Multi-compartment T2 relaxometry model with application to multiple sclerosis

Sudhanya Chatterjee⁺, Olivier Commowick⁺, Onur Afacan^{*}, Benoit Combès⁺, Anne Kerbrat[‡] Simon K. Warfield^{*}, Christian Barillot⁺

⁺University of Rennes, INRIA, CNRS, INSERM, IRISA UMR 6074, VISAGES ERL U-1228, F-35000 Rennes, France

[‡]Department of Neurology, Rennes University Hospital, Rennes, France

*CRL, Boston Children's Hospital, Department of Radiology, 300 Longwood Avenue, WB215, Boston, MA 02115, USA

Multiple T2 compartments in white matter

MacKay, Alex, et al. "Insights into brain microstructure from the T2 distribution." Magnetic resonance imaging 24.4 (2006): 515-525.

Fig. 2. An example of a T₂ distribution of human white matter in vivo with labeled regions corresponding to compartments of white matter. χ^2 was kept within 2–2.5% of its nominal value.

Multi-Compartment Model

Multi-Compartment Image Model

$\langle Image_{Voxel} \rangle = \langle short - T2 \rangle + \langle medium - T2 \rangle + \langle high - T2 \rangle$

Short-T2

Myelin and highly myelinated axons

- White matter lesions in MS show demyelination in MS
- A change in short-T2 water fraction might indicate remyelination.

Medium-T2 Intra and extra-cellular fluids

- Intracellular: unmyelinated axons and glia
- Extracellular: interstitial and extra cellular

High-T2 Free water

- Cerebrospinal fluids
- Edema regions

Table 1

T1 and T2 Relaxation Times Estimates for Myelin (my), Myelinated axon (ma), and Mixed (mx) Water Pools in White Matter*

Reference	В ₀ (Т)	T1 (msec)			T2 (msec)		
		my	ma	mx	my	ma	mx
3-pool model ^a	1.9	350 (.17)	850 (.53)	2800 (.30)	10 (.17)	40 (.53)	130 (.30)
Koenig et al. (3)	1.0	200 (.15)	680	(.85)			
Stanisz et al. (15) ^b	1.5	463 (.32)	970	(.68) ———	22	1	76
Whittall et al. (14)	1.5		718		70		
MacKay et al. (13) ^c					10-55 (.16)	>55	5 (.84)
Stewart et al. (22) ^d	2.1				10 (.04)	92	(.96) ———
Vavasour et al. (16) ^e	1.5				20	80	120
Does and Gore (19) ^f	4.7	938 (.19)	1328 (.47)	1845 (.34)	12 (.19)	33 (.47)	105 (.34)

*Pool assignment by order of relaxation times.

^aPool fractions in parenthesis. Values for 3-pool model are for FWM.

^bData from bovine optic nerve.

^cThree T2 components appear in graphs (Fig. 2 and 5), but pool fractions not given.

^dData from brain CNS tissue of Hartley guinea pig.

^eData from Fig. 1. Pool fractions not given.

^fData from Fig. 5 in rat trigeminal nerve acquired at 4.7 T.

Lancaster, Jack L., et al. "Three-pool model of white matter." *Journal of Magnetic Resonance Imaging* 17.1 (2003): 1-10.

Multi-Compartment Image Model

$\langle Image_{Voxel} \rangle = \langle short - T2 \rangle + \langle medium - T2 \rangle + \langle high - T2 \rangle$

Reference

3-pool model^a

Koenig et al. (3)

Stanisz et al. (15)^b

Whittall et al. (14)

MacKay et al. (13)^c

Stewart et al. (22)^d

Vavasour et al. (16)^e

Does and Gore (19)^f

^bData from bovine optic nerve.

 B_0

(T)

1.9

1.0

1.5

1.5

2.1

1.5

4.7

^aPool fractions in parenthesis. Values for 3-pool model are for FWM.

*Pool assignment by order of relaxation times.

^dData from brain CNS tissue of Hartley guinea pig. ^eData from Fig. 1. Pool fractions not given.

^fData from Fig. 5 in rat trigeminal nerve acquired at 4.7 T.

my

350 (.17)

200 (.15)

463 (.32)

938 (.19)

^cThree T2 components appear in graphs (Fig. 2 and 5), but pool fractions not given.

Short-T2

Myelin and highly myelinated axons

Table 1

T1 and T2 Relaxation Times Estimates for Myelin (my), Myelinated axon (ma), and Mixed (mx) Water Pools in White Matter* T1 (msec)

ma

850 (.53)

- 718 -

1328 (.47)

- 680 (.85)

- 970 (.68)

mx

2800 (.30)

1845 (.34)

T2 (msec)

my

10-55 (.16)

10 (.04)

12 (.19)

10 (.17)

22

70

20

ma

40 (.53)

80

33 (.47)

mx

130 (.30)

-176 --

->55 (.84)--

-92 (.96)

120

105 (.34)

•	White matter lesions in MS show demyelination in MS
•	A change in short-T2 water fraction might indicate re-
	myelination.

<u>Medium-T2</u> Intra and extra-cellular fluids

• Intracellular: unmyelinated axons and glia

• Extracellular: interstitial and extra cellular

High-T2

Free water

Lancaster, Jack L., et al. "Three-pool model of white matter." Journal of Magnetic *Resonance Imaging* 17.1 (2003): 1-10.

• Cerebrospinal fluids

• Edema regions

Myelin water fraction (popularly looked at measure) is a relative measure. Hence shall be studied in relation to the other compartment water fractions.

Method

Signal model

• Multicomponent model

$$s(t_{i}) = \sum_{j} w_{j} \exp(-t_{i}/T_{2_{j}})$$
• Multi-compartment model
$$Decay response for sequences with multiple refocusing pulses at certain flip angles$$

$$s(t_{i}) = M_{0} \sum_{j=1}^{n} w_{j} \int_{T_{2}} f_{j}(T_{2}; p) EPG(T_{2}, \Delta TE, i, B_{1}) dT_{2}$$

$$Weights are Model for each compartment$$

Choice of compartment model

Fig. 2. An example of a T_2 distribution of human white matter in vivo with labeled regions corresponding to compartments of white matter. χ^2 was kept within 2–2.5% of its nominal value.

PDF parameters chosen for this study:

Compartment	Gaussian PDF mean	Gaussian PDF standard deviation
Short-T2	20.0	5.0
Medium-T2	100.0	10.0
High-T2	2000.0	80.0

MacKay, Alex, et al. "Insights into brain microstructure from the T2 distribution." *Magnetic resonance imaging* 24.4 (2006): 515-525.

Healthy volunteer

<u>Acquisition details</u>: TE = 9ms / 32 echoes / TR = 3720ms / 1.33mm x 1.33mm / Slice thickness = 4mm / Slice spacing = 4mm

Short-T2

Medium-T2

Test retest experiments for healthy volunteers

Reproducibility test

Number of healthy controls = 5

TE = 9ms / TR = 2000ms / 32 echoes

ROIs evaluated

Bland Atman plots

Plot between:

0.025 -

0.015 -

0.005

-0.005

-0.015 -

-0.025

0.1

Test – Retest

- Difference in estimated values of test and retest
- Mean of the estimations from test and retest
- Lower mean difference suggests high repeatability

0

0

0

0.2

0

0

• The empirical limits of agreement for estimated values are obtained as $1.96 \times \sigma$

Short T2

0

Mean of Test and Retest

0

0

0

0.3

Multiple Sclerosis study

- 10 MS patients median age of 28.0; 5 male and 5 female MS patients
- 3 year follow-up study
- All patients demonstrated clinically isolated syndrome (CIS) condition
- MS therapy administered after month-3

Lesion regions studied

Comparison done for (L-) and (E+) lesions

appears on T2-w but not on Gd

*229 (L-) and 25 (E+) lesions were present in the patients

Regions studied

appears on T2-w but *not* on Gd

(L-) \

Data acquisition

- T2 relaxometry
 - 3T MRI scanner, first TE = 13.8ms, ΔTE = 13.8ms, TR = 4530ms, n_{echoes} = 7, voxel dimension = 1.3 x 1.3 x 3mm³, slice spacing = 3mm
 Acquisition time ~7 minutes.
- T1 SE Gd scan
 - TE = 8.4ms, TR = 500ms, flip angle = 70°, voxel dimension = 1.3 x 1.3 x 3mm³, slice spacing = 3mm, 0.1mmol/kg gadopentetate dimeglumine.

(L-) vs. (E+): short-T2 water fraction evolution

Short-T2 water fraction: E+ vs L-

Short-T2 water fraction change between consecutive scans: E+ vs L-

(L-) vs. (E+): medium-T2 water fraction evolution

0.95 E+ 06.0 0.85 0.80 0.75 0.70 0.65 M12 M18 M24 M36 M00 M09 M03 M06

Medium-T2 water fraction: E+ vs L-

Medium-T2 water fraction change between consecutive scans: E+ vs L-

(L-) vs. (E+): high-T2 water fraction evolution

High-T2 water fraction: E+ vs L-

High-T2 water fraction change between consecutive scans: E+ vs L-

Conclusion

- Simple and effective tissue multi-compartment model to obtain microstructure information.
- Test retest experiments show that the estimation is repeatable.
- A 3-year study on CIS MS patients show that the trend of the estimated microstructure

information are in confirmation with the broad understanding of pathology of MS lesions.

• Evaluations done for early and late MS lesions.

