

Autonomous Driving & Sustainable Supervision

Patrick Pérez

https://www.youtube.com/watch?v=vE0h3Yy458k

Saving lives, time, energy

Safety critical, real-time, embedded AI in the wild

Driving AI must be: accurate, robust, able to generalize well validated, certified, explainable

Driverless Cars

<u>source</u>

Driverless Cars

Eureka-Prometheus 86-95

https://www.youtube.com/watch?v=I39sxwYKIEE

CVPR 2019

Driverless Cars

Automation Levels

Radar Range-Doppler plots

[Shubert 2015]

Key sensors

Camera

Takes images of the road that are interpreted by a computer. Limited by what the camera can "see".

Radar

Radio waves are sent out and bounced off objects. Can work in all weather but cannot differentiate objects

Lidar

Light pulses are sent out and reflected off objects. Can define lines on the road and works in the dark.

> Source: Delphi Reuters/©Gulf News

Sensor suite

Advanced Driving Assistance Systems (ADAS)

Courtesy X. Perrotton@valeo

reinforcement learning

Courtesy X. Perrotton@valeo

2D/3D Scene Understanding

Detect (bounding boxes with categories)

- Vehicles , vulnerable road users (VRUs), signs, road work Segment (pixel/point labelling)
- Road, pavement, free/drivable space, lane marks

Measure (pixel/point regression)

• Distance, speed

Analyze (object-level)

• Sub-categories, attributes, 'intention, 'attention', next position

2D Semantic Segmentation

Variants: Semantic, instance, plenoptic

2D Semantic Segmentation

Variants: Semantic, instance, plenoptic

Metric: Mean intersection over union (mIoU)

2D Semantic Segmentation

Variants: Semantic, instance, plenoptic

Metric: Mean intersection over union (mIoU)

Key architecture: Fully convolutional encoder-decoder

- Favorite deep ConvNet as backbone encoder
- Skip connections à la U-net for full res decoding

U-net (2015)

DeepLab-v3 (2018)

DeepLab-v3 (2018)

Training Semantic Segmentation

Stochastic Gradient Descent on

$$\sum_{(x,y)\in {\sf Train}} {f {\cal L}}_{{\sf seg}}(x,y)$$

Driving Datasets

synthetic

- CamVid ECCV 2008
- KITTI IJRR 2013
- Cityscapes CVPR 2016
- Oxford Robotcar IJRR 2016
- BDD100K CVPR 2017
- *Mapillary* Vistas ICCV 2017
- ApolloScape (*Baidu*) CVPR 2018
- HDD (*Honda*) CVPR 2018
- GTA5 ECCV 2016
- Synthia CVPR 2016
- Carla simulator arXiv 2017

2019

- India Driving Dataset WACV 2019
- nuScenes (*Aptiv*) arXiv 2019
- *Waymo* Open Dataset –2019
- *Lyft* Level 5 AV Dataset 2019
- D2 City (*Didi*) arXiv 2019
- A2D2 (*Audi*) 2019
- Woodscape (*Valeo*) ICCV 2019

Synthia

SYNTHIA

KITTI

DAIMLER

IDD

HYDERABAD

nuScenes

• A P T I V •

nuScenes

nuScenes

• A P T I V •

A2D2

Valeo Woodscape

Annotation hell

SoA visual deep learning is fully supervised

- Data collection is not so easy (complex, costly, possibly dangerous)
- Labelling is hell (if possible)

• Doomed insufficient for in-the-wild, life-long visual understanding

Toward sustainable supervision?

Alternatives to reduce annotation needs

- Semi-supervised learning
- Unsupervised learning
- Weakly supervised learning
- Zero-shot and few-shot learning
- Transfer learning
- Domain adaptation
- Learning from synthetic data
- Self-supervised learning
- Active learning
- Incremental learning
- Online learning

Transfer and adaptation

- Learn one task, conduct another one
- Learn on one distribution, run on another one = Domain Adaptation

Street light effect (a.k.a. drunkard's search)?

Not quite....

Domain adaptation in vision

1

2

D Springer

A Con	nprehens	sive Survey on Domain Adaptation for Visual	
Applic	cations	*	1
Gabrie	la Csurka	a	
1.1	Introduc	tion	1
1.2	Transfer	learning and domain adaptation	4
1.3	Shallow	domain adaptation methods	5
	1.3.1	Homogeneous domain adaptation methods	5
	1.3.2	Multi-source domain adaptation	12
	1.3.3	Heterogeneous domain adaptation	15
1.4	Deep do	main adaptation methods	19
	1.4.1	DeepDA architectures	21
1.5	Beyond	image classification	25
	1.5.1	Object detection	26
1.6	Beyond domain adaptation: unifying perspectives		
	1.6.1	DA within transfer learning	29
	1.6.2	Connection between DA and traditional ML methods	31
	1.6.3	HDA related to multi-view/multi-modal learning	33
1.7	Conclusion		33
A Dee	per Lool	at Dataset Bias	35
Tatiana	a Tomma	si, Novi Patricia, Barbara Caputo, Tinne Tuytelaars	
2.1	Introduc	tion	35
2.2	A Large	Scale Cross-Dataset Tesbed	38
	2.2.1	Merging Challenges	40
	2.2.2	Data Setups and Feature Descriptor	41
2.3	Studying	g the Sparse Set	44
2.4	Studying the Dense Set 4'		
2.5	Conclus	ion	52

- Different weather, light, location, sensor's spec/setup
- Synthetic vs. real

- Different weather, light, location, sensor's spec/setup
- Synthetic vs. real

- Different weather, light, location, sensor's spec/setup
- Synthetic vs. real

- Different weather, light, location, sensor's spec/setup
- Synthetic vs. real

- Different weather, light, location, sensor's spec/setup
- Synthetic vs. real

- Different weather, light, location, sensor's spec/setup
- Synthetic vs. real

Unsupervised Domain Adaptation (UDA)

Labelled source domain data

Sky Building Road Sidewalk Fence Vegetation Pole Car Sign Pedestrian Cyclist

Unlabelled target domain data

Deep learning for UDA

Distribution alignment

• Appearance, deep features, outputs

Some alignment tools

- Distribution discrepancy loss
- Optimal transport
- Discriminative adversarial loss
- Generative adversarial models

Self-training

- Curriculum learning
- Pseudo-label from confident prediction on target data

Adversarial gradient reversal [Ganin ICML'15]

Adversarial feature alignment [Hoffmann 2016]

Target domain: unlabeled data

Target domain: Network Output

Adversarial feature alignment [Chen ICCV'17]

Cycle-Consistent Adversarial Domain Adaptation CyCADA [Hoffman ICML'18]

Source Image

Source Image Stylized as Target

Target Image

Adversarial output alignment [Tsai CVPR'18]

AdvEnt: Entropy-based alignment [Vu CVPR'19]

Source labelled data

learned segmentation model

Source

Target

AdvEnt: Entropy-based alignment [Vu CVPR'19] TRAIN TEST

Source labelled data

learned segmentation model

Source

Target

Proposed method

Qualitative results

road	sidewalk	building	wall	fence
pole	light	sign	vegetation	
sky	person	rider	car	truck
bus	train	motocycle	bicycle	

Qualitative results

input image

without adaptation

AdvEnt

road	sidewalk	building	wall	fence
pole	light	sign	vegetation	
sky	person	rider	car	truck
bus	train	motocycle	bicycle	

Extension to object detection

Clear-to-foggy-weather adaptation

- Detector: SSD-300
- Data: Cityscapes>Cityscapes-Foggy (synthetic depth-aware fog)

Privileged Information (PI) for UDA

Learning using 'Privileged Information' (LUPI)

- Vapnik and Vashist 2009
- Leverage additional information at training time

In sim2real UDA

- PI comes for free on source domain, e.g. dense depth map
- Set up auxiliary task at train time (\rightarrow multi-task learning MTL)
- Get better, domain-agnostic features
- TRI's "SPIGAN" (ICLR'19) and Vlaeo's "DADA" (ICCV19)

SPIGAN [Lee ICLR'19]

Depth-Aware Domain Adaptation (DADA) [Vu ICCV'19]

Adaptation without depth

Adaptation with depth (DADA)

Qualitative results

Qualitative results

road	sidewalk	building	wall	fence
pole	light	sign	vegetation	
sky	person	rider	car	truck
bus	train	motocycle	bicycle	

Zero-Shot Semantic Segmentation (ZS3) [Bucher NeurIPS 2019]

Zero-Shot Semantic Segmentation (ZS3) [Bucher NeurIPS 2019]

Take home messages and overlook

Autonomous vehicles (and robots)

- Fundamental ML challenges toward major impact
- From generalization to certified performance, on a budget

Toward sustainable supervision

- Lessen pressing need on unpractical large-scale full supervision
- Improve and hybridize low-supervision approaches
- Reduce sim2real gap
- Make RL a reality
- Leverage world knowledge