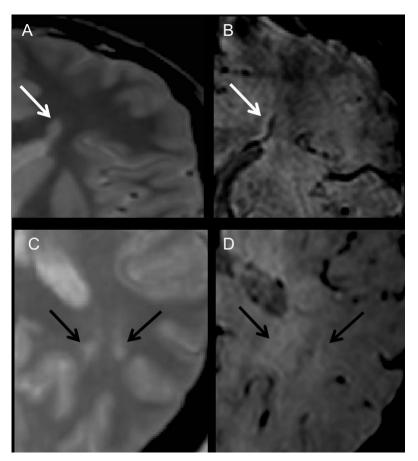
Two readers blinded to clinical data

Methods

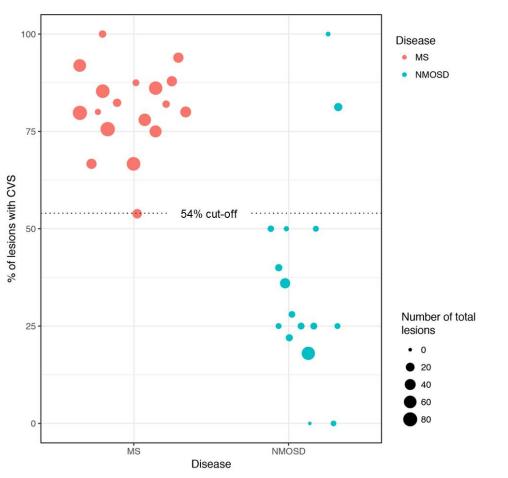

The Central Vein Sign in MS vs NMOSD

Methods: image analysis

^AUCL



The Central Vein Sign in MS vs NMOSD Results


MS 80% CVS

NMOSD 32% CVS

OR=1.10 95%CI 1.04 to 1.16, p=0.001

The Central Vein Sign in MS vs NMOSD Results

Accuracy: 94/% (95%Cls 81.34, 99.32, p<0.001, sensitivity/specificity: 90%/100%).

^AUCL

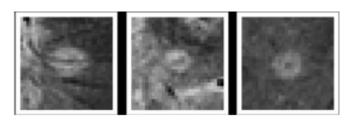
Line Central Vein Sign in MS vs NMOSD Conclusion

The CVS on SWI at 3T MRI may differentiate MS from NMOSD.

Limitation

Procedure time-consuming

The Central Vein Sign Outline

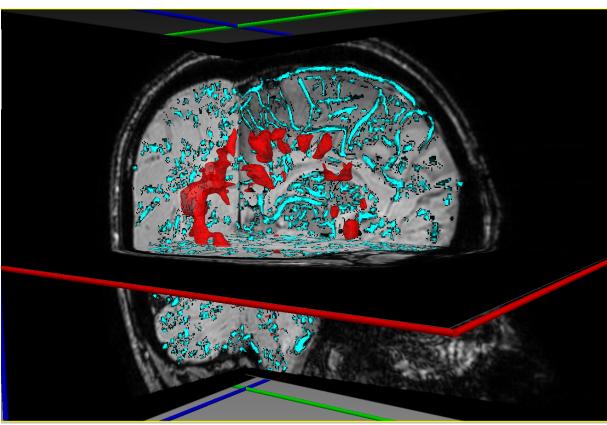

- Background
- The Central Vein Sign in MS vs NMOSD
- Future work

≜UCL

Future work Less time-consuming algorithms

«PICK 6»

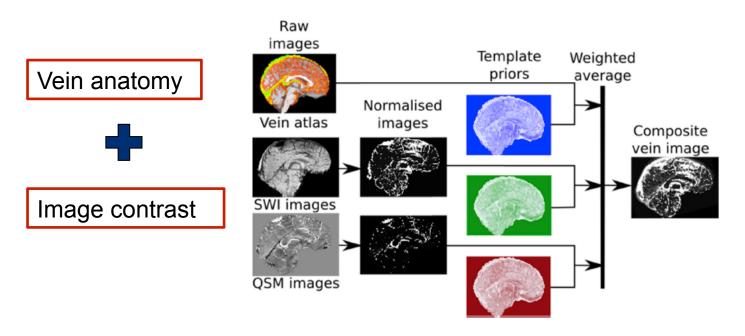
- 1. If there are **six or more** morphologically characteristic lesions
- 2. if there are fewer than six morphologically characteristic lesions, but morphologically characteristic lesions **outnumber** non-perivenous lesions
- 3. if **neither** of these conditions are met



Mistry, MSJ 2016

L C L

Future work Automatic vessel segmentation



Courtesy of F. Prados and M. Zuluaga

UC

Future work Automatic vessel segmentation

The accuracy of automated vein segmentations derived from the **composite vein image** was overwhelmingly superior to segmentations derived from SWI or QSM alone.

THANK YOU

National Institute for Health Research

Society

