

Images and Genes: From AD to MS

Andre Altmann

Department of Medical Physics and Biomedical Engineering

Centre for Medical Image Computing (CMIC)

Translational Imaging Group (TIG)

a.altmann@ucl.ac.uk

London, January 31st 2018

- Single Nucleotide Polymorphisms (SNPs)
- ~ 1 million genetic markers measured (~0.001%)
- Sample acquisition cheap (£30 per participant)

- Mass univariate testing
- P<5x10⁻⁸ is 'genome-wide significant'

2011: ~10,000 cases doi:10.1038/nature10251 ~17,000 controls

2011:

~10,000 cases doi:10.1038/nature10251 ~17,000 controls

.....

5

2013: ~15,000 cases ~24,000 controls doi:10.1038/ng.2770

- Imaging genetics uses imaging phenotypes in genetic studies
- Imaging phenotypes are 'closer' to the disorder than diagnoses
 - Often diagnoses are 'mixed bags'
 - Allows us to study how the disorder develops

- APOE-e4 is a strong risk factor for AD
- Reiman et *al.* (1996) studied glucose metabolism
- APOE-e4 homozygotes showed reduced metabolism in typical AD regions

RIGINAL ARTICLE

Preclinical Evidence of Alzheimer's Disease in Persons Homozygous for the ε4 Allele for Apolipoprotein E

Eric M. Reiman, M.D., Richard J. Caselli, M.D., Lang S. Yun, M.S., Kewei Chen, Ph.D., Daniel Bandy, M.S., Satoshi Minoshima, M.D., Ph.D., Stephen N. Thibodeau, Ph.D., and David Osborne, Ph.D. N Engl J Med 1996; 334:752-758 | March 21, 1996 | DOI: 10.1056/NEJM199603213341202

Example ir

 Table 1

 Relations between MS susceptibility genes and brain MR imaging

Imaging Multiple

Stefan Dirk Roosendaal,

Study, Year	Patients (CIS/RR/SP/PP)	нс	MR Imaging	Most Important Findings	
Baranzini et al, ³⁰ 2009	987 (100/659/137/72)ª	883	T2LL, BV	GWA; T2LL and BV associated with multiple (non-HLA) SNPs, not with HLA-DRB1*1501	
Gourraud et al, ³⁸ 2013	484 (76/343/45/20)	-	LPM	GWA; 31 SNPs associated with lesion pattern	
Healy et al, ⁸⁷ 2010	532 (17/351/123/37) ^b	776	T2LL, BV	HLA B44 associated with higher BV and lower T2LL	
Hooper-van Veen et al, ³⁶ 2003	492 (-/221/172/99) ^c	228	T1BH, T2LL, BV	No associations interleukin-1 polymorphism with MR imaging	
Hooper-van Veen et al, ⁸⁸ 2006	489 (-/220/175/440) ^d	180	T1BH, T2LL, BV	Change in T1BH associated with CD28, IFNGR2, IL1B-511	
Horakova et al, ³⁴ 2011	205 (CIS only)	-	T2LL, T1Gad, BV	HLA-DRB1*1501 associated with higher T1Gad, not with BV	
Jensen et al, ⁸⁹ 2010	1006 (RR and SP ^e)	—	BV (ICR)	No associations 7 susceptibility SNPs with BV	
Kalincik et al, ³³ 2013	179 (CIS only)	-	T2LL, BV	No associations 16 susceptibility SNPs with T2LL and BV	
Karrenbauer et al, ³² 2013	100 (-/79/19/2)	-	T2LL, T1BH, lesion location	No associations HLA-DRB1*15 or *04 with MR imaging	
Okuda et al, ²⁴ 2009	505 (88/352/46/14)	_	T2LL, T1Gad, MRS	Higher T2LL and lower NAA in NAWM in HLA-DRB1*1501 + patients	
Qiu et al, ⁷⁰ 2011	252 (-/119/117/16)	-	T2SC	No associations HLA-DRB1 alleles and number/location SC lesions	
Sepulcre et al, ³⁷ 2008	50 (15/28/3/4)	—	T2LL, BV, LPM	No association HLA-DR2 status with lesion distribution and BV	
Schreiber et al, ²⁸ 2002	71 (21/40/10)	—	T2LL	No associations HLA with T2LL	
Sombekke et al, ²⁷ 2009	150 (-/88/32/30)	—	T2LL, T2SC	HLA-DRB1*1501 not associated with T2LL	
Sombekke et al, ²⁹ 2011	208 (-/126/42/40)	-	T2LL, LPM	MHC II region SNP associated with lesion distribution	
Van der Walt et al, ⁹⁰ 2011	978 (-/639/339/-) ^f	-	BV (ICR)	No associations HLA-DRB1 alleles with BV	
Zivadinov et al, ^{25,91} 2003; 2009	100 (-/71/16/13)	122	T2LL, T1BH, BV	B7 associated with higher T2LL and T1BH; DRB1*12 with higher T1BH and lower BV	
Zivadinov et al, ²⁶ 2007	41 (-/27/7/7)	_	T2LL, T1BH, BV	Multiple HLA alleles associated with MR imaging (eg, HLA- DRB1*1501 associated with lower BV and higher T1BH)	

	Candidate ROI		Many ROIs		Voxelwise
Candidate SNP				-	[Filippini et al. 2009] 29,812 voxels 1 SNP
Candidate Gene		[Joyner et al. 2011] 4 ROIs, 11 SNPs			
Genome-wide Gene					[Hilbar et al. 2011] 31,622 voxels 18,044 Genes
Genome-wide SNP	[Stein et al. 2012] 1 ROI, 1.1 mio SNPs [Potkin et al. 2009] 1 ROI, 317,503 SNPs				[Stein et al. 2010] 31,622 voxels 448,293 SNPs

Multimodal Imaging Genetics

- One (imaging) biomarker may be noisy
- Considering multiple markers may improve robustness

Marzia Scelsi

Disease progression modelling

greement with theoretical models

Genome-wide association tests

Bayesian Multi-task Learning

Independent

hippo volume

Coupled

age

Prior covariance: independent

Flexible prior covariance

α 's are learned from data (Bayesian machine learning)

ADNI Dataset

ADNI Dataset

- We can look at group differences in trajectories (intercepts, slopes) across subjects
- Coupled models:
 less significant
 intercept
 differences, more
 significant slope
 differences
- These are more plausible models: neurodegeneration initiates from a similar level in developed adults

Application to MS?

- Currently exploring other kernels
 - APOE-e4 kernel
 - Polygenic kernel
- In MS?
 - Longitudinal (imaging) biomarker
 - Genetic information from genotyping

	Candidate ROI		Many ROIs		Voxelwise
Candidate SNP					[Filippini et al. 2009] 29,812 voxels 1 SNP
Candidate Gene		[Joyner et al. 2011] 4 ROIs, 11 SNPs			
Genome-wide Gene					[Hilbar et al. 2011] 31,622 voxels 18,044 Genes
Genome-wide SNP	[Stein et al. 2012] 1 ROI, 1.1 mio SNPs [Potkin et al. 2009] 1 ROI, 317,503 SNPs				[Stein et al. 2010] 31,622 voxels 448,293 SNPs

Genetics of cortical thickness in AD

- Loss of gray matter in AD
- Cortical thickness derived from structural T1 weighted MRI scans

Marco Lorenzi

Results – Component 1

Acknowledgements

Marco Lorenzi

Images and Genes: From AD to MS

Andre Altmann

Department of Medical Physics and Biomedical Engineering

Centre for Medical Image Computing (CMIC)

Translational Imaging Group (TIG)

a.altmann@ucl.ac.uk

London, January 31st 2018