Rough Mean Field Equations

PDE and Probability Methods

François Delarue (Nice – J.-A. Dieudonné)

31 Mars 2017

Joint work with I. Bailleul (Rennes) and R. Catellier (Nice)

Background

• General structure of a McKean Vlasov equation

$$dX_t = b(t, X_t, \mathcal{L}(X_t))dt + \sigma(t, X_t, \mathcal{L}(X_t))dB_t$$

- \circ use the probabilistic structure of the noise to define the stochastic integration with respect to $(B_t)_t$
 - o standard example is Wiener process
- Understood as the asymptotic version of a mean interacting particle system

$$dX_t^i = b(t, X_t^i, \bar{\mu}_t^N) + \sigma(t, X_t^i, \bar{\mu}_t^N) dB_t^i$$

- \circ *i* is an integer in $\{1, \dots, N\}$
- $\circ (B_t^i)_t$ are independent copies of $(B_t)_t$
- $\circ \bar{\mu}_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_i^i}$ is the empirical distribution
- What about rough signals?
 - o ⊥ copies of a rough signal "à la Lyons" (Cass Lyons, 13)

Motivation

- Theory for general signals like Gaussian (non-Brownian) processes
- Have continuity of the Itô-Lyons map *input* → *output*
 - o in the asymptotic regime

$$input = \mathcal{L}((B_t)_t), \quad output = \mathcal{L}((X_t)_t)$$

• in the particle system

$$input = \frac{1}{N} \sum_{i=1}^{N} \delta_{(B_{t}^{i})_{t}(\boldsymbol{\omega})}, \quad output = \frac{1}{N} \sum_{i=1}^{N} \delta_{(X_{t}^{i})_{t}(\boldsymbol{\omega})}$$

but for a fixed $\omega!!$

• Ask for a diagram opropagation chaos $\frac{1}{N}\sum_{i=1}^{N}\delta_{(B_{t}^{i})_{t}(\omega)}$ • LDP

• LDP

• Ltô-Lyons
• $\mathcal{L}((B_{t})_{t})$ • $\mathcal{L}((B_{t})_{t})$ • $\mathcal{L}((X_{t})_{t})$

Rough signal

• Rough trajectory $W(\omega)$ with same regularity as a Brownian path

$$|W_t(\omega) - W_s(\omega)| \le C(\omega)|t - s|^{\alpha}, \quad \alpha \in (1/3, 1/2]$$

 \circ assume that we can define an integral with respect to W and the "iterated integral" of W

$$\mathbb{W}_{s,t}(\omega) = \int_{s}^{t} (W_{r}(\omega) - W_{s}(\omega)) \otimes dW_{r}(\omega)$$

 \circ if W is $1d \Rightarrow$ natural candidate is

$$\mathbb{W}_{s,t}(\omega) = \frac{1}{2} (W_t(\omega) - W_s(\omega))^2 \le C|t - s|^{2\alpha}$$

- o if dim greater than 2, "crossed iterated integrals" may not exist ⇒ probabilistic structure provides a construction (Stratonovich, Itô...)
- McKV involve infinitely many rough trajectories even if d = 1!!

$$\sigma(X_t^i, \bar{\mu}_t^N)dB_t^i = \sigma(X_t^1, \cdots, X_t^N)dB_t^i$$

 $\circ X^j$ involves B^j for $i \neq i!$

Rough signal

• Rough trajectory $W(\omega)$ with same regularity as a Brownian path

$$|W_t(\omega) - W_s(\omega)| \le C(\omega)|t - s|^{\alpha}, \quad \alpha \in (1/3, 1/2]$$

 \circ assume that we can define an integral with respect to W and the "iterated integral" of W

$$\mathbb{W}_{s,t}(\omega) = \int_{s}^{t} (W_{r}(\omega) - W_{s}(\omega)) \otimes dW_{r}(\omega)$$

 \circ if W is $1d \Rightarrow$ natural candidate is

$$\mathbb{W}_{s,t}(\omega) = \frac{1}{2} (W_t(\omega) - W_s(\omega))^2 \le C|t - s|^{2\alpha}$$

- o if dim greater than 2, "crossed iterated integrals" may not exist ⇒ probabilistic structure provides a construction (Stratonovich, Itô...)
- McKV involve infinitely many rough trajectories even if d = 1!!
- $\circ \Rightarrow$ requires a non-trivial rough structure (so far $\sigma = \sigma(x)$,

Cass-Lyons, Deuschel et al...)

Rough integral

• Once $W(\omega) = (W(\omega), \mathbb{W}(\omega))$ is given, one may define an integral for curves that behave like $W(\omega)$

 \circ controlled trajectory X

$$X_{t}(\omega) - X_{s}(\omega) = \frac{\delta_{x} X_{s}(\omega) (W_{t}(\omega) - W_{s}(\omega)) + R_{s,t}(\omega)}{|\delta_{x} X_{t}(\omega) - \delta_{x} X_{s}(\omega)| \le C^{X}(\omega) |t - s|^{\alpha}, \quad |R_{s,t}(\omega)| \le C^{X}(\omega) |t - s|^{2\alpha}}$$

$$\circ$$
 rough integral $((t_i)$ mesh of $[s, t])$

$$\int_{s}^{t} X_{r}(\omega) dW_{r}(\omega) \approx \sum_{i} X_{t_{i}}(\omega) (W_{t_{i+1}} - W_{t_{i}})(\omega) + \sum_{i} \frac{\delta_{x} X_{t_{i}}(\omega)}{\delta_{x} X_{t_{i}}(\omega)} W_{t_{i},t_{i+1}}(\omega)$$

• Back to our case \rightsquigarrow if $\sigma = \sigma(x)$ smooth, define

$$\int_{s}^{t} \sigma(X_{r}(\omega)) dW_{r}(\omega)$$

by expanding

$$\sigma(X_t(\omega)) = \sigma(X_s(\omega)) + \sigma'(X_s(\omega))(X_t - X_s)(\omega) + R_{s,t}^X(\omega)$$
$$= \sigma(X_s(\omega)) + \sigma'(X_s(\omega))\delta_x X_s(\omega)(W_t - W_s)(\omega) + R_{s,t}^X(\omega)$$

Rough integral

• Once $W(\omega) = (W(\omega), \mathbb{W}(\omega))$ is given, one may define an integral for curves that behave like $W(\omega)$

• controlled trajectory X

$$X_{t}(\omega) - X_{s}(\omega) = \frac{\delta_{x} X_{s}(\omega) (W_{t}(\omega) - W_{s}(\omega)) + R_{s,t}(\omega)}{|\delta_{x} X_{t}(\omega) - \delta_{x} X_{s}(\omega)| \le C^{X}(\omega) |t - s|^{\alpha}, \quad |R_{s,t}(\omega)| \le C^{X}(\omega) |t - s|^{2\alpha}$$

 \circ rough integral $((t_i)$ mesh of [s, t])

$$\int_{s}^{t} X_{r}(\omega) d\mathbf{W}_{r}(\omega) \approx \sum_{i} X_{t_{i}}(\omega) (W_{t_{i+1}} - W_{t_{i}})(\omega) + \sum_{i} \frac{\delta_{x} X_{t_{i}}(\omega)}{\delta_{x} X_{t_{i}}(\omega)} \mathbb{W}_{t_{i}, t_{i+1}}(\omega)$$

• Back to our case → first step is to define

$$\int_{s}^{t} \sigma(X_{r}(\omega), \mathcal{L}(X_{r})) dW_{r}(\omega)$$

 \circ requires to expand $\sigma(X_r(\omega), \mathcal{L}(X_r))$ including the measure

Wasserstein derivative

- ullet Lions' approach for differentiating on $\mathcal{P}_2(\mathbb{R})$
- Given $\mathcal{U}: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}$
- Lift of ${\cal U}$

$$\hat{\mathcal{U}}: L^2(\Omega, \mathbb{Q}) \ni X \mapsto \mathcal{U}(\mathcal{L}(X))$$

- $\circ \mathcal{U}$ differentiable if $\hat{\mathcal{U}}$ Fréchet differentiable
- ullet Derivative of ${\cal U}$
 - \circ Fréchet of $\hat{\mathcal{U}}$

$$D\hat{\mathcal{U}}(X) = \partial_{\mu}\mathcal{U}(\mu)(X), \quad \partial_{\mu}\mathcal{U}(\mu) : \mathbb{R} \ni x \mapsto \partial_{\mu}\mathcal{U}(\mu)(x) \quad \mu = \mathcal{L}(X)$$

- \circ derivative of \mathcal{U} in $\mu \leadsto \partial_{\mu} \mathcal{U}(\mu) \in L^{2}(\mathbb{R}, \mu; \mathbb{R})$
- Finite-dimensional projection

$$\partial_{\mathbf{x}_{i}}\left[\mathcal{U}\left(\frac{1}{N}\sum_{j=1}^{N}\delta_{x_{j}}\right)\right] = \frac{1}{N}\partial_{\mu}\mathcal{U}\left(\frac{1}{N}\sum_{j=1}^{N}\delta_{x_{j}}\right)(\mathbf{x}_{i}), \quad x_{1},\ldots,x_{N} \in \mathbb{R}$$

Wasserstein derivative

- ullet Lions' approach for differentiating on $\mathcal{P}_2(\mathbb{R})$
- Given $\mathcal{U}: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}$
- Lift of $\mathcal U$

$$\hat{\mathcal{U}}: L^2(\Omega, \mathbb{Q}) \ni X \mapsto \mathcal{U}(\mathcal{L}(X))$$

- $\circ \mathcal{U}$ differentiable if $\hat{\mathcal{U}}$ Fréchet differentiable
- ullet Derivative of ${\cal U}$
 - \circ Fréchet of $\hat{\mathcal{U}}$

$$D\hat{\mathcal{U}}(X) = \partial_{\mu}\mathcal{U}(\mu)(X), \quad \partial_{\mu}\mathcal{U}(\mu) : \mathbb{R} \ni x \mapsto \partial_{\mu}\mathcal{U}(\mu)(x) \quad \mu = \mathcal{L}(X)$$

- \circ derivative of \mathcal{U} in $\mu \leadsto \partial_{\mu} \mathcal{U}(\mu) \in L^{2}(\mathbb{R}, \mu; \mathbb{R})$
- \bullet X and X' two random variables

$$\mathcal{U}(\underline{\mathcal{L}}(X')) - \mathcal{U}(\underline{\mathcal{L}}(X)) = \mathbb{E}^{\mathbb{Q}} [\partial_{\mu} \mathcal{U}(\underline{\mathcal{L}}(X))(X(\cdot))(X' - X)(\cdot)] + \cdots$$
$$= \int \partial_{\mu} \mathcal{U}(\underline{\mathcal{L}}(X))(x) \times (x' - x) d\underline{\mathcal{L}}(X, X')(x, x') + \cdots$$

Extended rough structure

• Expand $\sigma_t = \sigma(X_t(\omega), \mathcal{L}(X_t))$

$$\sigma_{t} - \sigma_{s} = \partial_{x}\sigma(X_{s}(\omega), \mathcal{L}(X_{s}))\partial_{x}X_{s}(\omega)(W_{t}(\omega) - W_{s}(\omega)) + \mathbb{E}[\partial_{\mu}\sigma(X_{s}(\omega), \mathcal{L}(X_{s}))(X_{s}(\cdot))\partial_{x}X_{s}(\cdot)(W_{s} - W_{t})(\cdot)] + R_{s,t}^{\sigma}(\omega) = [\delta_{x}\sigma]_{s}(\omega)(W_{t}(\omega) - W_{s}(\omega)) + \mathbb{E}[[\delta_{\mu}\sigma]_{s}(\omega, \cdot)(W_{t} - W_{s})(\cdot)] + R_{s,t}^{\sigma}(\omega) = [\delta_{x}\sigma]_{s}(\omega)(W_{t}(\omega) - W_{s}(\omega)) + \int_{\Omega} [\delta_{\mu}\sigma]_{s}(\omega, \omega')(W_{t} - W_{s})(\omega')d\mathbb{P}(\omega') + R_{s,t}^{\sigma}(\omega)$$

 \circ regularity on the derivatives of σ (need second order derivatives, but Fréchet is too demanding)

Extended rough structure

• Expand $\sigma_t = \sigma(X_t(\omega), \mathcal{L}(X_t))$

$$\sigma_t - \sigma_s = [\delta_x \sigma]_s(\omega) (W_t(\omega) - W_s(\omega))$$

$$+ \int [\delta_\mu \sigma]_s(\omega, \omega') (W_t - W_s)(\omega') d\mathbb{P}(\omega') + R_{s,t}^{\sigma}(\omega)$$

• By analogy with above, need to define another cross-integral

$$\mathbb{W}_{s,t}^{\perp}(\omega,\omega') = \int_{s}^{t} (W_{r}' - W_{s}')(\omega') dW_{r}(\omega)$$

- \circ W' independent copy of W on a copy Ω' of Ω
- o pay attention!!! P refers to the law in the mean-field interaction
- \circ asymptotic setting \leadsto equip Ω' with $\mathcal{L}((B_t)_t)$ (works for Gaussian processes of dimension 2)
 - \circ particle system \leadsto equip Ω' with $\frac{1}{N} \sum_{j=1}^{N} \delta_{B_{j}(\omega)} \Rightarrow$ need to define

$$\left(\int_{s}^{t} (B_{r}^{j} - B_{s}^{j}) dB_{r}^{i}\right) (\omega)$$

Extended rough structure

• Expand $\sigma_t = \sigma(X_t(\omega), \mathcal{L}(X_t))$

$$\sigma_t - \sigma_s = [\delta_x \sigma]_s(\omega) (W_t(\omega) - W_s(\omega))$$

$$+ \int [\delta_\mu \sigma]_s(\omega, \omega') (W_t - W_s)(\omega') d\mathbb{P}(\omega') + R_{s,t}^{\sigma}(\omega)$$

• By analogy with above, need to define another cross-integral

$$\mathbb{W}_{s,t}^{\perp}(\omega,\omega') = \int_{s}^{t} (W_{r}' - W_{s}')(\omega') dW_{r}(\omega)$$

- \circ W' independent copy of W on a copy Ω' of Ω
- Rough integral should be

$$\int_{s}^{t} \sigma_{r}(\omega) d\mathbf{W}_{s} = \sum_{i} \sigma_{t_{i}}(\omega) (W_{t_{i+1}}(\omega) - W_{t_{i}}(\omega))$$

$$+ \sum_{i} \partial_{x} \sigma_{t_{i}}(\omega) \mathbb{W}_{t_{i}, t_{i+1}}(\omega) + \sum_{i} \mathbb{E}[\partial_{\mu} \sigma_{t_{i}}(\omega, \cdot) \mathbb{W}_{t_{i}, t_{i+1}}^{\perp}(\omega, \cdot)]$$

Solving the equation

• Search for a fixed point

$$\Gamma: X = \left(X_{\cdot}(\omega), \delta_{x}X_{\cdot}(\omega), R_{\cdot}^{X}\right)_{\omega} \mapsto \left(X_{0} + \int_{0}^{\cdot} \sigma_{r}(\omega, \cdot) dW_{r}, \sigma_{\cdot}(\omega, \cdot), \cdots\right)_{\omega}$$

• suffices to work with T small

• When $\sigma = \sigma(x)$ strategy is to localize on the variation of $W(\omega)$

$$w(0, T, \omega) = \frac{1}{\alpha} - \text{var}_{[0, T]} ([W(\omega)]) + \frac{1}{2\alpha} - \text{var}_{[0, T]} (\mathbb{W}(\omega))$$

where

$$\frac{1}{\alpha} - \text{var}_{[0,T]} = \sup_{(t_i)} \sum_{i} |W_{t_{i+1}} - W_{t_i}|^{\frac{1}{\alpha}}$$

- \circ here \rightsquigarrow no more possible to do that because of McKV!
- need a variant of Gronwall (Cass Litterer Lyons)

Solving the equation

• Search for a fixed point

$$\Gamma: X = \big(X.(\omega), \delta_x X.(\omega), R^X_\cdot\big)_\omega \mapsto \Big(X_0 + \int_0^{\cdot} \sigma_r(\omega, \cdot) dW_r, \sigma.(\omega, \cdot), \cdots\Big)_\omega$$

• Find a norm $\|\cdot\|_{\omega}$ on $(X_{\cdot}(\omega), \delta_{x}X_{\cdot}(\omega), R_{\cdot}^{X}(\omega))$

$$\|\Gamma(\boldsymbol{X})(\omega) - \Gamma(\boldsymbol{X}')(\omega)\|_{\omega} \leq \rho C^{N(\omega)} \left(\int_{\Omega} \|\boldsymbol{X}(\omega) - \boldsymbol{X}'(\omega)\|_{\omega}^{p} d\mathbb{P}(\omega) \right)^{1/p}$$

 \circ where $\rho < 1$ and $\int_{\Omega} C^{pN(\omega)} d\mathbb{P}(\omega) \to 1$ as T tends to 0

$$||X(\omega)||_{\omega} = |(X_0, \delta_x X_0)(\omega)| + \sup_{[s,t] \subset [0,T]} \left(\frac{|\delta_x X_t(\omega) - \partial_x X_s(\omega)|}{w(s,t,\omega)^{\alpha}} + \frac{|R_{s,t}(\omega)|}{w(s,t,\omega)^{2\alpha}} \right)$$

$$\circ w(s,t,\omega) \sim \frac{1}{\alpha} - \operatorname{var}_{[s,t]} W(\omega) + \frac{1}{2\alpha} - \operatorname{var}_{[s,t]} (\mathbb{W}(\omega), \mathbb{W}^{\perp}(\omega,\cdot))$$

• $N(\omega)$ s.t. $(t_i)_{1 \le i \le N(\omega)}$ with $w(t_i, t_{i+1}, \omega) = \epsilon < 1$ and $t_{N(\omega)} \ge T$

Continuity and propagation of chaos

- Kind of statement: If we can control accordingly the tails of the variations of W, W and W^{\perp} , then existence and uniqueness
- Continuity of the law of the output with respect to the law of $(W, \mathbb{W}, \mathbb{W}^{\perp})$.
- \circ example: Gaussian processes with Hölder covariance of Hölder exponent > 2/3
- Revisit propagation of chaos
 - \circ for N particle system, the law of the triplet takes the form

$$\frac{1}{N^2} \sum_{i,j=1}^N \delta_{B^i(\omega),\mathbb{B}^{i,i}(\omega),\mathbb{B}^{i,j}(\omega)}$$

where

$$\mathbb{B}^{i,j} = \int B^j dB^i$$

 \circ converges to the law of $(B, \mathbb{B}, \mathbb{B}^{\perp})$

