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Background

e General structure of a McKean Vlasov equation
dXt = b(t, Xt, -E(Xt))dt + O_(t, Xl" -E(Xt))dB[
o use the probabilistic structure of the noise to define the
stochastic integration with respect to (B;),
o standard example is Wiener process

e Understood as the asymptotic version of a mean interacting particle
system
dX! = b(t, X!, @) + o(t, X!, i )dB!
o iis an integer in {1,--- , N}
) (Bi)t are independent copies of (B;),

o =+ Z | Oxi is the empirical distribution

e What about rough signals?

o 1 copies of a rough signal “a la Lyons” (Cass Lyons, 13)



Motivation

e Theory for general signals like Gaussian (non-Brownian) processes
e Have continuity of the It6-Lyons map input — output

o in the asymptotic regime
input = L((B,),), output = L((X,),)
o in the particle system

N N
. I 3 ! D
input = N 5(3;’),@): output = ]T/ 6(Xf)t(w)

i=1 i=1

but for a fixed w!!

o Ask for a diagram LLN
. 1%/ Zfil OByw —— > L((Bo)
o propagation chaos
i [t6-Lyons [t6-Lyons i
o LDP

¥ I | By ————— LX)



Rough signal

e Rough trajectory W(w) with same regularity as a Brownian path
Wi(w) — Ws(w)l < C)lt —s|*,  a€(1/3,1/2]

o assume that we can define an integral with respect to W and the
“iterated integral” of W

A
Wii(w) = f (W (w) — Wy(w)) ® dW(w)
o if W is 1d = natural candidate is
Wy i(w) = L(Wi(w) - Wyw))* < Clr — s

o if dim greater than 2, “crossed iterated integrals” may not exist
= probabilistic structure provides a construction (Stratonovich, Itd...)

e McKYV involve infinitely many rough trajectories even if d = 1!!
l —N)dBl_” ”( .. ,Xiv)dB;

o X/ involves B/ for j # i!



Rough signal

e Rough trajectory W(w) with same regularity as a Brownian path
Wi(w) = Ws(w)l < C)lt —s|",  ae€(1/3,1/2]

o assume that we can define an integral with respect to W and the
“iterated integral” of W

!
Ws,t(w) = f (Wr(w) - Ws(w)) ® dWr(a))
o if W is 1d = natural candidate is
Wy i(w) = J(Wiw) - Wy(w))” < Clr — s

o if dim greater than 2, “crossed iterated integrals” may not exist
= probabilistic structure provides a construction (Stratonovich, Itd...)

e McKYV involve infinitely many rough trajectories even if d = 1!!

o = requires a non-trivial rough structure (so far o = o (x),
Cass-Lyons, Deuschel et al...)



Rough integral

e Once W(w) = (W(w), W(w)) is given, one may define an integral for
curves that behave like W(w)

o controlled trajectory X

Xt(w) - Xs(w) = 6st((U)(Wt(w) - Ws(w)) + Rs,t(w)

16X, (@) = 6. X ()] < CX)lt=sI",  Rys(w)] < CX ()t — sI**
o rough integral ((#;) mesh of [s, #])

!
f Xr(w)dwr(w) o Z Xti(w)(WtH] - th)((l)) + Z 6XXI,'(U))WI,‘JH1 (0))
N i i
e Back to our case ~ if oo = 07(x) smooth, define

f (X (w))dW (w)
by expanding
o(X,(w)) = (X)) + o (Xs(w)(X; — X,)(w) + RY (w)
= (X)) + 0 (Xs(w))3: X, ()W, = Wy)(w) + R (w)



Rough integral

e Once W(w) = (W(w), W(w)) is given, one may define an integral for
curves that behave like W(w)

o controlled trajectory X

Xt(w) - Xs(w) = 5XXS((U)(WI((‘)) - Ws(w)) + Rs,t(w)
16.X:(w) — 6. Xs(w)] < CX()lt — 5|7, |Rs(w)] < CX(w)lt — s>

o rough integral ((#;) mesh of [s, ])
t
f XA@)dW (@) ~ " Xi(@) (Wi, = W)(@) + Y 6.X (@) Wy, ()
8 i i
e Back to our case ~» first step is to define

f o(Xr(w), L(X,)dW (w)

o requires to expand o (X, (w), L(X,)) including the measure



Wasserstein derivative

e Lions’ approach for differentiating on £>(R)
e Given U : Pr(R) > R

o Lift of U
U LX(Q,Q)3 X — ULX))

o U differentiable if U Fréchet differentiable
e Derivative of U

o Fréchet of U
D7:I(X) =0, UwWX), I, Uw :R>3x+ 0, UwW(x) u=LX)

o derivative of U in u ~» 9, U(u) € L*(R, 1;R)

e Finite-dimensional projection

1 & 1 L
d. [w(ﬁ > 5)9.)] _ Naﬂ(u( > 5xj)(x, ..xv€R

J=1 J=1



Wasserstein derivative

e Lions’ approach for differentiating on $>(R)
e Given U : Po(R) > R

e Lift of U
U L2(Q,Q) 3 X — ULX))

o U differentiable if U Fréchet differentiable
e Derivative of U
o Fréchet of U
DUX) = 9, UW)X), U :R> x> UW)x) u= LX)
o derivative of U in u ~ 8, U(u) € L*(R, ui; R)
e X and X’ two random variables
U(LX)) = ULX)) = B0, ULX)XONX = X)()] + -
= f@,[LI(L(X))(x) X (" = x)dLX, X)), x") + - -



Extended rough structure
e Expand o, = o(X)(w), L(X)))
o1 = 05 = 0,0 (Xs(w), LX))0: Xs(w)(Wi(w) — Wy(w))
+ E[0,0(Xs(w), LX))X ()X ( )Wy = W)()] + RS (w)
= [6:0]s(W)(Wi(w) — Wi(w))
+ E[[6,0]s(w, ) (W; = Wy)()] + R{ (w)
= [6:0]s(W)(Wi(w) — Wi(w))

+ L[éua]s(w, W)Wy = We)()dP(w') + R (w)

o regularity on the derivatives of o (need second order
derivatives, but Fréchet is too demanding)



Extended rough structure
e Expand o, = o(X)(w), L(X)))
0 — 05 = [6,0](w)(Wi(w) — Wy(w))

+ f[éﬂa]s(a), W)Wy = W) (w")dP(w') + RY (w)

¢ By analogy with above, need to define another cross-integral

Whw.o) = [0~ W)@

o W’ independent copy of W on a copy Q' of Q
o pay attention!!! P refers to the law in the mean-field interaction

o asymptotic setting ~» equip Q" with L((B;);) (works for
Gaussian processes of dimension 2)

o particle system ~» equip Q" with % Zjl\i 105w = need to define
t

( f RUREAFEATE



Extended rough structure
e Expand 0 = o (Xy(w), L(X)))

O =05 = [5x0—]s((‘))(WI((’J) - Ws(w))

+ f [6,0]5(w, )W, = Wy)(w)dP(w') + R (w)
¢ By analogy with above, need to define another cross-integral
!
Wii(w, ') = f (W) = W) (")dW(w)
S

o W’ independent copy of W on a copy Q' of Q
e Rough integral should be

| vwiw, = Y o)W, - W)

+ Z 0,01 (W)W, (W) + Z E[0u0 (@, YW,
l 1

((,(), )]



Solving the equation

e Search for a fixed point

I:X = (X.(0),6:X.(w), RY), (Xo - f (@, YAW,, o (. ), - - )
0

w

o suffices to work with 7 small

e When o = o(x) strategy is to localize on the variation of W(w)
w(0, T, w) = L-varjo.ry([W(w)])
+ i—var[oj] (W(w))

where

1

: 1

S -var[o,r] = sup § |Wli+| - Wla
()

o here ~» no more possible to do that because of McKV!

o need a variant of Gronwall (Cass Litterer Lyons)



Solving the equation

e Search for a fixed point

X = (X.(0),6:X.(w), RY), (Xo L f o (@, )W, (@, ), - - )
0

w

e Find a norm || - ||, on (X.(w), 6,:X.(w), RX(w))

1/p
IFX) (@) — T ) (@)l < ch<‘”>( fg IX(w) - X’(w)IIZdP(w))

o where p < 1 and fg CPN@JP(w) — 1 as T tends to 0

0 Xi(w) — 0, Xs(w R, (w
IX(@)llo = |(Xo, 6:Xo) @)+ sup (' A=), IRs.i( )|2 )
[5,¢1c[0,T1] W(S, Ty (1)) W(S, t, (1)) 2

0 W(s, 1,w) ~ g-varjs nW(w) + 55 -var(s g (W(w), W (w, )

a

e N(w) s.t. (ti)lsiSN(w) with w(t;, tiy1,w) = € < 1 and IN(w) 2 T



Continuity and propagation of chaos

¢ Kind of statement: If we can control accordingly the tails of the
variations of W, W and W, then existence and uniqueness

e Continuity of the law of the output with respect to the law of
(W, W, W),

o example: Gaussian processes with Holder covariance of Holder
exponent > 2/3

e Revisit propagation of chaos

o for N particle system, the law of the triplet takes the form

N
1
N2 Z OBi(w) B (w) B (w)
ij=1

BY = f BdB'

o converges to the law of (B, B, B')

where



