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Types of neuronal models

Hodgkin-Huxley model
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Types of neuronal models

Focusing on the spikes
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Types of neuronal models

Focusing on the firing
rate
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The question

I Find concise
mathematical
descriptions of large
networks of neurons
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This talk

I Fully connected networks of rate neurons

I Random synaptic weights

I Annealed results
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The mathematical model

I Intrinsic dynamics:

S :=

{
dVt = −αVtdt + σdBt , 0 ≤ t ≤ T
Law of V0 = µ0,

I There is a unique strong solution to S (Ornstein-Uhlenbeck
process):

Vt = exp(−αt)V0 + σ

∫ t

0
exp(α(s − t))dBs

I Note P its law on the set T := C([0,T ];R) of trajectories

Olivier Faugeras MathNeuro and TOSCA Laboratories - INRIA Sophia/UCA

Modeling interacting neurons



Introduction Model Strategy Uncorrelated Correlated Summary and perspectives

The mathematical model

I N neurons, N = 2n + 1; completely connected network

I Coupled dynamics

S(JN) :=
dV i

t = (−αV i
t +

∑N
j=1 J

N
ij f (V j

t ))dt + σdB i
t

Law of

VN(0) = (V 1
0 , · · · ,VN

0 ) = µ⊗N0

i ∈ In := [−n, · · · , n].

I f is bounded, Lipschitz continuous (usually a sigmoid),
defining the firing rate

I B i : independent Brownians: intrinsic noise on the membrane
potentials
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The mathematical model

I There is a unique strong solution to S(JN)

I Note P(JN) its law on the set T N of N-tuples of trajectories.
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Modeling the synaptic weights

I JNij : stationary Gaussian field: random synaptic weights

E[JNij ] =
J

N

cov(JNij J
N
kl ) =

Λ(k − i , l − j)

N

I Λ(k , l) is a covariance function.

I Analogy with random media
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Consequences

I P(JN) is a random law on T N

I Consider the law P⊗N of N independent uncoupled neurons

I Girsanov theorem allows us to compare the law of the solution
to the coupled system, P(JN), with the law of the uncoupled
system, P⊗N :

dP(JN)

dP⊗N
= exp

{∑
i∈In

1

σ

∫ T

0

∑
j∈In

JNij f (V j
t )

 dB i
t−

1

2σ2

∫ T

0

∑
j∈In

JNij f (V j
t )

2

dt

}
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Uncorrelated case

I Consider the empirical measure:

µ̂Nu (VN) =
1

N

∑
i∈In

δV i ,

VN = (V−n, · · · ,V n)

I It defines the mapping

µ̂Nu : T N → P(T )
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Correlated case

I Consider the empirical measure

µ̂Nc (VN) =
1

N

∑
i∈In

δS i (VN,p),

a probability measure on T Z.

I VN,p is the periodic extension of the finite sequence of
trajectories VN = (V−n, · · · ,V n).

I S is the shift operator acting on elements of T Z.

I It defines the mapping

µ̂Nc (VN) : T N → PS(T Z)
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I We are interested in the laws of µ̂Nu and µ̂Nc under P(JN)

I Define

QN =

∫
Ω
P(JN(ω)) dω,

the average of P(JN) w.r.t. to the ”random medium”, i.e.
the synaptic weights.

I We study the law of µ̂Nu and µ̂Nc under QN : annealed results.
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The strategy

I Consider the law ΠN
u of µ̂Nu under QN : it is a probability

measure on P(T ):

ΠN
u (B) =

(
QN ◦ (µ̂Nu )−1

)
(B) = QN(µ̂Nu ∈ B),

B measurable set of P(T )

I Consider the law ΠN
c of µ̂Nc under QN : it is a probability

measure on P(T Z):

ΠN
c (B) = QN(µ̂Nc ∈ B),

B measurable set of P(T Z)
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The strategy

I Establish a Large Deviation Principle for the sequences of
probability measures (ΠN

u )N≥1 and (ΠN
c )N≥1, i.e.

I Design a rate function (non-negative lower semi-continuous)
Hu (resp. Hc) on P(T ) (resp. P(T Z))

I The intuitive meaning of H is the following

QN(µ̂N ' Q) ' e−NH(Q)

I The measures µ̂N concentrate on the measures Q such that
H(Q) = 0.

I If H reaches 0 at a single measure Q then ΠN converges in
law toward the Dirac mass δQ
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Minimum of Hu

By adapting the results of Ben Arous and Guionnet [BAG95] and
of Moynot and Samuelides [MS02] one obtains:

Theorem

Hu(µ) = I (2)(µ;P)− Γu(µ),

where I (2)(µ;P) is the relative entropy of µ w.r.t. P and Γu is
defined by

dQN

dP⊗N
= eNΓu(µ̂N)

Hu achieves its minimum at a unique point µu of P(T ).
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Minimum of Hu

and

Theorem
µu is the law of the solution to a linear non-Markovian stochastic
system.
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Annealed results

Two main results:

Theorem (1)

The law of the empirical measure µ̂Nu under QN converges weakly
to δµu

This means that

∀F ∈ Cb(P(T ))

lim
N→∞

∫
Ω

(∫
T N

F

(
1

N

N∑
1

δv i

)
P(JN(ω))(dvN)

)
dγ(ω) = F (µu)
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Annealed results

Theorem (2)

QN is µu-chaotic.

i.e. for all m ≥ 2 and fi , i = 1, . . . ,m in Cb(T )

lim
N→∞

∫
T N

f1(v1) · · · fm(vm) dQN(v1, · · · , vN) =
m∏
i=1

∫
T
fi (v) dµu(v)

”In the thermodynamic limit (N →∞) and on average, the
neurons in any finite-size group become independent. One observes
the propagation of chaos. The neurons become asynchronous.”
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Joint work with James Maclaurin and Etienne Tanré

1. Note that the sequence ΠN
0 = P⊗N ◦ (µ̂Nc )−1 satisfies the LDP

with good rate function

I (3)(µ;PZ) = lim
N→∞

1

N
I (2)(µN ;P⊗N)

2. Show that there exists a sequence Ψm of continuous functions
PS(T Z)→ PS(T Z) and a measurable map
Ψ : PS(T Z)→ PS(T Z) such that for every α <∞

lim sup
m→∞

sup
µ:I (3)(µ)≤α

DT (Ψm(µ),Ψ(µ)) = 0
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Joint work with James Maclaurin and Etienne Tanré

1. Show that the family ΠN
0 ◦Ψ−1

m is an exponentially good
approximation of the family ΠN

c ,

2. and conclude that ΠN
c satisfies the LDP with good rate

function
Hc(µ) = inf

{
I (3)(ν) : µ = Ψ(ν)

}
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Definition of Ψm

I Note that

dQN

dP⊗N

∣∣∣∣
Ft

= exp

(∑
j∈In

∫ t

0
θjsdB

j
s −

1

2

∑
j∈In

∫ t

0

(
θjs
)2
ds

)

where

θjt =
1

σ
cµ̂Nc (VN)(t) +

1

σ2
Eγ̃

µ̂Nc (VN )
t

∑
k∈In

G j
t

∫ t

0
G k
s dB

k
s
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Definition of Ψm

I Prove that the SDE

Z j
t = B j

t+

∫ t

0
cµ̂Nc (Z)(s)ds+σ−2

∑
k∈In

∫ t

0
Eγ̃

µ̂Nc (Z)
t

[
G j
s

∫ s

0
G k
u dZ

k
u

]
ds,

j ∈ In, is well-posed in T N and that the law of µ̂Nc (Z ) is ΠN
c .

I Construct the continuous function ϕm : T Z × PS(T Z)→ T Z

by time-discretizing this equation.

I Construct the continuous function Ψm : PS(T Z)→ PS(T Z)
by a fixed-point argument as

Ψm(µ) = ν such that ν = µ ◦ (ϕm(·, ν))−1
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Minimum of Hc

Theorem (O.F., J. Maclaurin, E. Tanré)

Hc achieves its minimum at a unique point µc of PS(T Z).

and

Theorem (O.F., J. Maclaurin, E. Tanré)

µc is the law of the solution to an infinite dimensional linear
non-Markovian stochastic system, hence it is a Gaussian measure
(in PS(T Z)) if the initial condition is Gaussian.

Olivier Faugeras MathNeuro and TOSCA Laboratories - INRIA Sophia/UCA

Modeling interacting neurons



Introduction Model Strategy Uncorrelated Correlated Summary and perspectives

Summary

I We have started the analyzis of the thermodynamic limit of
completely connected networks of rate neurons in the case of
uncorrelated and correlated synaptic weights.

I In the uncorrelated case the network becomes asynchronous
(propagation of chaos) on average but in general not almost
surely.

I In both cases (uncorrelated and correlated synaptic weights)
the thermodynamic limit is described by a Gaussian process if
the initial conditions are Gaussian.
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Perspectives

I Analyze the limit equations

I Understand the fluctuations
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Metric on T Z

dZ
T (u, v) =

∑
i∈Z

2−|i |(‖ui − v i‖T ∧ 1)
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Metric on P(T Z)

Induced by the Wasserstein-1 distance:

DT (µ, ν) = inf
ξ∈C(µ,ν)

∫
dZ
T (u, v) dξ(u, v)
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Large deviation principle: I

For all open sets O of P(T )

− inf
µ∈O

H(µ) ≤ lim inf
N→∞

1

N
log ΠN(O)
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Large deviation principle: II

The sequence ΠN is exponentially tight.
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Large deviation principle: III

For every compact set F of P(T )

lim sup
N→∞

1

N
log ΠN(F ) ≤ − inf

µ∈F
H(µ)
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Exponential approximation

for all δ > 0

lim
m→∞

lim
n→∞

1

N
logP⊗N

(
DT

(
Ψm

(
µ̂Nc (B)

)
, µ̂Nc (Z )

)
> δ

)
= −∞
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