# Two-dimensional pseudo-gravity model: particles motion in a non-potential singular force field

Dan Crisan

Imperial College London

PDE & Probability Methods for Interactions Inria (Sophia Antipolis) 30-31 March 2017

- Model for an atomic cloud in a magneto-optical trap
- Existence and Uniqueness Results
- Particle Approximation
- Conclusion and Further Work

This is joint work with J. Barré (University of Orléans and Institut Universitaire de France), T. Goudon (Laboratoire J.A. Dieudonné, University de Nice-Sophia Antipolis)

Julien Barré, D. C., Thierry Goudon, Two-dimensional pseudo-gravity model https://arxiv.org/abs/1607.08909

4 日 2 4 同 2 4 日 2 4 日 2 4

Model for atomic clouds dominated by long-range attraction: In most experimental situations, the repulsive force is stronger.

Goal: make the attractive force dominant.

- ightarrow a self-trapped cloud  $\sim$  "a galaxy in the lab"
- $\rightarrow$  strong non potential forces.

 $\rightarrow$  In a very flat cloud, attraction is expected to dominate.



• A (very) simplified description

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \left( \mathbf{F}[\rho] \rho + D \nabla \rho \right), \ \mathbf{F}[\rho] = \int \mathbf{K}(\mathbf{x} - \mathbf{x}') \rho(\mathbf{x}') d\mathbf{x}'$$
$$\mathbf{K}(\mathbf{x} - \mathbf{x}') = \begin{pmatrix} -\operatorname{sgn}(x_1 - x_1') \ \delta(x_2 - x_2') \\ -\delta(x_1 - x_1') \ \operatorname{sgn}(x_2 - x_2') \end{pmatrix}$$



イロト イヨト イヨト イヨト 三日

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \left( \mathbf{F}[\rho] \rho + \mathbf{D} \nabla \rho \right), \ \mathbf{F}[\rho] = \int \mathbf{K} (\mathbf{x} - \mathbf{x}') \rho(\mathbf{x}') d\mathbf{x}'$$

•  $\nabla \cdot \mathbf{F}[\rho] = -\rho \rightarrow \text{similar to Keller-Segel equation:}$ 

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \left( \mathbf{F}[\rho] \rho + \mathbf{D} \nabla \rho \right) ; \ \mathbf{F}[\rho] = -\nabla \phi , \ \Delta \phi = \rho.$$

- Keller-Segel: existence of a global solution if D > D<sub>c</sub>; finite time singularity if D < D<sub>c</sub>. Should we expect something similar in this case?
- $\bullet~\mbox{Not}$  a gradient flow  $\rightarrow$  standard methods break down
- Singular interaction; possibility of strong concentrations → may be difficult to simulate.
- Three approaches used:
  - Finite difference scheme, implicit for the diffusion (adapted from Saito, Suzuki 2005)
  - Finite volume method, designed for gradient flow structure (Carrillo, Chertock, Huang 2015); no global gradient flow structure, but a partial one along x₁ and x₂, → splitting.
  - Particles approximation.
- When the concentration is not too strong, same results for all methods.

**Strategy:** Mollify the singular interaction.

Kernel  $\mathbf{K} \to \text{kernel } \mathbf{K}^{\varepsilon} = M^{\varepsilon} \star \mathbf{K}$ ,  $M^{\varepsilon} = \text{mollifier, scale } \varepsilon$ 

 $\rightarrow$  defines the "mollified solution"  $\rho^{\varepsilon}.$ 

### Theorem

Let  $D > D_2$  (diffusion sufficiently strong);  $D_2 = known constant$ . Let  $(\rho^{(\varepsilon)})_{\varepsilon>0}$  the solutions of the mollified PDE, and any time T > 0. Then, up to a subsequence

$$\rho^{(\varepsilon)} \underset{\varepsilon \to 0}{\longrightarrow} \rho, \text{ in } L^{p}((0, T) \times \mathbb{R}^{2}),$$

where  $\rho$  is a solution of the singular PDE.

- The "mollified solution"  $\rho^{\varepsilon}$  exists for all time;
- **2** Uniform in  $\varepsilon$  a priori estimates for  $\rho^{\varepsilon}$ :  $L^{p}$  norms + moments;
- **(a)** Convergence of  $\rho^{\varepsilon}$  by compactness towards  $\rho$  (no rate of convergence);
- Show  $\rho$  is indeed the solution of the target equation.

イロト イポト イヨト イヨト 二日

Assume symmetry with respect to  $x_1$  and  $x_2$  axes:

$$\rho(\mathbf{x}_1, -\mathbf{x}_2) = \rho(-\mathbf{x}_1, \mathbf{x}_2) = \rho(-\mathbf{x}_1, -\mathbf{x}_2) = \rho(\mathbf{x}_1, \mathbf{x}_2).$$

Symmetric cloud  $\rightarrow$  force towards the center,  $\textbf{F}\cdot\textbf{x}\leq0$ 

## Theorem

Let  $D > D_2$  (same  $D_2 = as$  before). Assume initial condition  $\rho_0$  symmetric and with "gaussian-like" decay. Let  $(\rho^{(\varepsilon)})_{\varepsilon > 0}$  the (symmetric) solutions of the mollified PDE with initial data  $\rho_0$ , and any time T > 0. Then there exist  $C(\rho_0, T)$  and  $\nu(\rho_0, T) < 1$  such that

$$\sup_{t\in[0,T]}||(\rho^{(\varepsilon)}-\rho)(t)||_{L^1}\leq \mathcal{C}(\rho_0,T)\varepsilon^{\frac{1}{2}\nu(\rho_0,T)}$$

where  $\rho$  is the unique symmetric solution of the singular PDE.

# **Remarks:**

- Uniqueness for the symmetric solution.
- There is a rate of convergence, which depends on  $\rho_0$  and T.
- Exponential moments  $\int e^{\lambda |\mathbf{x}|} \rho(\mathbf{x}, t) d\mathbf{x} < C_1 e^{C_2 \lambda^2 t}$ .
- Exponential moments  $\rightarrow$  a Cauchy property for  $\rho^{(\varepsilon)}$ .

### Theorem

Same hypotheses (symmetry,  $D > D_c$ ). Let

$$dZ_i^{arepsilon,N} = rac{1}{N}\sum_{j
eq i} \mathbf{K}^arepsilon(Z_i^{arepsilon,N} - Z_j^{arepsilon,N}) dt + \sqrt{2D} dB_i$$

$$(\varepsilon, N) \equiv \frac{1}{N} \sum_{i} \delta_{Z_{i}^{\varepsilon, N}}$$

 $\widehat{\rho}_t$ 

and  $\rho$  be the solution of the PDE. Then

ŧ

$$\sup_{\epsilon \in [0,T]} \mathbb{E}[W_1(\widehat{\rho}_t^{(\varepsilon,N)},\rho_t)] \leq \tilde{C} \left(\log(N)\right)^{-\frac{1}{4}\nu}$$

 $W_1 = W$ asserstein distance,  $\nu = \nu(\rho_0, T)$  from previous theorem.

## **Remarks:**

• 
$$W_1(\mu,\nu) = \sup\left\{\left|\int \varphi(z)\mu(\mathrm{d}z) - \int \varphi(z)\nu(\mathrm{d}z)\right|, \|\varphi\|_{\mathrm{Lip}} \leq 1\right\},\$$

- Good part: theorem with a rate of convergence, for a very singular interaction;
- Bad part: (sub-)logarithmic rate of convergence in *N*.

Plots of the quantity  $(\int |x_1x_2|\rho) - (\int |x_1|\rho) (\int |x_2|\rho)$ . Parameters: D = 0.15; mollifier for the particles  $\varepsilon = 0.1$ . Black=PDE simulation; purple: N = 2000, blue: N = 4000, red: N = 8000 (one realization).



- The "shadow effect" or "Dalibard force" poses nice physical, mathematical and numerical questions.
- On potential, very singular interaction; yet: global existence for D large enough,
- I Rate of convergence, through a *direct proof of a Cauchy property*.
- Natural Particle Approximation
- Open question: is there a critical *D* for a finite time singularity?
- Experiments in progress in Singapore (David Wilkowski, Vincent Mançois). See a "blow up" is out of question; hope = observe some characteristic features of this strange interaction...