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Hodgkin-Huxley model 8‘2‘”)\
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Introduction

This talk

» Fully connected networks of rate neurons
» Random synaptic weights

» Annealed results

Olivier Faugeras MathNeuro and TOSCA Laboratories - INRIA Sophia

Mod. interacting neurons



The mathematical model

> Intrinsic dynamics:

dV = —aWidt+odB;, 0<t< T
S =
Law of Vo = Mo,

» There is a unique strong solution to S (Ornstein-Uhlenbeck
process):

t
Ve = exp(—at) Vo + o / exp(a(s — t))dBs
0

» Note P its law on the set 7 := C([0, T];R) of trajectories
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The mathematical model

» N neurons, N = 2n+ 1; completely connected network

» Coupled dynamics

S(JN) =
dvi = (—aVi+ N, JNF(V]))dt + odBi
Law of
W(0) = (V- V) =ug"
i€lp:=[—n,---,n|.

» f is bounded, Lipschitz continuous (usually a sigmoid),
defining the firing rate

» B': independent Brownians: intrinsic noise on the membrane
potentials
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The mathematical model

» There is a unique strong solution to S(JV)

» Note P(JV) its law on the set TN of N-tuples of trajectories.
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Modeling the synaptic weights

> J,?’: stationary Gaussian field: random synaptic weights

J

cov(J,?’J/(\,l) YR
» A(k, 1) is a covariance function.

» Analogy with random media
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Consequences

» P(JN)is a random law on TV
» Consider the law P®N of N independent uncoupled neurons

» Girsanov theorem allows us to compare the law of the solution
to the coupled system, P(JV), with the law of the uncoupled
system, P®N:

dP(JN) j ;
Jpan — &P { pBP= / >_Jif(V) | dBi-
i€ly _]eln
2

% Z F(VY) dt}

0 JEIn
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Uncorrelated case

» Consider the empirical measure:
AN 1
I’LU(VN) = NZ(SVN
i€l
Vy= (V" V")
> It defines the mapping

ﬂy TN P(T)
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Correlated case

» Consider the empirical measure

R 1
pl (V) = N > siv,):

i€l,
a probability measure on TZ.

> V) p is the periodic extension of the finite sequence of
trajectories Viy = (V~",--- V"),
» S is the shift operator acting on elements of 77Z.

> It defines the mapping

AN(Vy) - TN = Ps(T?)
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» We are interested in the laws of iV and 2 under P(JV)

» Define

QN = /Q PN (w)) duw,

the average of P(JV) w.r.t. to the "random medium”, i.e.
the synaptic weights.

» We study the law of 2 and /¥ under QV: annealed results.
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The strategy

» Consider the law MY of o under QV: it is a probability
measure on P(T):

ni(B) = (@ e (a)7) (B) = Q"(al € B),

B measurable set of P(T)

» Consider the law MY of 4N under QV: it is a probability
measure on P(T%):

nY(B)=Q"(nl e B),

B measurable set of P(T7%)
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The strategy

» Establish a Large Deviation Principle for the sequences of
probability measures (MN)y>1 and (MY)y>1, ie.

» Design a rate function (non-negative lower semi-continuous)
H, (resp. Hc) on P(T) (resp. P(T%))

» The intuitive meaning of H is the following
QN(I&N ~ Q) ~ efNH(Q)

» The measures ﬁN concentrate on the measures @ such that
H(Q) = 0.

» If H reaches 0 at a single measure Q then NN converges in
law toward the Dirac mass d¢
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Uncorrelated

Minimum of H,

By adapting the results of Ben Arous and Guionnet [BAG95] and
of Moynot and Samuelides [MS02] one obtains:

Theorem

Hu(re) = 1P (1; P) — T u(w),

where 1)(11; P) is the relative entropy of yu w.r.t. P and T, is
defined by

dQV — NTu(@Y)

dpP®N

H, achieves its minimum at a unique point p,, of P(T).
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Uncorrelated

Minimum of H,

and

Theorem
Wy Is the law of the solution to a linear non-Markovian stochastic
system.
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Uncorrelated

Annealed results

Two main results:

Theorem (1)

The law of the empirical measure ji under QN converges weakly
to 0y,

This means that

VF € Co(P(T))

. 1 &
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Uncorrelated

Annealed results

Theorem (2)
QN is py-chaotic.
iie. forallm>2and f;, i=1,...,min Cp(T)

m
lim / AVY) - F(v™) dQV (V- W) = H/ fi(v) dpu(v)
N—oo J7N i1 T

"In the thermodynamic limit (N — oo) and on average, the
neurons in any finite-size group become independent. One observes
the propagation of chaos. The neurons become asynchronous.”
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Correlated

Joint work with James Maclaurin and Etienne Tanré

1. Note that the sequence MY = P®N o (4V)~1 satisfies the LDP
with good rate function

1O (u; P*) = lim %’(2)(%: PEN)
—00

2. Show that there exists a sequence V,, of continuous functions
Ps(T%) — Ps(T?) and a measurable map
WV : Ps(TZ) — Ps(T?) such that for every a < oo

lim sup sup Dr(Vm(p), ¥(p)) =0

M09 1:16) (n)<a
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Correlated

Joint work with James Maclaurin and Etienne Tanré

1. Show that the family MY o W, 1 is an exponentially good
approximation of the family I'I’CV,

2. and conclude that MY satisfies the LDP with good rate
function

He(p) = inf {1D() : p = w(v)}
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Correlated

Definition of WV,

» Note that
d N
o] oo (30 [ e = 33 [ 00
Fi JEIn Jj€l,
where

i ]. ~“c( ) k k
6"t = ;cﬁé\’(VN)(t) + — Z GJ/ G dB;

kel,
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Definition of V,,

» Prove that the SDE

. .t t ol o ff
Zi = Bit / nz)(s)ds+o 2" / E [Gé / Gukdzi‘} ds,
0 0 0

k€ln

j € I, is well-posed in TN and that the law of aN(Z) is V.

» Construct the continuous function ¢, : T% x Ps(T%) — T
by time-discretizing this equation.

» Construct the continuous function WV, : Ps(T%) — Ps(T%)
by a fixed-point argument as

V(1) = v such that v = po (@m(-,v)) !
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Correlated

Minimum of H,

Theorem (O.F., J. Maclaurin, E. Tanré)
H, achieves its minimum at a unique point . of Ps(T%).

and

Theorem (O.F., J. Maclaurin, E. Tanré)

e is the law of the solution to an infinite dimensional linear
non-Markovian stochastic system, hence it is a Gaussian measure
(in Ps(T?)) if the initial condition is Gaussian.
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Summary and perspectives

Summary

» We have started the analyzis of the thermodynamic limit of
completely connected networks of rate neurons in the case of
uncorrelated and correlated synaptic weights.

> In the uncorrelated case the network becomes asynchronous
(propagation of chaos) on average but in general not almost
surely.

> In both cases (uncorrelated and correlated synaptic weights)
the thermodynamic limit is described by a Gaussian process if
the initial conditions are Gaussian.
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Summary and perspectives

Perspectives

> Analyze the limit equations

» Understand the fluctuations
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Summary and perspectives
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Summary and perspectives
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Summary and perspectives

Metric on 7%

dr(u,v) = 27 M(|lu" = V| A1)

i€Z
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Summary and perspectives

Metric on P(T%)

Induced by the Wasserstein-1 distance:

Dr(u,v)= inf /d7Z—(u, v) d&(u, v)

£eC(pv)

Olivier Faugeras MathNeuro and TOSCA Laboratories - INRIA Sophia/UCA

Modeling interacting neurons



Summary and perspectives

Large deviation principle: |

For all open sets O of P(T)

inf H Ll N
— < —
,122 (n) < I}Vm inf N log N™(O)
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Summary and perspectives

Large deviation principle: |l

The sequence MV is exponentially tight.
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Summary and perspectives

Large deviation principle: |l

For every compact set F of P(T)

1
limsup — log MY(F) < — inf H
msup - log (F) < jnf (1)
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Summary and perspectives

Exponential approximation

forall 6 >0

lim Tim %Iog peN (DT(wm(g’c"(B)),g,’_}’(Z)) > 5> = —00

m—00 N— 00
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