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© Objective of the talk
© Case 1: The drift coefficient is bounded and measurable.

© Case 2: The coefficients are bounded, continuous.
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Objective of the talk

Let T be a fixed time horizon, b, 0 measurable mappings defined over

appropriate spaces. We are interested in a weak solution of
Mean-Field (McKean-Vlasov) SDE :
Fort € [0,T], & € L*(Q, Fy, P;RY),

t t
X =¢ +/ b(s, X.as, Qx .. )ds + / o(s, X.rs, @x . )dBs, (1.1)
0 0

where @ is a probability measure with respect to which B is a B.M.

Remark: Qx.,, is the law of X.5s w.r.t. Q.
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Brief state of art

1) Such Mean-Field SDEs have been intensively studied:

e For a longer time as limit equ. for systems with a large number of
particles (propagation of chaos)(Bossy, Méléard, Sznitman, Talay,...);

e Mean-Field Games, since 2006-2007 (Lasry, Lions,...);

2) Mean-Field SDEs/FBSDEs and associated nonlocal PDEs:

e Preliminary works in 2009 (AP, SPA);

e Classical solution of non-linear PDE related with the mean-field SDE:

Buckdahn, Peng, Li, Rainer (2014); Chassagneux, Crisan, Delarue (2014);

e For the case with jumps: Li, Hao (2016); Li (2016);

e Weak solution: Oelschlager(1984), Funaki (1984), Gartner (1988),
Lacker (2015), Carmona, Lacker (2015), Li, Hui (2016, 2017)......
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Objective of the talk

Our objectives: To prove the existence and the uniqueness in law of the
weak solution of mean-field SDE (1.1):

* when the coefficient b is bounded, measurable and with a modulus of
continuity w.r.t the measure, while ¢ is independent of the measure and

Lipschitz.

* when the coefficients (b, o) are bounded and continuous.
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Preliminaries

We consider

+ (Q, F, P) - complete probability space;

+ W B.M. over (Q, F, P) (for simplicity: all processes 1-dimensional);
+ F-filtration generated by W, and augmented by Fj.

p-Wasserstein metric on

Pp(R) := {p | 1 probab. on (R, B(R)) with /R|x|p,u(:£) < 4o00};

Wy, v):= inf{(/RXR |x|pp(da:dy))%,p(- XR)=pu,p(Rx )= I/}.
(1.2)
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Preliminaries

Generalization of the def. of a weak sol. of a classical SDE (see, e.g.,
Karatzas and Shreve, 1988) to (1.1):

Definition 1.1

A six-tuple (Q, F,F,Q, B, X) is a weak solution of SDE (1.1), if

(i) ((2,]?, Q) is a complete probability space, and F= {ft}ogtST is a

filtration on (ﬁ,]?, Q) satisfying the usual conditions.

(i) X = {Xt}o<t<7 is a continuous, F-adapted R-valued process;

B = {By}o<i<r is an (F,Q)-BM.

(i) QLT (5, Xones Q)| + 105, Xons, Qix.p.)[P)ds < +00} = 1, and
equation (1.1) is satisfied, Q-a.s.
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Preliminaries

Definition 1.2

We say that uniqueness in law holds for the mean-field SDE (1.1), if for
any two weak solutions (¢, F¢ %, Q%, B*, X*), i = 1,2, we have

Q&l = Qgp, i.e., the two processes X' and X? have the same law.
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© Case 1: The drift coefficient is bounded and measurable.
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Case 1: Existence of a weak solution

Let b, o satisfy the following assumption (H1):

(i) b:[0,7] x C(]0, T);R) x P1(R) — R is bounded and measurable;
(i) 0 : [0,T] x C([0,T];R) — R is bounded, measurable, and s.t., for all
(t,) €10, 7] x C([0,T);R), 1/0(t, ) is bounded in (¢, ¥);
(iii) (Modulus of continuity) 3p : Ry — R increasing, continuous, with
p(0+) =0s.t., forall t € [0,T], ¢ € C([0,T];R), u, v € P1(R),

b(t, p.ats 1) — bt pont, V)| < p(Wh(p,v));
(iv) 3L > 0 s.t., for all t € [0,T7, , v € C([0,T];R),

lo(t, o.at) — o (t,Yae)] < L sup |ps — s
0<s<t
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Case 1: Existence of a weak solution

We want to study weak solutions of the following mean-field SDE:

t t
Xt = 5 + / O'(S,X./\S)st + / b(S, X'/\87 QXs)dsa te [OvTL (21)
0 0

where (By);cjo,r] is a BM under the probability measure Q.

Now we can give the main statement of this section.

Under assumption (H1) mean-field SDE (2.1) has a weak solution
(@, F,F,Q, B, X).

Proof: Girsanov's Theorem. Schauder's Fixed Point Theorem.
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Case 1: Existence of a weak solution

Let us give two examples.

Example 1. Take diffusion coefficient 0 = I; and drift coefficient

b(s, ponss ths) 1= b(s,.ns, [ Vi), @ € C([0,T)), p € Py(R), s € [0, T];
the function ¢ € C([0,T];R) is arbitrarily given but fixed, and Lipschitz.

Then our mean-field SDE (2.1) can be written as follows:

X, =B+ /Ot b(s, Xons, EQth(Xs)])ds, t e [0,T]. (2.2)

Here b: [0,7] x C([0,T]) x R — R is bounded, meas., Lips. in y. Then,
the coefficients b and o satisfy (H1), and from Theorem 2.1, we obtain
that the mean-field SDE (2.2) has a weak solution (€, F,F,Q, B, X).
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Case 1: Existence of a weak solution

Example 2. Take diffusion coefficient o = I; and drift coefficient

/b\(s (P/\saﬂs : fb S, P.Asy Y )ﬂs(dy)- pe O([O,T]), ps € Pl(R)'
s € [0,T1], i.e., we consider the following mean-field SDE:

t
X, = B+ /O /R b(s, Xone,9) Q. (dy)ds, te[0,T].  (2.3)

Here the coefficient b : [0,T] x C([0,T]) x R — R is bounded, meas. and
Lips. in y. Then, the coefficients b and o satisfy (H1), and from Theorem
2.1 the mean-field SDE (2.3) has a weak solution (€, F,F,Q, B, X).
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Case 1: Uniqueness in law of weak solutions

Let the functions b and o satisfy the following assumption (H2):
(i) b:[0,7] x C(]0, T];R) x P1(R) — R is bounded and measurable;
(i) o : [0,T] x C([0,T];R) — R is bounded and measurable, and
11/a(t,p)| < C, (t,¢) € [0,T] x C([0,T];R), for some C € R4;
(iii) (Modulus of continuity) There exists a continuous and increasing
function p: Ry — R with
p(r) >0, for all » > 0, and / d—u = +00,
o+ P(u)
such that, for all t € [0,T], ¢ € C([0,T];R), p, v € P1(R),
[b(t, 0.nt, 1) — b(t, opt, V)2 < p(Wi(p,v)?);
(iv) 3L > 0 such that, for all t € [0,T], ¢, ¥ € C([0, T];R),
0t .00) — 0t ore)| < L sup [0 — 1.
0<s<t
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Case 1: Uniqueness in law of weak solutions

Obviously, under assumption (H2) the coefficients b and o also
satisfy (H1). Thus, due to Theorem 2.1, the following mean-field SDE

t t
thf—i—/ b(s,X./\S,QXS)ds—f—/ o(s,X.as)dBs, t€[0,T], (2.1)
0 0

has a weak solution.

Theorem 2.2

Suppose that assumption (H2) holds, and let (2, F, Fi, Q°, B?, X?),
i =1,2, be two weak solutions of mean-field SDE (2.1). Then (B!, X!)

and (B2, X?) have the same law under their respective probability

- 1 _ 02
measures, i.e., Qg1 x1) = Q(p2 x2)-
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Case 1: Uniqueness in law of weak solutions

Sketch of the proof: For ¢ € C([0,T];R), pu € P1(R), we define
E(S, D.nss 1) = 071(37 ©-ns)b(8, 9.ns, 1), and we introduce

M=Eﬁ/%l&@@@t€MH
0 S

T T
. - . . 1 ~ . .
L= expl= [ 86, Xl Qu)dBi =5 [ bl X0 Qi) P}

2
(2.4)
i =1,2. Then from the Girsanov Theorem we know that (W/),c[o,r] is an
Fi-B.M. under the probability measure Q° = Li-Q’, i = 1,2, respectively.

From (H2), for each i, we have a unique strong solution X* of the SDE
X{ =X, +/ o(s, X!\ )dWe, tel0,T]. (2.5)
0
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Case 1: Uniqueness in law of weak solutions

It is by now standard that 3 a meas. and non-anticipating function
®:[0,7] x R x C([0,T];R) — R not depending on i = 1,2, s.t.

X} = ®,(X}, WY, te[0,T], Q-as. (and, Q-as.), i=1,2. (2.6)

Then from (2.4) that W} = B} + fgg(s,Q.As(Xé,Wi), La)ds, i =1,2.
Hence, putting f(s, 0.ns) = b(s, ¢.ns, Q%) (5,9) € [0,T] x C([0,T];
R), from (2.4) and (2.6) we have

t
wi :Bt1+/ f(s,®06(X3, Wh))ds, te[0,T],
0
. t
w7 :Bt2+/ f(5,®.06(XE, W?))ds, te€][0,T],
0
where, t € [0, 77,

~ t '~ ~
B2 = B? +/0 (b(s,@.As(Xg, W2), Q%) — b(s, @.AS(Xg,WQ),Qﬁ(g))di.
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Case 1: Uniqueness in law of weak solutions

Hence, 3@ : [0,7] x R x C([0,T];R) — R meas. s.t., for both B!, B2,
Bl = &,(X}, W) and B? = &,(X2, W?), t €[0,T]. (2.8)

Now we define
dL} = —(b(s, D.s(X3, W?), Q%2) — b(s, ®.0s(X3, W), Q%)) L7dBE,

L3 =1.
(2.9)
From the Girsanov Theorem we know that B2 is an Brownian motion

under the probability measure @2 = EzTQQ. Moreover, putting
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Case 1: Uniqueness in law of weak solutions

I3 = exp{—/OTf(s, O po (X5, W2)dW? + ;/jf(s, O po( X5, W) Pds},
Q@ =17Q”

(2.10)
we have that (W?)icjo.7) is a B.M. under both Q? and Q?, while
(W})tefor] is a B.M. under Q.

On the other hand, since f is bounded and meas., we can prove that
3 a meas. function ® : R x C([0,T];R) = R, s.t.

@(Xé,W’):/ F(8, ®ps(X3, WH)AW!, Qi-as., i=1,2.
0
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Case 1: Uniqueness in law of weak solutions

Therefore, recalling the definition of LIT and (2.10), we have

T
Li= exp{—/ f(s, ®as( X3, WH)aW ! + /yf 5, ®ps( X3¢, W) 2ds),
0

_ T
T2 exp{_/ (5, D pa (X2, W2))dIV2 + 2/ (5, Bps (X2, TW2)) 2ds),
0 0
(2.11)
and we see that 3 a meas. function ® : R x C([0,T];R) — R, s.t.

Ly = (X3, Wh), Qas., and L2 = &(X2, W?), Q%*as. (and, Q*as.).
(2.12)
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Case 1: Uniqueness in law of weak solutions

Consequently, as Xé is fé—measurable, 1=1,2 and Qﬁ(l = Q§(2,
0 0
from (2.8), (2.10), (2.11) and (2.12) we have that, for all bounded
measurable function F': C([0, T]; R%)? — R,

Eq[F(B',Wh)] = E5 !

T 1 1 1
Ql[(/I\)(X(%,Wl)F((I)(XOaW )7W )]

R N P TR e 2 _ =9 1172
_ EQQ[E)(X%’WQ)F(@(XO,W ). W) = Eg,[F(B?, W?)).

That is,
Q%B%Wl) = Q?§2’W2)' (2.13)

Taking into account (2.6), we have

~

Q%Blywl,Xl) = Q?EQ,WQ,X2)’ (2]_4)

and, in particular, Qﬁ(l = QE(Q.
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Case 1: Uniqueness in law of weak solutions

On the other hand, we can prove

W1 (QY1, Q%2)? = Wi(Q%2, Q%2)* < C J5 p(W1(QY1, Q%2)?)dr

e The cosntinuifcy of s = W1(Q1, Q%)

Putting u(s) := Wl(Qﬁ(l,QE(z),ss € [6 T}, then we have from above,

u(s)? < C [; plu(r)?)dr, 0 <s <t <T.

From (H2)-(iii), f0+ m =400, it foIIows from Bihari's inequality that
u(s) =0, for any s € [0,T], that is, Qﬁ(l = Qg(z, s €[0,T]. Thus, from

(2.7) and (2.9) it follows that B2 = B2, L2 = 1, and, consequently,

Q = Q°. Then, Q Q(Bgng’xg), and from (2.14)

(B2,W2,X2)
Q%Bl,Wl,Xl) = Q%BQ,WQ,XQ)' (215)
This implies, in particular, Q%Bl,Xl) = Q?BQ’XQ). U
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© Case 2: The coefficients are bounded, continuous.
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Case 2: Preliminaries

Definition 3.1 (see, e.g., Karatzas, Shreve, 1988)

A probability P on (C([0,T];R), B(C(]0,T];R))) is a solution to the local
martingale problem associated with A’, if for every f € CY2([0, T|xR;R),

t
M = f(t,y(t))f(O,y(U))/O (0s+A) f(s,y(s))ds, t € [0,T], (3.1)

is a continuous local martingale w.r.t (FY, ﬁ) where y = (y(t))iecpo,1] is
the coordinate process on C([0,T];R), the considered filtration

FY = (F)icpo,r) is that generated by y = (y(t))cjo,7] and augmented by
all P-null sets, and A’ is defined by, y € C(]0, T]; R),

Af(5,9) = W5, 000 (5,(5)) + 5025, 0)R T (5,5(). (32)

v
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Case 2: Preliminaries

Let us first recall a well-known result concerning the equivalence
between the weak solution of a functional SDE and the solution to the

corresponding local martingale problem (see, e.g., Karatzas, Shreve, 1988).

Lemma 3.1

The existence of a weak solution (ﬁ,]?,ﬁ,lg, W,X) to the following
functional SDE with given initial distribution p on B(R):

t t N
X =¢ +/ b(s, X.rs)ds +/ o(s, X.ps)dWs, t € [0,T],
0 0

is equivalent to the existence of a solution P to the local martingale

problem (3.1) associated with A’ defined by (3.2), with ﬁy(o) = p. The
both solutions are related by P=PoX! ie., the probability measure P
is the law of the weak solution X on (C([0,T];R), B(C([0,T];R))).
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Case 2: Preliminaries

Recall the definition of the derivative of f : P2(R) — R w.r.t
probability measure 1 € P(R) (in the sense of P.L.Lions)(P.L.Lions’

lectures at College de France, also see the notes of Cardaliaguet).

Definition 3.2
(i) f: L*(Q, F, P;R) — R is Fréchet differentiable at ¢ € L2(2, F, P), if
3 a linear continuous mapping Df(€)(-) € L(L*(Q, F, P;R); R), s.t.
F(e+m)—=F(€) = DFE) @) + ollnlz2), with |z — 0 for

n € L?(Q, F, P).

(ii) f: P2(R) — R is differentiable at u € P(R), if for f(£) := f(Pe),

€ € L*(Q, F, P;R), there is some ¢ € L*(Q2, F, P;R) with P = u such

that f: L?(Q), F, P;R) — R is Fréchet differentiable in (.
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Case 2: Preliminaries

From Riesz’ Representation Theorem there exists a P-a.s. unique
variable ¥ € L2(Q, F, P;R) such that Df(¢)(n) = (¥,1).2 = E[dn), for
all n € L%(Q, F, P;R). P.L. Lions proved that there is a Borel function
h : R — R such that ¥ = h((), P-a.e., and function h depends on ¢ only
through its law P;. Therefore,

F(Pe) = f(P) = E[R(C) - (§ = )] +0(l§ = Clr2), € € LX(Q, F, PiR).

Definition 3.3

We call 0, f(P¢,y) := h(y), y € R, the derivative of function
f:Pa(R) 5 Rat P, ¢ € LXQ, F, P;R).

Remark: 0, f(P¢,y) is only P:(dy)-a.e. uniquely determined.

25 /44



Case 2: Preliminaries

Definition 3.4

We say that f € C1(Py(R)), if for all £ € L?(Q, F, P;R) there exists a
P¢-modification of 0, f(F, .), also denoted by 0, f(F%,.), such that

Ouf : P2(R) x R — R is continuous w.r.t the product topology generated

by the 2-Wasserstein metric over Po(R) and the Euclidean norm over R,

and we identify this modified function 0, f as the derivative of f.

The function f is said to belong to C;’I(PQ(R)), if f € CL(P2(R)) is s.t.
Ouf : P2(R) x R — R is bounded and Lipschitz continuous, i.e., there

exists some constant C' > 0 such that
(1) [0uf(p,2)| < C, u € Pa(R), z €R;
(11) |aﬂf(l'l’7'r)—auf(ﬂl7x/)’§0(w2(l’l’7 /.,L,>‘|'|€IJ—5E,|), 1y /’Lle P?(R)7 l‘)xle R.

v
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Case 2: Preliminaries

Definition 3.5
We say that f € C?(P2(R)), if f € CY(P2(R)) and 8,.f(i,.) : R = R is
differentiable, and its derivative 0,0, f : Po(R)xR—R ® R is continuous,

for every 1 € Pa(R).
Moreover, f € C'(Pa(R)), if f € C2(Pa(R)) N Cp " (Po(R)) and its
derivative 0,0, f : Po(R) x R - R ® R is bounded and Lipschitz-

continuous.

Remark: Cg’l(R x P2(R)), C’l 21([0, T)xRxP2(R); R) are similarly defined.
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Case 2: Preliminaries

Now we can give our Itd's formula.

Theorem 3.1

Let 0 = (0s), ¥ = (75), b = (bs), B = (Bs) R-valued adapted stochastic

processes, such that

(i) There exists a constant ¢ > 6 s.t. E[(fOT(]ors]q + |bs|9)ds)
(i) fy (1s® +1Bsl)ds < 400, P-ass.

Let F' € 02’2’1([O,T] x R x P2(R)). Then, for the Itd processes

3
q

] < 4o0;

t t
X, =X0+/ O'SdWS—i-/ beds, t € 0,T], Xo € L2(, Fo, P),
0 0

t t
Y, =Y, +/ YsdW +/ Bsds, t € [0,T], Yo € L*(Q, Fo, P),
0 0
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Case 2: Preliminaries

Theorem 3.1 (continued)

we have

F(tvy;‘/a PXg) - F(O,Yb, PXO)
t
1
— [ (0 Yo Px) + 8,F (1 P )6 + 50RF (Ve P o2
0

+ BOUE). Yo, P Ko+ 50(0,F) 1 i P X)) ) dr

t
+ / 8, F(r, Yo, Py, YyedWy, ¢ € [0,T).
0

Here (X,b,5) denotes an independent copy of (X, b, o), defined on a P.S.
(Q, F, P). The expectation E[-] on (Q, F, P) concerns only r.v. endowed

with the superscript ™.
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Case 2: Preliminaries

(H3) The coefficients (0,b) € 02’2’1([0,T] x R x P2(R); R x R).
Theorem 3.2 (Buckdahn, Li, Peng and Rainer, 2014)

Let & € C''(R x Po(R)), then under assumption (H3) the following PDE:

0= OV (1,2, 1) + BuV (1, W)z, ) + 52V (0,2, w)o>(z, 1)
+ [ @)t )b, ()

% /R 0y(0,V) (b, 11, y) o> (y, 1)l dy)

(t,2, 1) € [0,T) x R x Py(R);
V(T,z,p) = ®(z, 1), (x,u) €R X Pao(R).

has a unique classical solution V' (¢, z, 1) € C’;’2’1([O,T] X R x P2(R); R).

v
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Case 2: Existence of a weak solution

Let b and o satisfy the following assumption:
(H4) b,0 : [0,T] x R x Py(R) — R are continuous and bounded.

We want to study weak solution of the following mean-field SDE:

t t
Xt :£+/0 b(ststXs)ds/O G(S7X87QXs)sta le [07T]’ (33)

where ¢ € L*(Q, Fy, P;R) obeys a given distribution law Q¢ = v € P(R)
and (B¢)se(o,r) is @ B.M. under the probability measure Q.
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Case 2: Existence of a weak solution

Extension of the corresponding local martingale problem:

Definition 3.6

A probability measure P on (C([0,T];R), B(C([0,T]; R))) is a solution to
the local martingale problem (resp., martingale problem) associated with
A, if for every f € C12([0,T] x R;R) (resp., f € Cp([0,T] x R;R)), the

process

O (b, 1) 1= £t 9(8)) — £(0,4(0)) — /0 (B + Z)F) (5, y(s), p(s))ds,
(3.4)

is a continuous local (F¥, P)-martingale (resp., continuous (F¥, P)-

martingale),
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Case 2: Existence of a weak solution

Definition 3.6 (continued)

where p(t) = ﬁy(t) is the law of the coordinate process y = (y(t));c[o,7] ON
C([0,T];R) at time ¢, the filtration FY is that generated by y and
completed, and A is defined by

(“Zf)(svya V) = ayf(‘s?y)b(sayv V) + %ajf(&y)g2(37ya V)7 (35)

(s,y,v) € [0,T] X R x Po(R). Here ((8s + A)f)(s,y(s), u(s)) abbreviates

((0s + A) ) (5, y(): 1(5)) := (Ds1)(5,4(5)) + (AF) (5, y(5), u(s))-
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Case 2: Existence of a weak solution

Proposition 3.1
The existence of a weak solution (Q,]?,]BN’, Q, B, X) to equation (3.3) with
initial distribution v on B(R) is equivalent to the existence of a solution P

to the local martingale problem (3.4) associated with A defined by (3.5),

with ﬁy(o) = V.
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Case 2: Existence of a weak solution

Lemma 3.2
Let the probability measure P on (C([0, T];R), B(C([0, T]; R))) be a

solution to the local martingale problem associated with A. Then, for the

second order differential operator

(Af)(s,y,v) = (jf)(s,yw)+/R(auf)(s,y,V,Z)b(s,ZaV)V(dZ)

—i—% /R 0:(0uf)(s,y,v, z)aZ(s, z,v)v(dz),

(3.6)

v
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Case 2: Existence of a weak solution

Lemma 3.2 (continued)
applying to functions f € C12([0,7] x R x Py(R); R) we have that, for
every such f € C12([0,T] x R x P2(R);R), the process

C(t,y, 1) =f(t,y(t), u(t)) — £(0,5(0), u(0))

. (3.7)
_ /0 (@ + A) f(5,9(s), u(5))ds, ¢ € [0,T),

is a continuous local (FY, ﬁ)—martingale, where p(t) = ]Sy(t) is the law of
the coordinate process y = (y(t))ico,7] on C([0,T];R) at time ¢, the
filtration [F¥ is that generated by y and completed. Moreover, if
fGC;’Q’l([O,T]XRXPQ(R);R), this process Cf is an (F¥, P)-martingale.

v
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Case 2: Existence of a weak solution

Now we can give the main statement of this section.

Under assumption (H4) mean-field SDE (3.3) has a weak solution
(2, F.F,Q,B,X).

Remark 2. If b,o : [0,T] x C([0,T];R) x Po(C([0,T];R)) — R are

bounded and continuous, then the following mean-field SDE

t t
Xt = 6 +/ b(st-/\&QX,/\S)dS +/ 0(37X~/\87QX./\5)d357 te [OaT]7
0 0
(1.1)

where ¢ € L%(Q2, Fy, P) obeys a given distribution law Q¢ = v, has a weak

solution (Q,]?,IF,Q,X, B).
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Case 2: Uniqueness in law of weak solutions

Now we want to study the uniqueness in law for the weak solution of the

mean-field SDE (3.3).

Definition 3.7
We call C C bB(R) = {¢ | ¢ : R — R bounded Borel-measurable function}

a determining class on R, if for any two finite measures v and v, on

R), [ga ®(x)v1(dx) = [a ¢(x)rva(dz) for all ¢ € C implies vy = vy.

Remark: The class C§°(R) is a determining class on R.
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Case 2: Uniqueness in law of weak solutions

Theorem 3.4

For given f € C5°(R), we consider the Cauchy problem

0
&v(t,x, v) = Av(t,z,v), (t,z,v) € [0,T] x R x P2(R), (35)
v(0,z,v) = f(x), = € R,
where
Av(t,z,v) = (.Zv)(t,x,y)—i—/ﬂ{(@#v)(t,x,zx, w)b(t, u, v)v(du)
—i—éA@Z(aﬂv)(t,x,u,u)UQ(t,u, v)v(du),

(Av)(t, z,v) = Oyv(t, z,v)b(t, z,v) + %851}(75,3:, v)oi(t,z,v),

(t,z,v) € [0,00) x R x Pa(R).
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Case 2: Uniqueness in law of weak solutions

Theorem 3.4 (continued)

We suppose that, for all f € C§°(R), (3.8) has a solution
vy € Cy([0,00) X R x P2(R)) N Cp>"((0,00) x R x Py(R)). Then, the
local martingale problem associated with A (Recall Definition 3.6) and

with the initial condition d, has at most one solution.

Remark: Theorem 3.4 generalizes a well-known classical uniqueness for

weak solutions to the case of mean-field SDE.

Under the assumption of Theorem 3.4, we have for the mean-field SDE

(3.3) the uniqueness in law, that is, for any weak solutions, i = 1,2
(QF, F',F', Q', B, X%), of SDE (3.3), we have Q}, = Q%,.
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Uniqueness in law of weak solutions

Sketch of proof of Theorem 3.4: Let T' > 0, denote by y=(y(t)):c(o,7] the
coordinate process on C([0,7];R). Let P! and P? be two arbitrary

solutions of the local martingale problem associated with A and initial
condition = € R: P} =d;, 1 =1,2.
Consequently, due to Lemma 3.2, for any g € C’,}’z’l([O,T] x R x P2(R)),

t

OOt P} = . 9(0). o) =9(0.2.6)= [ (00 A)gls. (). Pl ).
(3.9)

is a Pl-martingale, | = 1,2, t € [0,7]. For given f € C§°(R), let

vy € Cp([0,T] x R x Pa(R)) ﬂCl 21((0,T) x R x Py(R)) be a solution of

the Cauchy problem (3.8).
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Uniqueness in law of weak solutions

Then putting g(t, z,v) == vf(T—t,2,v), t € [0,T], z € R, v € P2(R),
defines a function g of class
Cy([0,T] x R x Po(R)) N Cp>((0,T) x R x Po(R)) which satisfies

0s9(s, z,v)+Ag(s,z,v) =0, g(T,z,v)= f(2), (s,2,v)€[0, T]xRxPy(R).

From (3.9) we see that {C’g(s,y,Pé),s €[0,T]} is an (FY, P!)-
martingale. Hence, for E'[-] = [,(-)dP’,

El[f(y(T))] = El[g(Tvy(T)7ng(T))] = g(O,x,dw), U Rv [ = 1727

that is E1[f(y(T))] = E*[f(y(T))], for all f € C§°(R). Combining this

with the arbitrariness of T > 0, we have that Pyl(t) = p?

()" for every t > 0.
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Uniqueness in law of weak solutions

Consequently, P!, P2 are solutions of the same classical martingale
)

problem, associated with A= /Tl, [=1,2,
Ap(t,2) = Oyo(t, 2)b'(t, 2) + 020(t, 2)(5'(t, 2))2, ¢ € CH2([0,T) x R; R),
with the coefficients 5! = 52, b! = b2 (without mean field term),

F(t,z) = o(t, 2, Ply), B (t,2) =b(t, 2, Phyy), (t,2) € [0,T] x R,

1 _ p2
and we have seen that P, = P, t € [0,T].

~ Pl = P2 je. thelocal martingale problem has at most one solution. [J
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Thank you very much!
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