
Large Scale Machine Learning
Over Networks

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

ÉCOLE NORMALE

S U P É R I E U R E

Joint work with Kevin Scaman, Hadrien Hendrikx, Laurent

Massoulié, Sébastien Bubeck, Yin-Tat Lee

PAISS Summer school - October 5, 2019



Scientific context

• Proliferation of digital data

– Personal data

– Industry

– Scientific: from bioinformatics to humanities

• Need for automated processing of massive data



Scientific context

• Proliferation of digital data

– Personal data

– Industry

– Scientific: from bioinformatics to humanities

• Need for automated processing of massive data

• Series of “hypes”

Big data → Data science → Machine Learning

→ Deep Learning → Artificial Intelligence



Recent progress in perception (vision, audio, text)

person ride dog

From translate.google.fr From Peyré et al. (2017)



Recent progress in perception (vision, audio, text)

person ride dog

From translate.google.fr From Peyré et al. (2017)

(1) Massive data

(2) Computing power

(3) Methodological and scientific progress



Recent progress in perception (vision, audio, text)

person ride dog

From translate.google.fr From Peyré et al. (2017)

(1) Massive data

(2) Computing power

(3) Methodological and scientific progress

“Intelligence” = models + algorithms + data

+ computing power



Recent progress in perception (vision, audio, text)

person ride dog

From translate.google.fr From Peyré et al. (2017)

(1) Massive data

(2) Computing power

(3) Methodological and scientific progress

“Intelligence” = models + algorithms + data

+ computing power



Outline

1. Parametric supervised learning on a single machine

− Machine learning ≈ optimization of finite sums

− From batch to stochastic gradient methods

− Linearly-convergent stochastic methods for convex problems

2. Machine learning over networks

– Centralized and decentralized methods

– From network averaging to optimization

– Distributing the fastest single machine algorithms



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• Advertising: n > 109

– Φ(x) ∈ {0, 1}d, d > 109

– Navigation history + ad

- Linear predictions

- h(x, θ) = θ⊤Φ(x)



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• Advertising: n > 109

– Φ(x) ∈ {0, 1}d, d > 109

– Navigation history + ad

• Linear predictions

– h(x, θ) = θ⊤Φ(x)



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

x1 x2 x3 x4 x5 x6

y1 = 1 y2 = 1 y3 = 1 y4 = −1 y5 = −1 y6 = −1



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

x1 x2 x3 x4 x5 x6

y1 = 1 y2 = 1 y3 = 1 y4 = −1 y5 = −1 y6 = −1

– Neural networks (n, d > 106): h(x, θ) = θ⊤mσ(θ⊤m−1σ(· · · θ⊤2 σ(θ⊤1 x))

x y

θ1
θ3

θ2



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization:

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

data fitting term + regularizer



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization:

min
θ∈Rd

1

2n

n
∑

i=1

(

yi − h(xi, θ)
)2

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

(least-squares regression)



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization:

min
θ∈Rd

1

n

n
∑

i=1

log
(

1 + exp(−yih(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

(logistic regression)



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization:

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

data fitting term + regularizer



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization:

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

data fitting term + regularizer



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization:

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

data fitting term + regularizer

• Optimization: optimization of regularized risk training cost



Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n, i.i.d.

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization:

min
θ∈Rd

1

n

n
∑

i=1

{

ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)
}

=
1

n

n
∑

i=1

fi(θ)

data fitting term + regularizer

• Optimization: optimization of regularized risk training cost

• Statistics: guarantees on Ep(x,y)ℓ(y, h(x, θ)) testing cost



Smoothness and (strong) convexity

• A function g : R
d → R is L-smooth if and only if it is twice

differentiable and

∀θ ∈ R
d,

∣

∣eigenvalues
[

g′′(θ)
]∣

∣ 6 L

smooth non-smooth



Smoothness and (strong) convexity

• A function g : R
d → R is L-smooth if and only if it is twice

differentiable and

∀θ ∈ R
d,

∣

∣eigenvalues
[

g′′(θ)
]∣

∣ 6 L

• Machine learning

– with g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Smooth prediction function θ 7→ h(xi, θ) + smooth loss



Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> 0

convex



Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

convex

strongly
convex



Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

– Condition number κ = L/µ > 1

(small κ = L/µ) (large κ = L/µ)



Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

• Convexity in machine learning

– With g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Convex loss and linear predictions h(x, θ) = θ⊤Φ(x)



Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

• Convexity in machine learning

– With g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Convex loss and linear predictions h(x, θ) = θ⊤Φ(x)

• Relevance of convex optimization

– Easier design and analysis of algorithms

– Global minimum vs. local minimum vs. stationary points

– Gradient-based algorithms only need convexity for their analysis



Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

• Strong convexity in machine learning

– With g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Strongly convex loss and linear predictions h(x, θ) = θ⊤Φ(x)



Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

• Strong convexity in machine learning

– With g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Strongly convex loss and linear predictions h(x, θ) = θ⊤Φ(x)

– Invertible covariance matrix 1
n

∑n
i=1Φ(xi)Φ(xi)

⊤ ⇒ n > d

– Even when µ > 0, µ may be arbitrarily small!



Smoothness and (strong) convexity

• A twice differentiable function g : Rd → R is µ-strongly convex

if and only if

∀θ ∈ R
d, eigenvalues

[

g′′(θ)
]

> µ

• Strong convexity in machine learning

– With g(θ) = 1
n

∑n
i=1 ℓ(yi, h(xi, θ))

– Strongly convex loss and linear predictions h(x, θ) = θ⊤Φ(x)

– Invertible covariance matrix 1
n

∑n
i=1Φ(xi)Φ(xi)

⊤ ⇒ n > d

– Even when µ > 0, µ may be arbitrarily small!

• Adding regularization by µ
2‖θ‖2

– creates additional bias unless µ is small, but reduces variance

– Typically L/
√
n > µ > L/n ⇒ κ ∈ [

√
n, n]



Iterative methods for minimizing smooth functions

• Assumption: g convex and L-smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1) (line search)

g(θt)− g(θ∗) 6 O(1/t)

g(θt)− g(θ∗) 6 O(e−t(µ/L)) = O(e−t/κ)

(small κ = L/µ) (large κ = L/µ)



Iterative methods for minimizing smooth functions

• Assumption: g convex and L-smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1) (line search)

g(θt)− g(θ∗) 6 O(1/t)

g(θt)− g(θ∗) 6 O((1−1/κ)t) = O(e−t/κ) if µ-strongly convex

(small κ = L/µ) (large κ = L/µ)



Iterative methods for minimizing smooth functions

• Assumption: g convex and L-smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

g(θt)− g(θ∗) 6 O(1/t)

g(θt)− g(θ∗) 6 O((1−1/κ)t) = O(e−t/κ) if µ-strongly convex

• Acceleration (Nesterov, 1983): second-order recursion

θt = ηt−1 − γtg
′(ηt−1) and ηt = θt + δt(θt − θt−1)

– Good choice of momentum term δt ∈ [0, 1)



Iterative methods for minimizing smooth functions

• Assumption: g convex and L-smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

g(θt)− g(θ∗) 6 O(1/t)

g(θt)− g(θ∗) 6 O((1−1/κ)t) = O(e−t/κ) if µ-strongly convex

• Acceleration (Nesterov, 1983): second-order recursion

θt = ηt−1 − γtg
′(ηt−1) and ηt = θt + δt(θt − θt−1)

– Good choice of momentum term δt ∈ [0, 1)

g(θt)− g(θ∗) 6 O(1/t2)

g(θt)− g(θ∗) 6 O((1−1/
√
κ)t) = O(e−t/

√
κ) if µ-strongly convex

– Optimal rates after t = O(d) iterations (Nesterov, 2004)



Iterative methods for minimizing smooth functions

• Assumption: g convex and smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−t/κ) linear if strongly-convex



Iterative methods for minimizing smooth functions

• Assumption: g convex and smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−t/κ) linear if strongly-convex

• Newton method: θt = θt−1 − g′′(θt−1)
−1g′(θt−1)

– O
(

e−ρ2t
)

quadratic rate



Iterative methods for minimizing smooth functions

• Assumption: g convex and smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−t/κ) linear if strongly-convex ⇔ O(κ log 1
ε) iterations

• Newton method: θt = θt−1 − g′′(θt−1)
−1g′(θt−1)

– O
(

e−ρ2t
)

quadratic rate ⇔ O(log log 1
ε) iterations



Iterative methods for minimizing smooth functions

• Assumption: g convex and smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−t/κ) linear if strongly-convex ⇔ complexity = O(nd · κ log 1
ε)

• Newton method: θt = θt−1 − g′′(θt−1)
−1g′(θt−1)

– O
(

e−ρ2t
)

quadratic rate ⇔ complexity = O((nd2 + d3) · log log 1
ε)



Iterative methods for minimizing smooth functions

• Assumption: g convex and smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−t/κ) linear if strongly-convex ⇔ complexity = O(nd · κ log 1
ε)

• Newton method: θt = θt−1 − g′′(θt−1)
−1g′(θt−1)

– O
(

e−ρ2t
)

quadratic rate ⇔ complexity = O((nd2 + d3) · log log 1
ε)

• Key insights for machine learning (Bottou and Bousquet, 2008)

1. No need to optimize below statistical error

2. Cost functions are averages

3. Testing error is more important than training error



Iterative methods for minimizing smooth functions

• Assumption: g convex and smooth on R
d

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−t/κ) linear if strongly-convex ⇔ complexity = O(nd · κ log 1
ε)

• Newton method: θt = θt−1 − g′′(θt−1)
−1g′(θt−1)

– O
(

e−ρ2t
)

quadratic rate ⇔ complexity = O((nd2 + d3) · log log 1
ε)

• Key insights for machine learning (Bottou and Bousquet, 2008)

1. No need to optimize below statistical error

2. Cost functions are averages

3. Testing error is more important than training error



Stochastic gradient descent (SGD) for finite sums

min
θ∈Rd

g(θ) =
1

n

n
∑

i=1

fi(θ)

• Iteration: θt = θt−1 − γtf
′
i(t)(θt−1)

– Sampling with replacement: i(t) random element of {1, . . . , n}
– Polyak-Ruppert averaging: θ̄t =

1
t+1

∑t
u=0 θu



Stochastic gradient descent (SGD) for finite sums

min
θ∈Rd

g(θ) =
1

n

n
∑

i=1

fi(θ)

• Iteration: θt = θt−1 − γtf
′
i(t)(θt−1)

– Sampling with replacement: i(t) random element of {1, . . . , n}
– Polyak-Ruppert averaging: θ̄t =

1
t+1

∑t
u=0 θu

• Convergence rate if each fi is convex L-smooth and g µ-strongly-

convex:

Eg(θ̄t)− g(θ∗) 6

{

O(1/
√
t) if γt = 1/(L

√
t)

O(L/(µt)) = O(κ/t) if γt = 1/(µt)

– No adaptivity to strong-convexity in general

– Running-time complexity: O(d · κ/ε)



Stochastic gradient descent (SGD) for finite sums

min
θ∈Rd

g(θ) =
1

n

n
∑

i=1

fi(θ)

• Iteration: θt = θt−1 − γtf
′
i(t)(θt−1)

– Sampling with replacement: i(t) random element of {1, . . . , n}
– Polyak-Ruppert averaging: θ̄t =

1
t+1

∑t
u=0 θu

• Convergence rate if each fi is convex L-smooth and g µ-strongly-

convex:

Eg(θ̄t)− g(θ∗) 6

{

O(1/
√
t) if γt = 1/(L

√
t)

O(L/(µt)) = O(κ/t) if γt = 1/(µt)

– No adaptivity to strong-convexity in general

– Running-time complexity: O(d · κ/ε)

• NB: single pass leads to bounds on testing error



Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)



Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)

• Batch gradient descent: θt = θt−1−γ∇g(θt−1) = θt−1−
γ

n

n
∑

i=1

∇fi(θt−1)

– Exponential convergence rate in O(e−t/κ) for convex problems

– Can be accelerated to O(e−t/
√
κ) (Nesterov, 1983)

– Iteration complexity is linear in n



Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)

• Batch gradient descent: θt = θt−1−γ∇g(θt−1) = θt−1−
γ

n

n
∑

i=1

∇fi(θt−1)



Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)

• Batch gradient descent: θt = θt−1−γ∇g(θt−1) = θt−1−
γ

n

n
∑

i=1

∇fi(θt−1)

– Exponential convergence rate in O(e−t/κ) for convex problems

– Can be accelerated to O(e−t/
√
κ) (Nesterov, 1983)

– Iteration complexity is linear in n

• Stochastic gradient descent: θt = θt−1 − γt∇fi(t)(θt−1)

– Sampling with replacement: i(t) random element of {1, . . . , n}
– Convergence rate in O(κ/t)

– Iteration complexity is independent of n



Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, h(xi, θ)
)

+ λΩ(θ)

• Batch gradient descent: θt = θt−1−γ∇g(θt−1) = θt−1−
γ

n

n
∑

i=1

∇fi(θt−1)

• Stochastic gradient descent: θt = θt−1 − γt∇fi(t)(θt−1)



Stochastic vs. deterministic methods

• Goal = best of both worlds: Linear rate with O(d) iteration cost

Simple choice of step size

time

lo
g(
ex
ce
ss

co
st
)

deterministic

stochastic



Stochastic vs. deterministic methods

• Goal = best of both worlds: Linear rate with O(d) iteration cost

Simple choice of step size

time

lo
g(
ex
ce
ss

co
st
)

deterministic

stochastic

new



Recent progress in single machine optimization

• Variance reduction

– Exponential convergence with O(d) iteration cost

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014), etc...

θt = θt−1 − γ
[

∇fi(t)(θt−1)+
1

n

n
∑

i=1

yt−1
i − yt−1

i(t)

]



Recent progress in single machine optimization

• Variance reduction

– Exponential convergence with O(d) iteration cost

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014), etc...

θt = θt−1 − γ
[

∇fi(t)(θt−1)+
1

n

n
∑

i=1

yt−1
i − yt−1

i(t)

]

(with yti stored value at time t of gradient of the i-th function)



Recent progress in single machine optimization

• Variance reduction

– Exponential convergence with O(d) iteration cost

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014), etc...

• Running-time to reach precision ε (with κ = condition number)

Stochastic gradient descent d×
∣

∣

∣
κ × 1

ε

Gradient descent d×
∣

∣

∣
nκ × log 1

ε

Variance reduction d×
∣

∣

∣
(n+ κ) × log 1

ε

– Can be accelerated (e.g., Lan, 2015): n+ κ ⇒ n+
√
nκ

– Matching upper and lower bounds of complexity



Outline

1. Parametric supervised learning on a single machine

– Machine learning ≈ optimization of finite sums

– From batch to stochastic gradient methods

– Linearly-convergent stochastic methods for convex problems

2. Machine learning over networks

− Centralized and decentralized methods

− From network averaging to optimization

− Distributing the fastest single machine algorithms



Distribution in machine learning (and beyond)

• Machine learning through optimization

min
θ∈Rd

1

n

n
∑

i=1

fi(θ) = g(θ)

– fi(θ) error of model defined by θ on dataset indexed by i

– Example: fi(θ) =
1

mi

mi
∑

j=1

ℓ(yij, θ
⊤Φ(xij)) if mi observations

• Each dataset / function fi only accessible by node i in a graph

1 3

2
4

5
7

6 9

8



Distribution in machine learning (and beyond)

• Machine learning through optimization

min
θ∈Rd

1

n

n
∑

i=1

fi(θ) = g(θ)

– fi(θ) error of model defined by θ on dataset indexed by i

– Example: fi(θ) =
1

mi

mi
∑

j=1

ℓ(yij, θ
⊤Φ(xij)) if mi observations

• Each dataset / function fi only accessible by node i in a graph

1 3

2
4

5
7

6 9

8



Distribution in machine learning (and beyond)

• Machine learning through optimization

min
θ∈Rd

1

n

n
∑

i=1

fi(θ) = g(θ)

– fi(θ) error of model defined by θ on dataset indexed by i

– Example: fi(θ) =
1

mi

mi
∑

j=1

ℓ(yij, θ
⊤Φ(xij)) if mi observations

• Each dataset / function fi only accessible by node i in a graph

– Massive datasets, multiple machines / cores

– Communication / legal constraints

• Goal: Minimize communication and local computation costs



Distribution in machine learning (and beyond)

• Machine learning through optimization

min
θ∈Rd

1

n

n
∑

i=1

fi(θ) = g(θ)

– fi(θ) error of model defined by θ on dataset indexed by i

• Why not simply distributing a simple single machine algorithm?

– (accelerated) gradient descent (see, e.g., Nesterov, 2004)

θt = θt−1 − γ∇g(θt−1)

– Requires
√
κ log 1

ε full gradient computations to reach precision ε

– Need to perform distributed averaging over a network



Classical algorithms for distributed averaging

• Goal: Given n observations ξ1, . . . , ξn ∈ R

– Compute θ∗ =
1

n

n
∑

i=1

ξi = argmin
θ∈R

1

n

n
∑

i=1

(θ − ξi)
2



Classical algorithms for distributed averaging

• Goal: Given n observations ξ1, . . . , ξn ∈ R

– Compute θ∗ =
1

n

n
∑

i=1

ξi = argmin
θ∈R

1

n

n
∑

i=1

(θ − ξi)
2

• Centralized algorithms

– Compute a spanning tree with diameter 6 2∆

– Master/slave algorithm

1 3

2
4

5
7

6 9

8
1 3

2
4

5
7

6 9

8



Classical algorithms for distributed averaging

• Goal: Given n observations ξ1, . . . , ξn ∈ R

– Compute θ∗ =
1

n

n
∑

i=1

ξi = argmin
θ∈R

1

n

n
∑

i=1

(θ − ξi)
2

• Centralized algorithms

– Compute a spanning tree with diameter 6 2∆

– Master/slave algorithm: ∆ communication steps + no error

1 3

2
4

5
7

6 9

8
1 3

2
4

5
7

6 9

8



Classical algorithms for distributed averaging

• Goal: Given n observations ξ1, . . . , ξn ∈ R

– Compute θ∗ =
1

n

n
∑

i=1

ξi = argmin
θ∈R

1

n

n
∑

i=1

(θ − ξi)
2

• Centralized algorithms

– Compute a spanning tree with diameter 6 2∆

– Master/slave algorithm: ∆ communication steps + no error

1 3

2
4

5
7

6 9

8
1 3

2
4

5
7

6 9

8



Classical algorithms for distributed averaging

• Goal: Given n observations ξ1, . . . , ξn ∈ R

– Compute θ∗ =
1

n

n
∑

i=1

ξi = argmin
θ∈R

1

n

n
∑

i=1

(θ − ξi)
2

• Centralized algorithms

– Compute a spanning tree with diameter 6 2∆

– Master/slave algorithm: ∆ communication steps + no error

• Application to centralized distributed optimization

–
√
κ log 1

ε gradient steps and
√
κ∆log 1

ε communication steps

– “Optimal” (Scaman, Bach, Bubeck, Lee, and Massoulié, 2017)



Classical algorithms for distributed averaging

• Goal: Given n observations ξ1, . . . , ξn ∈ R

– Compute θ∗ =
1

n

n
∑

i=1

ξi = argmin
θ∈R

1

n

n
∑

i=1

(θ − ξi)
2

• Centralized algorithms

– Compute a spanning tree with diameter 6 2∆

– Master/slave algorithm: ∆ communication steps + no error

• Application to centralized distributed optimization

–
√
κ log 1

ε gradient steps and
√
κ∆log 1

ε communication steps

– “Optimal” (Scaman, Bach, Bubeck, Lee, and Massoulié, 2017)

• Robustness?



Classical algorithms for distributed averaging

• Goal: Given n observations ξ1, . . . , ξn ∈ R

– Compute θ∗ =
1

n

n
∑

i=1

ξi = argmin
θ∈R

1

n

n
∑

i=1

(θ − ξi)
2

• Decentralized algorithms - gossip (Boyd et al., 2006)

– Replace θi by a weighted average of its neighbors
∑n

j=1Wijθj
– Potential asynchrony, changing network

1 3

2
4

5
7

6 9

8



Classical algorithms for distributed averaging

• Goal: Given n observations ξ1, . . . , ξn ∈ R

– Compute θ∗ =
1

n

n
∑

i=1

ξi = argmin
θ∈R

1

n

n
∑

i=1

(θ − ξi)
2

• Decentralized algorithms - gossip (Boyd et al., 2006)

– Replace θi by a weighted average of its neighbors
∑n

j=1Wijθj
– Potential asynchrony, changing network

1 3

2
4

5
7

6 9

8



Classical algorithms for distributed averaging

• Goal: Given n observations ξ1, . . . , ξn ∈ R

– Compute θ∗ =
1

n

n
∑

i=1

ξi = argmin
θ∈R

1

n

n
∑

i=1

(θ − ξi)
2

• Decentralized algorithms - gossip (Boyd et al., 2006)

– Replace θi by a weighted average of its neighbors
∑n

j=1Wijθj
– Potential asynchrony, changing network

• Synchronous gossip (all nodes simultaneously)

– Main iteration: θt = Wθt−1 = W tθ0 = W tξ

– Typical assumption: W symmetric doubly stochastic matrix



Convergence of synchronous gossip

• Synchronous gossip (all nodes simultaneously)

– Main iteration: θt = Wθt−1 = W tθ0 = W tξ

– Typical assumption: W symmetric doubly stochastic matrix



Convergence of synchronous gossip

• Synchronous gossip (all nodes simultaneously)

– Main iteration: θt = Wθt−1 = W tθ0 = W tξ

– Typical assumption: W symmetric doubly stochastic matrix

– Consequence: Eigenvalues(W ) ∈ [−1, 1]

– Eigengap γ = λ1(W )− λ2(W ) = 1− λ2(W )

– γ−1 = mixing time of the associated Markov chain

1 3

2
4

5
7

6 9

8

– Need 1
γ log

1
ε iterations to reach precision ε (for classical averaging)



Illustration of synchronous gossip






Decentralized optimization

• Mixing gossip and optimization

– Nedic and Ozdaglar (2009); Duchi et al. (2012); Wei and Ozdaglar

(2012); Iutzeler et al. (2013); Shi et al. (2015); Jakovetić et al.

(2015); Nedich et al. (2016); Mokhtari et al. (2016); Colin et al.

(2016); Scaman et al. (2017), etc.



Decentralized optimization

• Mixing gossip and optimization

• Lower bound on complexity (Scaman et al., 2017)

–
√
κ log 1

ε gradient steps and
√

κ/γ log 1
ε communication steps

– Plain gossip not optimal!

(need to gossip gradients with increasing precision)



Decentralized optimization

• Mixing gossip and optimization

• Lower bound on complexity (Scaman et al., 2017)

–
√
κ log 1

ε gradient steps and
√

κ/γ log 1
ε communication steps

– Plain gossip not optimal!

(need to gossip gradients with increasing precision)

• Is this lower bound achievable?



Dual reformulation (Jakovetić et al., 2015)

min
θ∈Rd

n
∑

i=1

fi(θ) = min
θ(1),...,θ(n)∈Rd

n
∑

i=1

fi(θ
(i)) such that ∀i ∼ j, θ(i) = θ(j)

min
θ(1),...,θ(n)∈Rd

max
∀i∼j,λij∈Rd

n
∑

i=1

fi(θ
(i)) +

∑

i∼j

λ⊤
ij(θ

(i)−θ(j))



Dual reformulation (Jakovetić et al., 2015)

min
θ∈Rd

n
∑

i=1

fi(θ) = min
θ(1),...,θ(n)∈Rd

n
∑

i=1

fi(θ
(i)) such that ∀i ∼ j, θ(i) = θ(j)

= min
θ(1),...,θ(n)∈Rd

max
∀i∼j,λij∈Rd

n
∑

i=1

fi(θ
(i)) +

∑

i∼j

λ⊤
ij(θ

(i)−θ(j))



Dual reformulation (Jakovetić et al., 2015)

min
θ∈Rd

n
∑

i=1

fi(θ) = min
θ(1),...,θ(n)∈Rd

n
∑

i=1

fi(θ
(i)) such that ∀i ∼ j, θ(i) = θ(j)

= min
θ(1),...,θ(n)∈Rd

max
∀i∼j,λij∈Rd

n
∑

i=1

fi(θ
(i)) +

∑

i∼j

λ⊤
ij(θ

(i)−θ(j))

= max
∀i∼j,λij∈Rd

min
θ(1),...,θ(n)∈Rd

n
∑

i=1

fi(θ
(i)) +

n
∑

i=1

[θ(i)]⊤lineari(λ)



Dual reformulation (Jakovetić et al., 2015)

min
θ∈Rd

n
∑

i=1

fi(θ) = min
θ(1),...,θ(n)∈Rd

n
∑

i=1

fi(θ
(i)) such that ∀i ∼ j, θ(i) = θ(j)

= min
θ(1),...,θ(n)∈Rd

max
∀i∼j,λij∈Rd

n
∑

i=1

fi(θ
(i)) +

∑

i∼j

λ⊤
ij(θ

(i)−θ(j))

= max
∀i∼j,λij∈Rd

min
θ(1),...,θ(n)∈Rd

n
∑

i=1

fi(θ
(i)) +

n
∑

i=1

[θ(i)]⊤lineari(λ)

= max
∀i∼j,λij∈Rd

n
∑

i=1

functioni(λ) = max
∀i∼j,λij∈Rd

function(λ)



Dual reformulation (Jakovetić et al., 2015)

min
θ∈Rd

n
∑

i=1

fi(θ) = min
θ(1),...,θ(n)∈Rd

n
∑

i=1

fi(θ
(i)) such that ∀i ∼ j, θ(i) = θ(j)

= min
θ(1),...,θ(n)∈Rd

max
∀i∼j,λij∈Rd

n
∑

i=1

fi(θ
(i)) +

∑

i∼j

λ⊤
ij(θ

(i)−θ(j))

= max
∀i∼j,λij∈Rd

min
θ(1),...,θ(n)∈Rd

n
∑

i=1

fi(θ
(i)) +

n
∑

i=1

[θ(i)]⊤lineari(λ)

= max
∀i∼j,λij∈Rd

n
∑

i=1

functioni(λ) = max
∀i∼j,λij∈Rd

function(λ)

• Accelerated gradient descent (Scaman et al., 2017)

⇔ alternating local gradient computations and a gossip step

–
√

κ/γ log 1
ε gradient steps and

√

κ/γ log 1
ε communication steps

– Not optimal ⇒ need accelerated gossip



Accelerated gossip

• Regular gossip

– Iterations: θt = W tθ0

• Accelerated gossip

– Chebyshev acceleration (Auzinger, 2011; Arioli and Scott, 2014)

– Shift-register gossip (Cao et al., 2006)

– Linear combinations ⇔ ηt =
t

∑

k=0

αkθk =
t

∑

k=0

αkW
kξ = Pt(W )ξ

– Optimal polynomial is the Chebyshev polynomial

– Can be computed online with same cost as regular gossip, e.g.,

θt = ωtWθt−1 + (1− ωt)θt−1

– Replace γ−1 by γ−1/2 in rates



Accelerated gossip

• Regular gossip

– Iterations: θt = W tθ0

• Accelerated gossip

– Chebyshev acceleration (Auzinger, 2011; Arioli and Scott, 2014)

– Shift-register gossip (Cao et al., 2006)

– Linear combinations ⇔ ηt =
t

∑

k=0

αkθk =
t

∑

k=0

αkW
kξ = Pt(W )ξ

– Optimal polynomial is the Chebyshev polynomial

– Can be computed online with same cost as regular gossip, e.g.,

θt = ωtWθt−1 + (1− ωt)θt−1

– Replace γ−1 by γ−1/2 in rates



Illustration of accelerated gossip






Accelerated gossip

• Regular gossip

– Iterations: θt = W tθ0

• Accelerated gossip

– Chebyshev acceleration (Auzinger, 2011; Arioli and Scott, 2014)

– Shift-register gossip (Cao et al., 2006)

– Linear combinations ⇔ ηt =
t

∑

k=0

αkθk =
t

∑

k=0

αkW
kξ = Pt(W )ξ

– Optimal polynomial is the Chebyshev polynomial

– Can be computed online with same cost as regular gossip, e.g.,

θt = ωtWθt−1 + (1− ωt)θt−1

– Replace γ−1 by γ−1/2 in rates

• ⇒ optimal complexity for optimization (Scaman et al., 2017)



Distribution in machine learning (and beyond)

• Machine learning through optimization

min
θ∈Rd

1

n

n
∑

i=1

fi(θ) = g(θ)

– fi(θ) error of model defined by θ on dataset indexed by i

– Example: fi(θ) =
1

mi

mi
∑

j=1

ℓ(yij, θ
⊤Φ(xij)) if mi observations



Distribution in machine learning (and beyond)

• Machine learning through optimization

min
θ∈Rd

1

n

n
∑

i=1

fi(θ) = g(θ)

– fi(θ) error of model defined by θ on dataset indexed by i

– Example: fi(θ) =
1

mi

mi
∑

j=1

ℓ(yij, θ
⊤Φ(xij)) if mi observations

• Single machine vs. “optimal” decentralized algorithm

Algorithm gradient steps communication

Single machine algorithm nm+
√
nmκ 0

MSDA (Scaman et al., 2017) m
√
κ

√

κ/γ



Distribution in machine learning (and beyond)

• Machine learning through optimization

min
θ∈Rd

1

n

n
∑

i=1

fi(θ) = g(θ)

– fi(θ) error of model defined by θ on dataset indexed by i

– Example: fi(θ) =
1

mi

mi
∑

j=1

ℓ(yij, θ
⊤Φ(xij)) if mi observations

• MSDA (Scaman et al., 2017)

–
√
κ log 1

ε gradient steps and
√

κ/γ log 1
ε communication steps

– “Optimal”, but still not adapted to machine learning

– Huge slow down when going from 1 to 2 machines

– Only synchronous



Decentralized algorithms for machine learning

(Hendrikx, Bach, and Massoulié, 2019)

• Trade-offs between gradient and communication steps

– Adapted to functions of the type fi(θ) =
1

m

m
∑

j=1

ℓ(yij, θ
⊤Φ(xij))

– Allows for partial asynchrony

• n computing nodes, with m observations each

Algorithm gradient steps communication

Single machine algorithm nm+
√
nmκ 0

MSDA (Scaman et al., 2017) m
√
κ

√

κ/γ

ADFS (Hendrikx et al., 2019) m+
√
mκ

√

κ/γ



ADFS - Algorithm principle

• Minimizing
n
∑

i=1

{

m
∑

j=1

fi,j(θ) +
σi

2
‖θ‖2

}

– Create an equivalent graph

– Dual randomized coordinate ascent (with non uniform sampling)

– Decoupling of data and gossip steps



Decentralized algorithms for machine learning

(Hendrikx, Bach, and Massoulié, 2019)

• Running times on an actual cluster

– Logistic regression with m = 104 observations per node in R
28

– Two-dimensional grid network

n = 4 n = 100



Decentralized algorithms for machine learning

(Hendrikx, Bach, and Massoulié, 2019)

• Running times on an actual cluster

– Logistic regression with mn ≈ 105 observations in R
47236

– Two-dimensional grid network with n = 100 nodes



Conclusions

• Distributed decentralized machine learning

– Distributing the fastest single machine algorithms!

– n machines and m observations per machine

– From nm+
√
nmκ (single machine) to m+

√
mκ gradient steps

– Linear speed-ups for well-conditioned problems



Conclusions

• Distributed decentralized machine learning

– Distributing the fastest single machine algorithms!

– n machines and m observations per machine

– From nm+
√
nmκ (single machine) to m+

√
mκ gradient steps

– Linear speed-ups for well-conditioned problems

• Extensions

– Beyond convex problems

– Matching running time complexity lower bounds

– Experiments on large-scale clouds



References

M. Arioli and J. Scott. Chebyshev acceleration of iterative refinement. Numerical Algorithms, 66(3):

591–608, 2014.

W. Auzinger. Iterative Solution of Large Linear Systems. Lecture notes, TU Wien, 2011.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Adv. NIPS, 2008.

Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip algorithms.

IEEE transactions on information theory, 52(6):2508–2530, 2006.

Ming Cao, Daniel A. Spielman, and Edmund M. Yeh. Accelerated gossip algorithms for distributed

computation. In 44th Annual Allerton Conference on Communication, Control, and Computation,

pages 952–959, 2006.

Igor Colin, Aurelien Bellet, Joseph Salmon, and Stéphan Clémençon. Gossip dual averaging for

decentralized optimization of pairwise functions. In International Conference on Machine Learning,

pages 1388–1396, 2016.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient method

with support for non-strongly convex composite objectives. In Advances in Neural Information

Processing Systems, 2014.

John C Duchi, Alekh Agarwal, and Martin J Wainwright. Dual averaging for distributed optimization:

Convergence analysis and network scaling. IEEE Transactions on Automatic control, 57(3):592–606,

2012.



Hadrien Hendrikx, Francis Bach, and Laurent Massoulié. Asynchronous accelerated proximal stochastic

gradient for strongly convex distributed finite sums. Technical Report 1901.09865, arXiv, 2019.

Franck Iutzeler, Pascal Bianchi, Philippe Ciblat, and Walid Hachem. Asynchronous distributed

optimization using a randomized alternating direction method of multipliers. In Decision and

Control (CDC), 2013 IEEE 52nd Annual Conference on, pages 3671–3676. IEEE, 2013.

Dušan Jakovetić, José MF Moura, and Joao Xavier. Linear convergence rate of a class of distributed

augmented lagrangian algorithms. IEEE Transactions on Automatic Control, 60(4):922–936, 2015.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance

reduction. In Advances in Neural Information Processing Systems, 2013.

G. Lan. An optimal randomized incremental gradient method. Technical Report 1507.02000, arXiv,

2015.

N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence

rate for strongly-convex optimization with finite training sets. In Advances in Neural Information

Processing Systems (NIPS), 2012.

A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro. A decentralized second-order method with exact

linear convergence rate for consensus optimization. IEEE Transactions on Signal and Information

Processing over Networks, 2(4):507–522, 2016.

Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimization.

IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

A. Nedich, A. Olshevsky, and W. Shi. Achieving geometric convergence for distributed optimization

over time-varying graphs. ArXiv e-prints, 2016.



Y. Nesterov. A method for solving a convex programming problem with rate of convergence O(1/k2).

Soviet Math. Doklady, 269(3):543–547, 1983.

Y. Nesterov. Introductory lectures on convex optimization: a basic course. Kluwer, 2004.

Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal

algorithms for smooth and strongly convex distributed optimization in networks. In International

Conference on Machine Learning, pages 3027–3036, 2017.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. EXTRA: An exact first-order algorithm for decentralized

consensus optimization. SIAM Journal on Optimization, 25(2):944–966, 2015.

Ermin Wei and Asuman Ozdaglar. Distributed alternating direction method of multipliers. In 51st

Annual Conference on Decision and Control (CDC), pages 5445–5450. IEEE, 2012.

L. Zhang, M. Mahdavi, and R. Jin. Linear convergence with condition number independent access of

full gradients. In Advances in Neural Information Processing Systems, 2013.


