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• Proliferation of digital data

– Personal data

– Industry

– Scientific: from bioinformatics to humanities

• Need for automated processing of massive data

• Series of “hypes”

Big data → Data science → Machine Learning

→ Deep Learning → Artificial Intelligence
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Recent progress in perception (vision, audio, text)

person ride dog

From translate.google.fr From Peyré et al. (2017)
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Outline

1. Parametric supervised learning on a single machine

− Machine learning ≈ optimization of finite sums

− From batch to stochastic gradient methods

− Linearly-convergent stochastic methods for convex problems

2. Machine learning over networks

– Centralized and decentralized methods

– From network averaging to optimization

– Distributing the fastest single machine algorithms
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• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

x1 x2 x3 x4 x5 x6

y1 = 1 y2 = 1 y3 = 1 y4 = −1 y5 = −1 y6 = −1

– Neural networks (n, d > 106): h(x, θ) = θ⊤mσ(θ⊤m−1σ(· · · θ⊤2 σ(θ⊤1 x))

x y

θ1
θ3

θ2
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Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n, i.i.d.

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization:

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

data fitting term + regularizer

• Optimization: optimization of regularized risk training cost

• Statistics: guarantees on Ep(x,y)ℓ(y, h(x, θ)) testing cost
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– Smooth prediction function θ 7→ h(xi, θ) + smooth loss
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d, eigenvalues

[
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]
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• Convexity in machine learning

– With g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Convex loss and linear predictions h(x, θ) = θ⊤Φ(x)

• Relevance of convex optimization

– Easier design and analysis of algorithms

– Global minimum vs. local minimum vs. stationary points

– Gradient-based algorithms only need convexity for their analysis
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Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

• Strong convexity in machine learning

– With g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Strongly convex loss and linear predictions h(x, θ) = θ⊤Φ(x)

– Invertible covariance matrix 1
n

∑n
i=1Φ(xi)Φ(xi)

⊤ ⇒ n > d

– Even when µ > 0, µ may be arbitrarily small!

• Adding regularization by µ
2‖θ‖2

– creates additional bias unless µ is small, but reduces variance

– Typically L/
√
n > µ > L/n ⇒ κ ∈ [

√
n, n]
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• Acceleration (Nesterov, 1983): second-order recursion

θt = ηt−1 − γtg
′(ηt−1) and ηt = θt + δt(θt − θt−1)

– Good choice of momentum term δt ∈ [0, 1)

g(θt)− g(θ∗) 6 O(1/t2)

g(θt)− g(θ∗) 6 O((1−1/
√
κ)t) = O(e−t/

√
κ) if µ-strongly convex

– Optimal rates after t = O(d) iterations (Nesterov, 2004)
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– Sampling with replacement: i(t) random element of {1, . . . , n}
– Polyak-Ruppert averaging: θ̄t =

1
t+1
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• Convergence rate if each fi is convex L-smooth and g µ-strongly-

convex:

Eg(θ̄t)− g(θ∗) 6

{

O(1/
√
t) if γt = 1/(L

√
t)

O(L/(µt)) = O(κ/t) if γt = 1/(µt)

– No adaptivity to strong-convexity in general

– Running-time complexity: O(d · κ/ε)
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fi(θ)

• Iteration: θt = θt−1 − γtf
′
i(t)(θt−1)

– Sampling with replacement: i(t) random element of {1, . . . , n}
– Polyak-Ruppert averaging: θ̄t =

1
t+1

∑t
u=0 θu

• Convergence rate if each fi is convex L-smooth and g µ-strongly-

convex:

Eg(θ̄t)− g(θ∗) 6

{

O(1/
√
t) if γt = 1/(L

√
t)

O(L/(µt)) = O(κ/t) if γt = 1/(µt)

– No adaptivity to strong-convexity in general

– Running-time complexity: O(d · κ/ε)

• NB: single pass leads to bounds on testing error
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Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)

• Batch gradient descent: θt = θt−1−γ∇g(θt−1) = θt−1−
γ

n

n
∑

i=1

∇fi(θt−1)

– Exponential convergence rate in O(e−t/κ) for convex problems

– Can be accelerated to O(e−t/
√
κ) (Nesterov, 1983)

– Iteration complexity is linear in n

• Stochastic gradient descent: θt = θt−1 − γt∇fi(t)(θt−1)

– Sampling with replacement: i(t) random element of {1, . . . , n}
– Convergence rate in O(κ/t)

– Iteration complexity is independent of n



Stochastic vs. deterministic methods

• Minimizing g(θ) =
1
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)
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• Batch gradient descent: θt = θt−1−γ∇g(θt−1) = θt−1−
γ

n

n
∑

i=1

∇fi(θt−1)

• Stochastic gradient descent: θt = θt−1 − γt∇fi(t)(θt−1)
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Recent progress in single machine optimization

• Variance reduction

– Exponential convergence with O(d) iteration cost

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014), etc...
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Recent progress in single machine optimization

• Variance reduction

– Exponential convergence with O(d) iteration cost

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014), etc...

• Running-time to reach precision ε (with κ = condition number)

Stochastic gradient descent d×
∣

∣

∣
κ × 1

ε

Gradient descent d×
∣

∣

∣
nκ × log 1

ε

Variance reduction d×
∣

∣

∣
(n+ κ) × log 1

ε

– Can be accelerated (e.g., Lan, 2015): n+ κ ⇒ n+
√
nκ

– Matching upper and lower bounds of complexity
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1. Parametric supervised learning on a single machine

– Machine learning ≈ optimization of finite sums

– From batch to stochastic gradient methods

– Linearly-convergent stochastic methods for convex problems

2. Machine learning over networks

− Centralized and decentralized methods

− From network averaging to optimization

− Distributing the fastest single machine algorithms
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• Machine learning through optimization

min
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Distribution in machine learning (and beyond)

• Machine learning through optimization

min
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– fi(θ) error of model defined by θ on dataset indexed by i

– Example: fi(θ) =
1

mi

mi
∑

j=1

ℓ(yij, θ
⊤Φ(xij)) if mi observations

• Each dataset / function fi only accessible by node i in a graph

– Massive datasets, multiple machines / cores

– Communication / legal constraints

• Goal: Minimize communication and local computation costs



Distribution in machine learning (and beyond)

• Machine learning through optimization

min
θ∈Rd

1

n

n
∑

i=1

fi(θ) = g(θ)

– fi(θ) error of model defined by θ on dataset indexed by i

• Why not simply distributing a simple single machine algorithm?

– (accelerated) gradient descent (see, e.g., Nesterov, 2004)

θt = θt−1 − γ∇g(θt−1)

– Requires
√
κ log 1

ε full gradient computations to reach precision ε

– Need to perform distributed averaging over a network



Classical algorithms for distributed averaging

• Goal: Given n observations ξ1, . . . , ξn ∈ R

– Compute θ∗ =
1

n

n
∑

i=1

ξi = argmin
θ∈R

1

n

n
∑

i=1

(θ − ξi)
2
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• Centralized algorithms

– Compute a spanning tree with diameter 6 2∆

– Master/slave algorithm
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• Application to centralized distributed optimization
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ε gradient steps and
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– “Optimal” (Scaman, Bach, Bubeck, Lee, and Massoulié, 2017)
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– Compute a spanning tree with diameter 6 2∆
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• Application to centralized distributed optimization

–
√
κ log 1

ε gradient steps and
√
κ∆log 1

ε communication steps

– “Optimal” (Scaman, Bach, Bubeck, Lee, and Massoulié, 2017)

• Robustness?
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• Decentralized algorithms - gossip (Boyd et al., 2006)

– Replace θi by a weighted average of its neighbors
∑n

j=1Wijθj
– Potential asynchrony, changing network

1 3

2
4

5
7

6 9

8



Classical algorithms for distributed averaging

• Goal: Given n observations ξ1, . . . , ξn ∈ R

– Compute θ∗ =
1

n

n
∑

i=1

ξi = argmin
θ∈R

1

n

n
∑

i=1

(θ − ξi)
2

• Decentralized algorithms - gossip (Boyd et al., 2006)

– Replace θi by a weighted average of its neighbors
∑n

j=1Wijθj
– Potential asynchrony, changing network

1 3

2
4

5
7

6 9

8



Classical algorithms for distributed averaging

• Goal: Given n observations ξ1, . . . , ξn ∈ R

– Compute θ∗ =
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• Decentralized algorithms - gossip (Boyd et al., 2006)

– Replace θi by a weighted average of its neighbors
∑n

j=1Wijθj
– Potential asynchrony, changing network

• Synchronous gossip (all nodes simultaneously)

– Main iteration: θt = Wθt−1 = W tθ0 = W tξ

– Typical assumption: W symmetric doubly stochastic matrix
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Convergence of synchronous gossip

• Synchronous gossip (all nodes simultaneously)

– Main iteration: θt = Wθt−1 = W tθ0 = W tξ

– Typical assumption: W symmetric doubly stochastic matrix

– Consequence: Eigenvalues(W ) ∈ [−1, 1]

– Eigengap γ = λ1(W )− λ2(W ) = 1− λ2(W )

– γ−1 = mixing time of the associated Markov chain
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– Need 1
γ log

1
ε iterations to reach precision ε (for classical averaging)



Illustration of synchronous gossip






Decentralized optimization

• Mixing gossip and optimization

– Nedic and Ozdaglar (2009); Duchi et al. (2012); Wei and Ozdaglar

(2012); Iutzeler et al. (2013); Shi et al. (2015); Jakovetić et al.

(2015); Nedich et al. (2016); Mokhtari et al. (2016); Colin et al.

(2016); Scaman et al. (2017), etc.



Decentralized optimization

• Mixing gossip and optimization

• Lower bound on complexity (Scaman et al., 2017)

–
√
κ log 1

ε gradient steps and
√

κ/γ log 1
ε communication steps

– Plain gossip not optimal!

(need to gossip gradients with increasing precision)



Decentralized optimization

• Mixing gossip and optimization

• Lower bound on complexity (Scaman et al., 2017)

–
√
κ log 1

ε gradient steps and
√

κ/γ log 1
ε communication steps

– Plain gossip not optimal!

(need to gossip gradients with increasing precision)

• Is this lower bound achievable?



Dual reformulation (Jakovetić et al., 2015)
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• Accelerated gradient descent (Scaman et al., 2017)

⇔ alternating local gradient computations and a gossip step

–
√

κ/γ log 1
ε gradient steps and

√

κ/γ log 1
ε communication steps

– Not optimal ⇒ need accelerated gossip



Accelerated gossip

• Regular gossip

– Iterations: θt = W tθ0

• Accelerated gossip

– Chebyshev acceleration (Auzinger, 2011; Arioli and Scott, 2014)

– Shift-register gossip (Cao et al., 2006)

– Linear combinations ⇔ ηt =
t

∑

k=0

αkθk =
t

∑

k=0

αkW
kξ = Pt(W )ξ

– Optimal polynomial is the Chebyshev polynomial

– Can be computed online with same cost as regular gossip, e.g.,

θt = ωtWθt−1 + (1− ωt)θt−1

– Replace γ−1 by γ−1/2 in rates
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Accelerated gossip

• Regular gossip

– Iterations: θt = W tθ0

• Accelerated gossip

– Chebyshev acceleration (Auzinger, 2011; Arioli and Scott, 2014)

– Shift-register gossip (Cao et al., 2006)

– Linear combinations ⇔ ηt =
t

∑

k=0

αkθk =
t

∑

k=0

αkW
kξ = Pt(W )ξ

– Optimal polynomial is the Chebyshev polynomial

– Can be computed online with same cost as regular gossip, e.g.,

θt = ωtWθt−1 + (1− ωt)θt−1

– Replace γ−1 by γ−1/2 in rates

• ⇒ optimal complexity for optimization (Scaman et al., 2017)
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Distribution in machine learning (and beyond)

• Machine learning through optimization

min
θ∈Rd

1

n

n
∑

i=1

fi(θ) = g(θ)

– fi(θ) error of model defined by θ on dataset indexed by i

– Example: fi(θ) =
1

mi

mi
∑

j=1

ℓ(yij, θ
⊤Φ(xij)) if mi observations

• MSDA (Scaman et al., 2017)

–
√
κ log 1

ε gradient steps and
√

κ/γ log 1
ε communication steps

– “Optimal”, but still not adapted to machine learning

– Huge slow down when going from 1 to 2 machines

– Only synchronous



Decentralized algorithms for machine learning

(Hendrikx, Bach, and Massoulié, 2019)

• Trade-offs between gradient and communication steps

– Adapted to functions of the type fi(θ) =
1

m

m
∑

j=1

ℓ(yij, θ
⊤Φ(xij))

– Allows for partial asynchrony

• n computing nodes, with m observations each

Algorithm gradient steps communication

Single machine algorithm nm+
√
nmκ 0

MSDA (Scaman et al., 2017) m
√
κ

√

κ/γ

ADFS (Hendrikx et al., 2019) m+
√
mκ

√

κ/γ



ADFS - Algorithm principle

• Minimizing
n
∑

i=1

{

m
∑

j=1

fi,j(θ) +
σi

2
‖θ‖2

}

– Create an equivalent graph

– Dual randomized coordinate ascent (with non uniform sampling)

– Decoupling of data and gossip steps



Decentralized algorithms for machine learning

(Hendrikx, Bach, and Massoulié, 2019)

• Running times on an actual cluster

– Logistic regression with m = 104 observations per node in R
28

– Two-dimensional grid network

n = 4 n = 100



Decentralized algorithms for machine learning

(Hendrikx, Bach, and Massoulié, 2019)

• Running times on an actual cluster

– Logistic regression with mn ≈ 105 observations in R
47236

– Two-dimensional grid network with n = 100 nodes



Conclusions

• Distributed decentralized machine learning

– Distributing the fastest single machine algorithms!

– n machines and m observations per machine

– From nm+
√
nmκ (single machine) to m+

√
mκ gradient steps

– Linear speed-ups for well-conditioned problems



Conclusions

• Distributed decentralized machine learning

– Distributing the fastest single machine algorithms!

– n machines and m observations per machine

– From nm+
√
nmκ (single machine) to m+

√
mκ gradient steps

– Linear speed-ups for well-conditioned problems

• Extensions

– Beyond convex problems

– Matching running time complexity lower bounds

– Experiments on large-scale clouds
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Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal
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