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1 Introduction

Many problems in structural biology take the form of a pattern classification problem
characterized as follows: given a protein sequence, assign to each of its residues a category
belonging to a given finite set (identified with [1; C] the set of integers ranging from 1 to
C). A famous example is provided by the protein secondary structure prediction problem.
This three up to eight category classification problem was admittedly solved by Magnan
and Baldi (2014). To tackle this kind of task, a hierarchical and modular method was
introduced by Guermeur et al. (2004b). This architecture was then developed by Sapay
et al. (2006), Guermeur and Lauer (2016) and Guermeur and Malliavin (2024), as it was
applied to different problems. The first layer of treatment in the hierarchy combines Multi-
Layer Perceptrons (MLPs) (Anthony and Bartlett, 1999) and Multi-class Support Vector
Machines (M-SVMs) (Guermeur, 2012; Dogan et al., 2016; Lei et al., 2019) whose outputs
are post-processed with a Polytomous Logistic Regression (PLR) model.

This poster deals with the dedication of one of the M-SVMs to the biological problem
of interest and its assessment. This is obtained through kernel engineering (Shawe-Taylor
and Cristianini, 2004) and model selection (Massart, 2007). The touchstone is provided
by two open problems: the prediction of the w torsion angles in globular proteins and the
prediction of amphipathic in-plane membrane anchors in monotopic membrane proteins.

The organization of the paper is as follows. Section 2 describes the M-SVM and its
kernel. Section 3 is devoted to the prediction of the w torsion angles. Section 4 deals
with the prediction of the amphipathic in-plane membrane anchors. At last, we draw
conclusions in Section 5.

2 Dedicated M-SVM

Support Vector Machines (SVMs) (Cortes and Vapnik, 1995) are binary classifiers obtained
as kernelized extensions of the maximum margin hyperplane. The M-SVMs are their multi-
class extensions. The model considered here is the initial one, introduced by Weston and
Watkins (1998). In order to describe our implementation of this machine, we must first
introduce the theoretical context.

We make the hypothesis that the covariates x live in a domain X. As stated in
introduction, the set of categories ) is identified with the set of indexes of the categories,



i.e., [1,C] (no structure is assumed on )). Let d,, = {(x;,v;) : 1 < i< m} be aset of m
labelled examples (d,, € (X x V)™). Let k be a real-valued positive type function/kernel
(Berlinet and Thomas-Agnan, 2004) on X and let (H,, (-, >H~> be its reproducing kernel
Hilbert space (RKHS). The architecture considered to perform the discriminant analysis,
i.e., the function class H on which function selection is performed based on d,,, is the set
of functions h = (hy); <o from & into R® given by:

Vx e X, h(x)= ((ﬁk,/@x>HK + bk)lgkgC’
where (ﬁk)l <o € H¢ and (bk)1<kec € RC. The corresponding learning problem, a
quadratic programming problem, is the following one.

Problem 1
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Vie [1,m], Vk € [1,C, hy (z;) — hi(z;) =1 =6, 1 — &
subject to: ' [[ ) ]] [[ ) ]] yz( [ k( z) = yi,k Szk

Vi e [1,m], Vk € [1,C], & =0
The difference between this formulation and the original one rests in the use of one soft
margin parameter C*) per category. This idea is borrowed from Ben-Hur and Weston
(2010).

The basic principle of the dedication of the machine to the problems of interest is the
implementation of a local prediction, involving an analysis window sliding on the protein
sequence. Thus, the description x associated with a residue in a sequence is the window
content when the window in centered on the residue. As a consequence, if the index of the
residue in the sequence is i and the window size is 2¢ + 1, then

X= ($i+k)_z<k<g )

where z; is the amino acid / residue to be classified and the z;y; for k # 0 are the
neighboring amino acids (or empty positions at the N and C termini of the sequence). In
the sequel, with a slight abuse of notation, we simply denote x = (:ck)kag a description
(ignoring when possible the relative position of the corresponding residue in the data sets).
With this notation at hand, the kernel k¢, ¢ applied to these descriptions, introduced by
Guermeur et al. (2004a), is defined as follows:

l
KG,u,0 (X,X/) = exp (—u Z 0. ka — x%Hé) (1)

k=—1

where ¢ € Ry and 6 = (0k)_ycpey € R?f“. Formula (1) involves the norm |||, on
the set of amino acids (endowed with a structure of vector space). This norm is the one
associated with the Gram matrix G derived from a substitution matrix. The transition
from the substitution matrix to the matrix G is the projection operator on the convex
cone of symmetric semi-definite matrices. The weighting vector 8 is introduced to take
into account the relative importance (for the prediction) of the different positions in the
window. As such, the value of one of its components can be set arbitrarily, so that the
values of the other ones are derived accordingly. In practice, we chose to set g = 1. The



transition from the relative importance to the absolute one is provided by the “bandwidth”
parameter p.

Problem 1 and Formula (1) define the hyperparameters whose values are to be selected
in order to dedicate the M-SVM to the problem of interest. In practice, the model selection
procedure depends on the biological problem. This is illustrated in the two following
sections.

3 Prediction of the w torsion angles

We start with a problem whose importance to determine the 3D structure has recently
been highlighted by da Rocha et al. (2024).

3.1 Biological problem

Machine learning models, especially the deep learning ones, proved capable of predict-
ing protein structures from the primary sequence (Varadi et al., 2023). However, their
capacity to predict statistically significant long-range proximities frequently rests on the
availability of a sufficiently large alignment of protein sequences (Radjasandirane and
de Brevern, 2023). Unfortunately, the alignments can be too small for small families of
proteins (Radjasandirane and de Brevern, 2023), or can be irrelevant in the case of intrin-
sically disordered regions. This motivates the study of protein structure inference from
local geometry information only.

Initial results have shown that variations in stereochemistry must be taken into account
to obtain a relevant prediction (da Rocha et al., 2024). In particular, variations in torsion
angles w are essential. Taking our inspiration from (Guermeur and Malliavin, 2024), we
address the prediction of these variations as a four-category discrimination problem with
the categories being:

ow < —3°:class 1

—3° < dw < 0°: class 2
0° < dw < 4°: class 3
4° < dw : class 4

with dw = sign(w) - 180° — w.

3.2 Dedication of the machine

The literature provides many kernel engineering methods (Shawe-Taylor and Cristianini,
2004). We chose to set the values of the hyperparameters G and € of the kernel by means
of the centered kernel target alignment (Cortes et al., 2012). The initial feasible solution
for the matrix G is the projection of the BLOSUMG62 matrix (Henikoff and Henikoff, 1989).
As for the weighting vector 0, all its components are initialized at 1. At last, the values
of the bandwidth z and the soft margin parameters C¥) are obtained as the result of a
search on a grid, through cross-validation.

3.3 Experimental results

The M-SVM and a MLP were applied to the HIV-protease data set. This set contains 176
protein sequences from which 16645 15-residue peptides were extracted (the window size
is 15).



A seven-fold cross-validation was implemented, involving a subset of the training set
dedicated to model selection (validation set). The quality of the prediction is measured
by means of three standard criteria: the recognition rate, the Matthews (1975) correlation
coefficients and the cross-entropy (CE). The Matthews’ correlation coefficients characterize
the quality of the prediction per category. As for the cross-entropy, it provides us with
an idea of the feasibility of the post-processing by the higher modules of the hierarchical
architecture, especially the Inhomogeneous Hidden Markov Model (IHMM) (Guermeur
et al., 2004b). The results obtained are gathered in Table 1.

Classifier % rec. C1 Cy Cs Cy CE
WW-M-SVM + PLR 66.3 0.66 0.29 0.17 0.66 1.04
MLP 64.5 0.67 0.28 0.14 0.64 1.70

Table 1: Relative performance of the M-SVM and a MLP for the prediction of the w
torsion angles.

According to the two sample proportion test, the superiority of the M-SVM over the
MLP is statistically significant with confidence exceeding 0.95.

4 Prediction of amphipathic in-plane membrane anchors in
monotopic proteins

With this second problem, we switch from globular proteins to membrane ones.

4.1 Biological problem

Many prediction methods have been devised to detect transmembrane segments with a
a-helical conformation in membrane proteins. However, membrane proteins can also be
monotopic, i.e., bound to the membrane interface and thus in contact with only one of
the compartments defined by the membrane. The goal here is to detect the membrane
anchor parallel to the membrane plane, so-called in-plane membrane (IPM) anchor, of
these proteins. This is thus a binary pattern classification problem. It is noteworthy that
the two categories are highly unbalanced, with only 7.7% the residues belonging to an
IPM anchor.

4.2 Dedication of the machine

This dedication exhibits one single difference with the former one: the choice of the sub-
stitution matrix. In line with what was done by Sapay et al. (2006), the PHAT matrix
(Ng et al., 2000) is preferred to the BLOSUMG62 matrix.

4.3 Experimental results

The M-SVM and a MLP were applied to the AmphipaSeeK data set. This set contains 30
experimentally characterized protein sequences made up of 12105 residues. Here again, the
window size was set to 15, and a seven-fold cross-validation was implemented, involving
a subset of the training set dedicated to model selection. The quality of the prediction



is measured with the same criteria as previously. The results obtained are gathered in
Table 2.

Classifier % rec. Crpm CE
WW-M-SVM + PLR 92.0 0.38 1.06
MLP 88.5 0.28 1.79

Table 2: Relative performance of the M-SVM and a MLP for the prediction of TPM
anchors.

The use of two soft margin parameters proved decisive to establish the superiority of
the M-SVM. Indeed, without this degree of freedom, its Matthews’ correlation coefficient
Crpm would have been inferior to the one of the MLP. On average, the value of the soft
margin coefficient associated with the category "IPM anchor” is ten times larger than the
other one.

5 Conclusions and ongoing research

A multi-class support vector machine dedicated to pattern classification problems in struc-
tural biology has been introduced and assessed on two open problems of central impor-
tance. The experimental results establish its superiority over the standard neural network,
the multi-layer perceptron.

Our ongoing research consists in applying to the two problems the whole hierarchical
and modular method. Once this is done, a comparison will be made with the latest models
of deep learning.
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