Large Scale Machine Learning Over Networks

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

Joint work with Kevin Scaman, Hadrien Hendrikx, Laurent Massoulié, Sébastien Bubeck, Yin-Tat Lee PAISS Summer school - October 5, 2019

Scientific context

- Proliferation of digital data
 - Personal data
 - Industry
 - Scientific: from bioinformatics to humanities
- Need for automated processing of massive data

Scientific context

- Proliferation of digital data
 - Personal data
 - Industry
 - Scientific: from bioinformatics to humanities
- Need for automated processing of massive data
- Series of "hypes"

 $\begin{array}{l} \mbox{Big data} \rightarrow \mbox{Data science} \rightarrow \mbox{Machine Learning} \\ \rightarrow \mbox{Deep Learning} \rightarrow \mbox{Artificial Intelligence} \end{array}$

From translate.google.fr

From translate.google.fr

- (1) Massive data
- (2) **Computing power**
- (3) Methodological and scientific progress

From translate.google.fr

- (1) Massive data
- (2) **Computing power**
- (3) Methodological and scientific progress

"Intelligence" = models + algorithms + data + computing power

From translate.google.fr

- (1) Massive data
- (2) **Computing power**
- (3) Methodological and scientific progress

"Intelligence" = models + algorithms + data + computing power

Outline

1. Parametric supervised learning on a single machine

- Machine learning \approx optimization of finite sums
- From batch to stochastic gradient methods
- Linearly-convergent stochastic methods for convex problems

2. Machine learning over networks

- Centralized and decentralized methods
- From network averaging to optimization
- Distributing the fastest single machine algorithms

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \dots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \dots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \dots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \ldots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

 $y_1 = 1$ $y_2 = 1$ $y_3 = 1$ $y_4 = -1$ $y_5 = -1$ $y_6 = -1$

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \dots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

 $y_1 = 1$ $y_2 = 1$ $y_3 = 1$ $y_4 = -1$ $y_5 = -1$ $y_6 = -1$

- Neural networks $(n, d > 10^6)$: $h(x, \theta) = \theta_m^\top \sigma(\theta_{m-1}^\top \sigma(\cdots \theta_2^\top \sigma(\theta_1^\top x)))$

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \ldots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization:

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \quad \ell(y_i, h(x_i, \theta)) \quad + \quad \lambda \Omega(\theta)$$

data fitting term + regularizer

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \ldots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization:

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{2n} \sum_{i=1}^n \left(y_i - h(x_i, \theta) \right)^2 \quad + \quad \lambda \Omega(\theta)$$

(least-squares regression)

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \ldots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization:

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \log \left(1 + \exp(-y_i h(x_i, \theta)) \right) + \lambda \Omega(\theta)$$

(logistic regression)

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \ldots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization:

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \quad \ell(y_i, h(x_i, \theta)) \quad + \quad \lambda \Omega(\theta)$$

data fitting term + regularizer

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \dots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization:

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \left\{ \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta) \right\} = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

data fitting term + regularizer

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \dots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization:

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \left\{ \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta) \right\} = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

data fitting term + regularizer

• Optimization: optimization of regularized risk training cost

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization:

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \left\{ \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta) \right\} = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

data fitting term + regularizer

- Optimization: optimization of regularized risk training cost
- Statistics: guarantees on $\mathbb{E}_{p(x,y)}\ell(y,h(x,\theta))$ testing cost

• A function $g: \mathbb{R}^d \to \mathbb{R}$ is *L*-smooth if and only if it is twice differentiable and

$$\forall \theta \in \mathbb{R}^d, | \mathsf{eigenvalues}[g''(\theta)] | \leq L$$

• A function $g: \mathbb{R}^d \to \mathbb{R}$ is *L*-smooth if and only if it is twice differentiable and

$$\forall \theta \in \mathbb{R}^d, | eigenvalues[g''(\theta)] | \leq L$$

• Machine learning

- with $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
- Smooth prediction function $\theta \mapsto h(x_i, \theta) + \text{smooth loss}$

• A twice differentiable function $g:\mathbb{R}^d\to\mathbb{R}$ is convex if and only if

$$\forall \theta \in \mathbb{R}^d, \text{ eigenvalues}[g''(\theta)] \ge 0$$

 $\forall \theta \in \mathbb{R}^d$, eigenvalues $[g''(\theta)] \ge \mu$

• A twice differentiable function $g:\mathbb{R}^d\to\mathbb{R}$ is $\mu\text{-strongly convex}$ if and only if

• A twice differentiable function $g:\mathbb{R}^d\to\mathbb{R}$ is $\mu\text{-strongly convex}$ if and only if

 $\forall \theta \in \mathbb{R}^d, \text{ eigenvalues}[g''(\theta)] \ge \mu$

– Condition number $\kappa = L/\mu \geqslant 1$

• A twice differentiable function $g: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta \in \mathbb{R}^d, \text{ eigenvalues}[g''(\theta)] \geqslant \mu$$

• Convexity in machine learning

- With $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
- Convex loss and linear predictions $h(x, \theta) = \theta^{\top} \Phi(x)$

• A twice differentiable function $g:\mathbb{R}^d\to\mathbb{R}$ is $\mu\text{-strongly convex}$ if and only if

$$\forall \theta \in \mathbb{R}^d, \text{ eigenvalues}[g''(\theta)] \geqslant \mu$$

- Convexity in machine learning
 - With $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
 - Convex loss and linear predictions $h(x, \theta) = \theta^{\top} \Phi(x)$

• Relevance of convex optimization

- Easier design and analysis of algorithms
- Global minimum vs. local minimum vs. stationary points
- Gradient-based algorithms only need convexity for their analysis

• A twice differentiable function $g: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta \in \mathbb{R}^d, \text{ eigenvalues}[g''(\theta)] \geqslant \mu$$

• **Strong** convexity in machine learning

- With $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
- Strongly convex loss and linear predictions $h(x, \theta) = \theta^{\top} \Phi(x)$

• A twice differentiable function $g: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta \in \mathbb{R}^d, \text{ eigenvalues}[g''(\theta)] \ge \mu$$

• **Strong** convexity in machine learning

- With $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
- Strongly convex loss and linear predictions $h(x, \theta) = \theta^{\top} \Phi(x)$
- Invertible covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{\top} \Rightarrow n \ge d$
- Even when $\mu > 0$, μ may be arbitrarily small!

• A twice differentiable function $g: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta \in \mathbb{R}^d, \text{ eigenvalues}[g''(\theta)] \ge \mu$$

• **Strong** convexity in machine learning

- With $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
- Strongly convex loss and linear predictions $h(x, \theta) = \theta^{\top} \Phi(x)$
- Invertible covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{\top} \Rightarrow n \ge d$
- Even when $\mu > 0$, μ may be arbitrarily small!
- Adding regularization by $\frac{\mu}{2} \|\theta\|^2$
 - creates additional bias unless μ is small, but reduces variance
 - Typically $L/\sqrt{n} \ge \mu \ge L/n \Rightarrow \kappa \in [\sqrt{n}, n]$

- Assumption: g convex and L-smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$ (line search)

- Assumption: g convex and L-smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$ (line search)

$$\begin{split} g(\theta_t) &- g(\theta_*) \leqslant O(1/t) \\ g(\theta_t) &- g(\theta_*) \leqslant O((1-1/\kappa)^t) = O(e^{-t/\kappa}) \text{ if } \mu\text{-strongly convex} \end{split}$$

- Assumption: g convex and L-smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$

$$\begin{split} g(\theta_t) &- g(\theta_*) \leqslant O(1/t) \\ g(\theta_t) &- g(\theta_*) \leqslant O((1-1/\kappa)^t) = O(e^{-t/\kappa}) \text{ if } \mu \text{-strongly convex} \end{split}$$

• Acceleration (Nesterov, 1983): second-order recursion

$$\theta_t = \eta_{t-1} - \gamma_t g'(\eta_{t-1})$$
 and $\eta_t = \theta_t + \delta_t(\theta_t - \theta_{t-1})$

- Good choice of momentum term $\delta_t \in [0,1)$

- Assumption: g convex and L-smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$

$$\begin{split} g(\theta_t) - g(\theta_*) &\leq O(1/t) \\ g(\theta_t) - g(\theta_*) &\leq O((1-1/\kappa)^t) = O(e^{-t/\kappa}) \text{ if } \mu \text{-strongly convex} \end{split}$$

• Acceleration (Nesterov, 1983): second-order recursion

$$\theta_t = \eta_{t-1} - \gamma_t g'(\eta_{t-1}) \text{ and } \eta_t = \theta_t + \delta_t(\theta_t - \theta_{t-1})$$

- Good choice of momentum term $\delta_t \in [0, 1)$ $g(\theta_t) - g(\theta_*) \leq O(1/t^2)$ $g(\theta_t) - g(\theta_*) \leq O((1-1/\sqrt{\kappa})^t) = O(e^{-t/\sqrt{\kappa}})$ if μ -strongly convex
- Optimal rates after t = O(d) iterations (Nesterov, 2004)

- Assumption: g convex and smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$
 - O(1/t) convergence rate for convex functions – $O(e^{-t/\kappa})$ linear if strongly-convex

- Assumption: g convex and smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$

– O(1/t) convergence rate for convex functions – $O(e^{-t/\kappa})$ linear if strongly-convex

• Newton method: $\theta_t = \theta_{t-1} - g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$

 $-O(e^{-\rho 2^t})$ quadratic rate
- Assumption: g convex and smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$
 - O(1/t) convergence rate for convex functions - $O(e^{-t/\kappa})$ linear if strongly-convex $\Leftrightarrow O(\kappa \log \frac{1}{\varepsilon})$ iterations
- Newton method: $\theta_t = \theta_{t-1} g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$
 - $-O(e^{-\rho 2^t})$ quadratic rate $\Leftrightarrow O(\log \log \frac{1}{\varepsilon})$ iterations

- Assumption: g convex and smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$

- O(1/t) convergence rate for convex functions - $O(e^{-t/\kappa})$ linear if strongly-convex \Leftrightarrow complexity = $O(nd \cdot \kappa \log \frac{1}{\epsilon})$

• Newton method: $\theta_t = \theta_{t-1} - g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$

 $- O(e^{-\rho 2^t}) \text{ quadratic rate} \Leftrightarrow \text{complexity} = O((nd^2 + d^3) \cdot \log \log \frac{1}{\varepsilon})$

- Assumption: g convex and smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$

- O(1/t) convergence rate for convex functions - $O(e^{-t/\kappa})$ linear if strongly-convex \Leftrightarrow complexity = $O(nd \cdot \kappa \log \frac{1}{\epsilon})$

• Newton method: $\theta_t = \theta_{t-1} - g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$

 $- O(e^{-\rho 2^{t}}) \text{ quadratic rate} \Leftrightarrow \text{complexity} = O((nd^{2} + d^{3}) \cdot \log \log \frac{1}{\varepsilon})$

• Key insights for machine learning (Bottou and Bousquet, 2008)

- 1. No need to optimize below statistical error
- 2. Cost functions are averages
- 3. Testing error is more important than training error

- Assumption: g convex and smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$
 - O(1/t) convergence rate for convex functions - $O(e^{-t/\kappa})$ linear if strongly-convex \Leftrightarrow complexity = $O(nd \cdot \kappa \log \frac{1}{\epsilon})$
- Newton method: $\theta_t = \theta_{t-1} g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$

 $- O(e^{-\rho 2^t}) \text{ quadratic rate} \Leftrightarrow \text{complexity} = O((nd^2 + d^3) \cdot \log \log \frac{1}{\varepsilon})$

• Key insights for machine learning (Bottou and Bousquet, 2008)

- 1. No need to optimize below statistical error
- 2. Cost functions are averages
- 3. Testing error is more important than training error

Stochastic gradient descent (SGD) for finite sums $\min_{\theta \in \mathbb{R}^d} g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$ • Iteration: $\theta_t = \theta_{t-1} - \gamma_t f'_{i(t)}(\theta_{t-1})$

- Sampling with replacement: i(t) random element of $\{1, \ldots, n\}$
- Polyak-Ruppert averaging: $\bar{\theta}_t = \frac{1}{t+1} \sum_{u=0}^t \theta_u$

Stochastic gradient descent (SGD) for finite sums $\min_{\theta \in \mathbb{R}^d} g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$

- Iteration: $\theta_t = \theta_{t-1} \gamma_t f'_{i(t)}(\theta_{t-1})^{i=1}$
 - Sampling with replacement: i(t) random element of $\{1, \ldots, n\}$
 - Polyak-Ruppert averaging: $\bar{\theta}_t = \frac{1}{t+1} \sum_{u=0}^t \theta_u$
- Convergence rate if each f_i is convex L-smooth and g μ-stronglyconvex:

$$\mathbb{E}g(\bar{\theta}_t) - g(\theta_*) \leqslant \begin{cases} O(1/\sqrt{t}) & \text{if } \gamma_t = 1/(L\sqrt{t}) \\ O(L/(\mu t)) = O(\kappa/t) & \text{if } \gamma_t = 1/(\mu t) \end{cases}$$

- No adaptivity to strong-convexity in general
- Running-time complexity: $O(d \cdot \kappa/\varepsilon)$

Stochastic gradient descent (SGD) for finite sums $\min_{\theta \in \mathbb{R}^d} g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$

- Iteration: $\theta_t = \theta_{t-1} \gamma_t f'_{i(t)}(\theta_{t-1})^{i=1}$
 - Sampling with replacement: i(t) random element of $\{1, \ldots, n\}$
 - Polyak-Ruppert averaging: $\bar{\theta}_t = \frac{1}{t+1} \sum_{u=0}^t \theta_u$
- Convergence rate if each f_i is convex L-smooth and g μ-stronglyconvex:

$$\mathbb{E}g(\bar{\theta}_t) - g(\theta_*) \leqslant \begin{cases} O(1/\sqrt{t}) & \text{if } \gamma_t = 1/(L\sqrt{t}) \\ O(L/(\mu t)) = O(\kappa/t) & \text{if } \gamma_t = 1/(\mu t) \end{cases}$$

- No adaptivity to strong-convexity in general
- Running-time complexity: $O(d \cdot \kappa/\varepsilon)$
- NB: single pass leads to bounds on testing error

• Minimizing
$$g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$
 with $f_i(\theta) = \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)$

• Minimizing
$$g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$
 with $f_i(\theta) = \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)$

- Batch gradient descent: $\theta_t = \theta_{t-1} \gamma \nabla g(\theta_{t-1}) = \theta_{t-1} \frac{\gamma}{n} \sum_{i=1}^n \nabla f_i(\theta_{t-1})$
 - Exponential convergence rate in $O(e^{-t/\kappa})$ for convex problems
 - Can be accelerated to $O(e^{-t/\sqrt{\kappa}})$ (Nesterov, 1983)
 - Iteration complexity is linear in \boldsymbol{n}

• Minimizing
$$g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$
 with $f_i(\theta) = \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)$

• Batch gradient descent: $\theta_t = \theta_{t-1} - \gamma \nabla g(\theta_{t-1}) = \theta_{t-1} - \frac{\gamma}{n} \sum_{i=1}^n \nabla f_i(\theta_{t-1})$

• Minimizing
$$g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$
 with $f_i(\theta) = \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)$

- Batch gradient descent: $\theta_t = \theta_{t-1} \gamma \nabla g(\theta_{t-1}) = \theta_{t-1} \frac{\gamma}{n} \sum_{i=1}^{n} \nabla f_i(\theta_{t-1})$
 - Exponential convergence rate in $O(e^{-t/\kappa})$ for convex problems
 - Can be accelerated to $O(e^{-t/\sqrt{\kappa}})$ (Nesterov, 1983)
 - Iteration complexity is linear in \boldsymbol{n}
- Stochastic gradient descent: $\theta_t = \theta_{t-1} \gamma_t \nabla f_{i(t)}(\theta_{t-1})$
 - Sampling with replacement: i(t) random element of $\{1, \ldots, n\}$
 - Convergence rate in $O(\kappa/t)$
 - Iteration complexity is independent of \boldsymbol{n}

- Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$ with $f_i(\theta) = \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)$
- Batch gradient descent: $\theta_t = \theta_{t-1} \gamma \nabla g(\theta_{t-1}) = \theta_{t-1} \frac{\gamma}{n} \sum_{i=1}^n \nabla f_i(\theta_{t-1})$

• Stochastic gradient descent: $\theta_t = \theta_{t-1} - \gamma_t \nabla f_{i(t)}(\theta_{t-1})$

• Goal = best of both worlds: Linear rate with O(d) iteration cost Simple choice of step size

• Goal = best of both worlds: Linear rate with O(d) iteration cost Simple choice of step size

Recent progress in single machine optimization

- Variance reduction
 - Exponential convergence with O(d) iteration cost
 - SAG (Le Roux, Schmidt, and Bach, 2012)
 - SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
 - SAGA (Defazio, Bach, and Lacoste-Julien, 2014), etc...

$$\theta_t = \theta_{t-1} - \gamma \Big[\nabla f_{i(t)}(\theta_{t-1}) \Big]$$

Recent progress in single machine optimization

- Variance reduction
 - Exponential convergence with O(d) iteration cost
 - SAG (Le Roux, Schmidt, and Bach, 2012)
 - SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
 - SAGA (Defazio, Bach, and Lacoste-Julien, 2014), etc...

$$\theta_t = \theta_{t-1} - \gamma \Big[\nabla f_{i(t)}(\theta_{t-1}) + \frac{1}{n} \sum_{i=1}^n y_i^{t-1} - y_{i(t)}^{t-1} \Big]$$

(with y_i^t stored value at time t of gradient of the *i*-th function)

Recent progress in single machine optimization

• Variance reduction

- Exponential convergence with O(d) iteration cost
- SAG (Le Roux, Schmidt, and Bach, 2012)
- SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
- SAGA (Defazio, Bach, and Lacoste-Julien, 2014), etc...
- **Running-time to reach precision** ε (with κ = condition number)

Stochastic gradient descent	$d \times$	κ	×	$\frac{1}{\varepsilon}$
Gradient descent	$d \times$	$n\kappa$	$\times \log$	$\frac{1}{\varepsilon}$
Variance reduction	$d \times$	$(n+\kappa)$	$\times \log$	$\frac{1}{\varepsilon}$

- Can be accelerated (e.g., Lan, 2015): $n + \kappa \Rightarrow n + \sqrt{n\kappa}$
- Matching upper and lower bounds of complexity

Outline

1. Parametric supervised learning on a single machine

- Machine learning \approx optimization of finite sums
- From batch to stochastic gradient methods
- Linearly-convergent stochastic methods for convex problems

2. Machine learning over networks

- Centralized and decentralized methods
- From network averaging to optimization
- Distributing the fastest single machine algorithms

• Machine learning through optimization

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n f_i(\theta) = g(\theta)$$

 $-f_i(\theta)$ error of model defined by θ on dataset indexed by i

• Each dataset / function f_i only accessible by node i in a graph

• Machine learning through optimization

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n f_i(\theta) = g(\theta)$$

- $f_i(\theta)$ error of model defined by θ on dataset indexed by i- Example: $f_i(\theta) = \frac{1}{m_i} \sum_{j=1}^{m_i} \ell(y_{ij}, \theta^\top \Phi(x_{ij}))$ if m_i observations
- Each dataset / function f_i only accessible by node i in a graph

• Machine learning through optimization

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n f_i(\theta) = g(\theta)$$

- $f_i(\theta)$ error of model defined by θ on dataset indexed by i- Example: $f_i(\theta) = \frac{1}{m_i} \sum_{j=1}^{m_i} \ell(y_{ij}, \theta^\top \Phi(x_{ij}))$ if m_i observations
- Each dataset / function f_i only accessible by node i in a graph
 - Massive datasets, multiple machines / cores
 - Communication / legal constraints
- Goal: Minimize communication and local computation costs

• Machine learning through optimization

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n f_i(\theta) = g(\theta)$$

- $f_i(\theta)$ error of model defined by θ on dataset indexed by i

- Why not simply distributing a simple single machine algorithm?
 - (accelerated) gradient descent (see, e.g., Nesterov, 2004)

$$\theta_t = \theta_{t-1} - \gamma \nabla g(\theta_{t-1})$$

- Requires $\sqrt{\kappa} \log \frac{1}{\epsilon}$ full gradient computations to reach precision ϵ
- Need to perform distributed averaging over a network

- Compute
$$\theta_* = \frac{1}{n} \sum_{i=1}^n \xi_i = \arg\min_{\theta \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n (\theta - \xi_i)^2$$

- Compute
$$\theta_* = \frac{1}{n} \sum_{i=1}^n \xi_i = \arg\min_{\theta \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n (\theta - \xi_i)^2$$

- Centralized algorithms
 - Compute a spanning tree with diameter $\leqslant 2\Delta$
 - Master/slave algorithm

- Compute
$$\theta_* = \frac{1}{n} \sum_{i=1}^n \xi_i = \arg\min_{\theta \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n (\theta - \xi_i)^2$$

- Centralized algorithms
 - Compute a spanning tree with diameter $\leqslant 2\Delta$
 - Master/slave algorithm: Δ communication steps + no error

- Compute
$$\theta_* = \frac{1}{n} \sum_{i=1}^n \xi_i = \arg\min_{\theta \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n (\theta - \xi_i)^2$$

- Centralized algorithms
 - Compute a spanning tree with diameter $\leqslant 2\Delta$
 - Master/slave algorithm: Δ communication steps + no error

• **Goal**: Given n observations $\xi_1, \ldots, \xi_n \in \mathbb{R}$

- Compute
$$\theta_* = \frac{1}{n} \sum_{i=1}^n \xi_i = \arg\min_{\theta \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n (\theta - \xi_i)^2$$

- Centralized algorithms
 - Compute a spanning tree with diameter $\leqslant 2\Delta$
 - Master/slave algorithm: Δ communication steps + no error

• Application to centralized distributed optimization

- $\sqrt{\kappa}\log\frac{1}{\epsilon}$ gradient steps and $\sqrt{\kappa}\Delta\log\frac{1}{\epsilon}$ communication steps
- "Optimal" (Scaman, Bach, Bubeck, Lee, and Massoulié, 2017)

• **Goal**: Given n observations $\xi_1, \ldots, \xi_n \in \mathbb{R}$

- Compute
$$\theta_* = \frac{1}{n} \sum_{i=1}^n \xi_i = \arg\min_{\theta \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n (\theta - \xi_i)^2$$

- Centralized algorithms
 - Compute a spanning tree with diameter $\leqslant 2\Delta$
 - Master/slave algorithm: Δ communication steps + no error

• Application to centralized distributed optimization

- $\sqrt{\kappa}\log\frac{1}{\epsilon}$ gradient steps and $\sqrt{\kappa}\Delta\log\frac{1}{\epsilon}$ communication steps
- "Optimal" (Scaman, Bach, Bubeck, Lee, and Massoulié, 2017)
- Robustness?

• **Goal**: Given n observations $\xi_1, \ldots, \xi_n \in \mathbb{R}$

- Compute
$$\theta_* = \frac{1}{n} \sum_{i=1}^n \xi_i = \arg\min_{\theta \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n (\theta - \xi_i)^2$$

• Decentralized algorithms - gossip (Boyd et al., 2006)

- Replace θ_i by a weighted average of its neighbors $\sum_{j=1}^n W_{ij}\theta_j$

- Compute
$$\theta_* = \frac{1}{n} \sum_{i=1}^n \xi_i = \arg\min_{\theta \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n (\theta - \xi_i)^2$$

- Decentralized algorithms gossip (Boyd et al., 2006)
 - Replace θ_i by a weighted average of its neighbors $\sum_{j=1}^n W_{ij}\theta_j$
 - Potential asynchrony, changing network

• **Goal**: Given n observations $\xi_1, \ldots, \xi_n \in \mathbb{R}$

- Compute
$$\theta_* = \frac{1}{n} \sum_{i=1}^n \xi_i = \arg\min_{\theta \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n (\theta - \xi_i)^2$$

- Decentralized algorithms gossip (Boyd et al., 2006)
 - Replace θ_i by a weighted average of its neighbors $\sum_{j=1}^n W_{ij}\theta_j$
 - Potential asynchrony, changing network
- Synchronous gossip (all nodes simultaneously)

- Main iteration:
$$\theta_t = W \theta_{t-1} = W^t \theta_0 = W^t \xi$$

– Typical assumption: W symmetric doubly stochastic matrix

Convergence of synchronous gossip

• Synchronous gossip (all nodes simultaneously)

- Main iteration:
$$\theta_t = W \theta_{t-1} = W^t \theta_0 = W^t \xi$$

– Typical assumption: W symmetric doubly stochastic matrix

Convergence of synchronous gossip

• Synchronous gossip (all nodes simultaneously)

- Main iteration:
$$\theta_t = W \theta_{t-1} = W^t \theta_0 = W^t \xi$$

- Typical assumption: W symmetric doubly stochastic matrix
- Consequence: $Eigenvalues(W) \in [-1, 1]$
- Eigengap $\gamma = \lambda_1(W) \lambda_2(W) = 1 \lambda_2(W)$
- $\gamma^{-1} = mixing$ time of the associated Markov chain

- Need $\frac{1}{\gamma}\log \frac{1}{\varepsilon}$ iterations to reach precision ε (for classical averaging)

Illustration of synchronous gossip

Decentralized optimization

• Mixing gossip and optimization

Nedic and Ozdaglar (2009); Duchi et al. (2012); Wei and Ozdaglar (2012); Iutzeler et al. (2013); Shi et al. (2015); Jakovetić et al. (2015); Nedich et al. (2016); Mokhtari et al. (2016); Colin et al. (2016); Scaman et al. (2017), etc.

Decentralized optimization

- Mixing gossip and optimization
- Lower bound on complexity (Scaman et al., 2017)
 - $\sqrt{\kappa}\log\frac{1}{\varepsilon}$ gradient steps and $\sqrt{\kappa/\gamma}\log\frac{1}{\varepsilon}$ communication steps
 - Plain gossip not optimal!

(need to gossip gradients with increasing precision)
Decentralized optimization

- Mixing gossip and optimization
- Lower bound on complexity (Scaman et al., 2017)
 - $\sqrt{\kappa}\log\frac{1}{\varepsilon}$ gradient steps and $\sqrt{\kappa/\gamma}\log\frac{1}{\varepsilon}$ communication steps
 - Plain gossip not optimal!
 (need to gossip gradients with increasing precision)
- Is this lower bound achievable?

$$\min_{\theta \in \mathbb{R}^d} \sum_{i=1}^n f_i(\theta) = \min_{\theta^{(1)}, \dots, \theta^{(n)} \in \mathbb{R}^d} \sum_{i=1}^n f_i(\theta^{(i)}) \text{ such that } \forall i \sim j, \theta^{(i)} = \theta^{(j)}$$

$$\min_{\theta \in \mathbb{R}^d} \sum_{i=1}^n f_i(\theta) = \min_{\substack{\theta^{(1)}, \dots, \theta^{(n)} \in \mathbb{R}^d \\ \theta^{(1)}, \dots, \theta^{(n)} \in \mathbb{R}^d}} \sum_{i=1}^n f_i(\theta^{(i)}) \text{ such that } \forall i \sim j, \theta^{(i)} = \theta^{(j)}$$
$$= \min_{\substack{\theta^{(1)}, \dots, \theta^{(n)} \in \mathbb{R}^d \\ \forall i \sim j, \lambda_{ij} \in \mathbb{R}^d}} \sum_{i=1}^n f_i(\theta^{(i)}) + \sum_{i \sim j} \lambda_{ij}^\top (\theta^{(i)} - \theta^{(j)})$$

$$\begin{split} \min_{\theta \in \mathbb{R}^d} \sum_{i=1}^n f_i(\theta) &= \min_{\substack{\theta^{(1)}, \dots, \theta^{(n)} \in \mathbb{R}^d \\ \theta^{(1)}, \dots, \theta^{(n)} \in \mathbb{R}^d }} \sum_{i=1}^n f_i(\theta^{(i)}) \text{ such that } \forall i \sim j, \theta^{(i)} = \theta^{(j)}} \\ &= \min_{\substack{\theta^{(1)}, \dots, \theta^{(n)} \in \mathbb{R}^d \\ \forall i \sim j, \lambda_{ij} \in \mathbb{R}^d }} \max_{\substack{\forall i \sim j, \lambda_{ij} \in \mathbb{R}^d \\ \forall i \sim j, \lambda_{ij} \in \mathbb{R}^d }} \sum_{i=1}^n f_i(\theta^{(i)}) + \sum_{i \sim j} \lambda_{ij}^\top (\theta^{(i)} - \theta^{(j)})} \\ &= \max_{\substack{\forall i \sim j, \lambda_{ij} \in \mathbb{R}^d \\ \theta^{(1)}, \dots, \theta^{(n)} \in \mathbb{R}^d }} \sum_{i=1}^n f_i(\theta^{(i)}) + \sum_{i=1}^n [\theta^{(i)}]^\top \text{linear}_i(\lambda)} \end{split}$$

$$\begin{split} \min_{\theta \in \mathbb{R}^d} \sum_{i=1}^n f_i(\theta) &= \min_{\substack{\theta^{(1)}, \dots, \theta^{(n)} \in \mathbb{R}^d \\ \theta^{(1)}, \dots, \theta^{(n)} \in \mathbb{R}^d }} \sum_{i=1}^n f_i(\theta^{(i)}) \text{ such that } \forall i \sim j, \theta^{(i)} = \theta^{(j)}} \\ &= \min_{\substack{\theta^{(1)}, \dots, \theta^{(n)} \in \mathbb{R}^d \\ \theta^{(1)}, \dots, \theta^{(n)} \in \mathbb{R}^d }} \max_{\forall i \sim j, \lambda_{ij} \in \mathbb{R}^d} \sum_{i=1}^n f_i(\theta^{(i)}) + \sum_{i \sim j} \lambda_{ij}^\top (\theta^{(i)} - \theta^{(j)})} \\ &= \max_{\forall i \sim j, \lambda_{ij} \in \mathbb{R}^d} \min_{\substack{\theta^{(1)}, \dots, \theta^{(n)} \in \mathbb{R}^d \\ i=1}} \sum_{i=1}^n f_i(\theta^{(i)}) + \sum_{i=1}^n [\theta^{(i)}]^\top \text{ linear}_i(\lambda)} \\ &= \max_{\forall i \sim j, \lambda_{ij} \in \mathbb{R}^d} \sum_{i=1}^n \text{ function}_i(\lambda) = \max_{\forall i \sim j, \lambda_{ij} \in \mathbb{R}^d} \text{ function}(\lambda) \end{split}$$

$$\begin{split} \min_{\theta \in \mathbb{R}^d} \sum_{i=1}^n f_i(\theta) &= \min_{\theta^{(1)}, \dots, \theta^{(n)} \in \mathbb{R}^d} \sum_{i=1}^n f_i(\theta^{(i)}) \text{ such that } \forall i \sim j, \theta^{(i)} = \theta^{(j)} \\ &= \min_{\theta^{(1)}, \dots, \theta^{(n)} \in \mathbb{R}^d} \max_{\forall i \sim j, \lambda_{ij} \in \mathbb{R}^d} \sum_{i=1}^n f_i(\theta^{(i)}) + \sum_{i \sim j} \lambda_{ij}^\top (\theta^{(i)} - \theta^{(j)}) \\ &= \max_{\forall i \sim j, \lambda_{ij} \in \mathbb{R}^d} \min_{\theta^{(1)}, \dots, \theta^{(n)} \in \mathbb{R}^d} \sum_{i=1}^n f_i(\theta^{(i)}) + \sum_{i=1}^n [\theta^{(i)}]^\top \text{linear}_i(\lambda) \\ &= \max_{\forall i \sim j, \lambda_{ij} \in \mathbb{R}^d} \sum_{i=1}^n \text{function}_i(\lambda) = \max_{\forall i \sim j, \lambda_{ij} \in \mathbb{R}^d} \frac{\text{function}(\lambda)}{(\lambda)} \end{split}$$

Accelerated gradient descent (Scaman et al., 2017)
 ⇔ alternating local gradient computations and a gossip step

 $-\sqrt{\kappa/\gamma}\log\frac{1}{\varepsilon}$ gradient steps and $\sqrt{\kappa/\gamma}\log\frac{1}{\varepsilon}$ communication steps - Not optimal \Rightarrow need accelerated gossip

Accelerated gossip

• Regular gossip

- Iterations: $\theta_t = W^t \theta_0$

• Accelerated gossip

- Chebyshev acceleration (Auzinger, 2011; Arioli and Scott, 2014)

+

- Shift-register gossip (Cao et al., 2006)

- Linear combinations
$$\Leftrightarrow \eta_t = \sum_{k=0}^{t} \alpha_k \theta_k = \sum_{k=0}^{t} \alpha_k W^k \xi = P_t(W) \xi$$

- Optimal polynomial is the Chebyshev polynomial
- Can be computed online with same cost as regular gossip, e.g.,

$$\theta_t = \omega_t W \theta_{t-1} + (1 - \omega_t) \theta_{t-1}$$

Accelerated gossip

• Regular gossip

- Iterations: $\theta_t = W^t \theta_0$

• Accelerated gossip

- Chebyshev acceleration (Auzinger, 2011; Arioli and Scott, 2014)

+

- Shift-register gossip (Cao et al., 2006)

- Linear combinations
$$\Leftrightarrow \eta_t = \sum_{k=0}^{t} \alpha_k \theta_k = \sum_{k=0}^{t} \alpha_k W^k \xi = P_t(W) \xi$$

- Optimal polynomial is the Chebyshev polynomial
- Can be computed online with same cost as regular gossip, e.g.,

$$\theta_t = \omega_t W \theta_{t-1} + (1 - \omega_t) \theta_{t-1}$$

– Replace γ^{-1} by $\gamma^{-1/2}$ in rates

Illustration of accelerated gossip

Accelerated gossip

• Regular gossip

- Iterations: $\theta_t = W^t \theta_0$

• Accelerated gossip

- Chebyshev acceleration (Auzinger, 2011; Arioli and Scott, 2014)
- Shift-register gossip (Cao et al., 2006)

- Linear combinations
$$\Leftrightarrow \eta_t = \sum_{k=0}^{t} \alpha_k \theta_k = \sum_{k=0}^{t} \alpha_k W^k \xi = P_t(W) \xi$$

- Optimal polynomial is the Chebyshev polynomial
- Can be computed online with same cost as regular gossip, e.g.,

$$\theta_t = \omega_t W \theta_{t-1} + (1 - \omega_t) \theta_{t-1}$$

- Replace γ^{-1} by $\gamma^{-1/2}$ in rates
- \Rightarrow optimal complexity for optimization (Scaman et al., 2017)

Distribution in machine learning (and beyond)

• Machine learning through optimization

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n f_i(\theta) = g(\theta)$$

- $f_i(\theta)$ error of model defined by θ on dataset indexed by i- Example: $f_i(\theta) = \frac{1}{m_i} \sum_{j=1}^{m_i} \ell(y_{ij}, \theta^\top \Phi(x_{ij}))$ if m_i observations

Distribution in machine learning (and beyond)

• Machine learning through optimization

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n f_i(\theta) = g(\theta)$$

- $f_i(\theta)$ error of model defined by θ on dataset indexed by i- Example: $f_i(\theta) = \frac{1}{m_i} \sum_{j=1}^{m_i} \ell(y_{ij}, \theta^\top \Phi(x_{ij}))$ if m_i observations
- Single machine vs. "optimal" decentralized algorithm

Algorithm	gradient steps	communication
Single machine algorithm	$nm + \sqrt{nm\kappa}$	0
MSDA (Scaman et al., 2017)	$m\sqrt{\kappa}$	$\sqrt{\kappa/\gamma}$

Distribution in machine learning (and beyond)

• Machine learning through optimization

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n f_i(\theta) = g(\theta)$$

- $f_i(\theta)$ error of model defined by θ on dataset indexed by i- Example: $f_i(\theta) = \frac{1}{m_i} \sum_{j=1}^{m_i} \ell(y_{ij}, \theta^\top \Phi(x_{ij}))$ if m_i observations
- MSDA (Scaman et al., 2017)
 - $\sqrt{\kappa}\log \frac{1}{\varepsilon}$ gradient steps and $\sqrt{\kappa/\gamma}\log \frac{1}{\varepsilon}$ communication steps
 - "Optimal", but still not adapted to machine learning
 - Huge slow down when going from 1 to 2 machines
 - Only synchronous

Decentralized algorithms for machine learning (Hendrikx, Bach, and Massoulié, 2019)

- Trade-offs between gradient and communication steps
 - Adapted to functions of the type $f_i(\theta) = \frac{1}{m} \sum_{i=1}^m \ell(y_{ij}, \theta^\top \Phi(x_{ij}))$
 - Allows for partial asynchrony
- n computing nodes, with m observations each

Algorithm	gradient steps	communication
Single machine algorithm	$nm + \sqrt{nm\kappa}$	0
MSDA (Scaman et al., 2017)	$m\sqrt{\kappa}$	$\sqrt{\kappa/\gamma}$
ADFS (Hendrikx et al., 2019)	$m + \sqrt{m\kappa}$	$\sqrt{\kappa/\gamma}$

ADFS - Algorithm principle

• Minimizing
$$\sum_{i=1}^{n} \left\{ \sum_{j=1}^{m} f_{i,j}(\theta) + \frac{\sigma_i}{2} \|\theta\|^2 \right\}$$

- Create an equivalent graph
- Dual randomized coordinate ascent (with non uniform sampling)
- Decoupling of data and gossip steps

Decentralized algorithms for machine learning (Hendrikx, Bach, and Massoulié, 2019)

- Running times on an actual cluster
 - Logistic regression with $m=10^4$ observations per node in \mathbb{R}^{28}
 - Two-dimensional grid network

Decentralized algorithms for machine learning (Hendrikx, Bach, and Massoulié, 2019)

- Running times on an actual cluster
 - Logistic regression with $mn\approx 10^5$ observations in \mathbb{R}^{47236}
 - Two-dimensional grid network with n = 100 nodes

Conclusions

- Distributed decentralized machine learning
 - Distributing the fastest single machine algorithms!
 - n machines and m observations per machine
 - From $nm + \sqrt{nm\kappa}$ (single machine) to $m + \sqrt{m\kappa}$ gradient steps
 - Linear speed-ups for well-conditioned problems

Conclusions

- Distributed decentralized machine learning
 - Distributing the fastest single machine algorithms!
 - $n\ {\rm machines}\ {\rm and}\ m\ {\rm observations}\ {\rm per}\ {\rm machine}$
 - From $nm + \sqrt{nm\kappa}$ (single machine) to $m + \sqrt{m\kappa}$ gradient steps
 - Linear speed-ups for well-conditioned problems

• Extensions

- Beyond convex problems
- Matching running time complexity lower bounds
- Experiments on large-scale clouds

References

- M. Arioli and J. Scott. Chebyshev acceleration of iterative refinement. *Numerical Algorithms*, 66(3): 591–608, 2014.
- W. Auzinger. Iterative Solution of Large Linear Systems. Lecture notes, TU Wien, 2011.
- L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Adv. NIPS, 2008.
- Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip algorithms. *IEEE transactions on information theory*, 52(6):2508–2530, 2006.
- Ming Cao, Daniel A. Spielman, and Edmund M. Yeh. Accelerated gossip algorithms for distributed computation. In 44th Annual Allerton Conference on Communication, Control, and Computation, pages 952–959, 2006.
- Igor Colin, Aurelien Bellet, Joseph Salmon, and Stéphan Clémençon. Gossip dual averaging for decentralized optimization of pairwise functions. In *International Conference on Machine Learning*, pages 1388–1396, 2016.
- Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. In *Advances in Neural Information Processing Systems*, 2014.
- John C Duchi, Alekh Agarwal, and Martin J Wainwright. Dual averaging for distributed optimization: Convergence analysis and network scaling. *IEEE Transactions on Automatic control*, 57(3):592–606, 2012.

- Hadrien Hendrikx, Francis Bach, and Laurent Massoulié. Asynchronous accelerated proximal stochastic gradient for strongly convex distributed finite sums. Technical Report 1901.09865, arXiv, 2019.
- Franck lutzeler, Pascal Bianchi, Philippe Ciblat, and Walid Hachem. Asynchronous distributed optimization using a randomized alternating direction method of multipliers. In *Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on*, pages 3671–3676. IEEE, 2013.
- Dušan Jakovetić, José MF Moura, and Joao Xavier. Linear convergence rate of a class of distributed augmented lagrangian algorithms. *IEEE Transactions on Automatic Control*, 60(4):922–936, 2015.
- Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In Advances in Neural Information Processing Systems, 2013.
- G. Lan. An optimal randomized incremental gradient method. Technical Report 1507.02000, arXiv, 2015.
- N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence rate for strongly-convex optimization with finite training sets. In *Advances in Neural Information Processing Systems (NIPS)*, 2012.
- A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro. A decentralized second-order method with exact linear convergence rate for consensus optimization. *IEEE Transactions on Signal and Information Processing over Networks*, 2(4):507–522, 2016.
- Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimization. *IEEE Transactions on Automatic Control*, 54(1):48–61, 2009.
- A. Nedich, A. Olshevsky, and W. Shi. Achieving geometric convergence for distributed optimization over time-varying graphs. *ArXiv e-prints*, 2016.

- Y. Nesterov. A method for solving a convex programming problem with rate of convergence $O(1/k^2)$. Soviet Math. Doklady, 269(3):543–547, 1983.
- Y. Nesterov. Introductory lectures on convex optimization: a basic course. Kluwer, 2004.
- Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal algorithms for smooth and strongly convex distributed optimization in networks. In *International Conference on Machine Learning*, pages 3027–3036, 2017.
- Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. EXTRA: An exact first-order algorithm for decentralized consensus optimization. *SIAM Journal on Optimization*, 25(2):944–966, 2015.
- Ermin Wei and Asuman Ozdaglar. Distributed alternating direction method of multipliers. In 51st Annual Conference on Decision and Control (CDC), pages 5445–5450. IEEE, 2012.
- L. Zhang, M. Mahdavi, and R. Jin. Linear convergence with condition number independent access of full gradients. In *Advances in Neural Information Processing Systems*, 2013.