Exponential Ergodicity in a Sobolev Space

Applications to Reinforcement Learning, and ...

A. M. Devraj, |. Kontoyiannis and S. Meyn

Laboratory for Cognition & Control in Complex Systems
University of Florida, Gainesville

PDE and Probability Methods for Interactions
March 30-31, 2017

Thanks to NSF

1/16



Outline

@ Differential Exponential Ergodicity

© Value Function Approximation

© Conclusions

2/16



Goals

Markov process X on state space X = Rf
Transition semigroup: fort >0, x € X, A € B,

P'(x,A) := P.{X(t) € A} :=Pr{X(t) € A| X(0) = 2}

Operator notation: for f : X — R, signed measure v on (X, B):

Pif(z) = / £(y) P (z dy)

vP'(A) = /I/(d$)Pt(az,A)

Generator D (= P — I in discrete time)
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Goals

Markov process on X = R? (continuous or discrete time)
Generator D (= P — I in discrete time)

Compute or bound solution h: X — C
@ Eigenfunction: Dh = A\h

@ Poisson eqn: Dh = —¢ [appl. to simulation and control]
© Dirichlet+: Dh = G(h, Vh) [appl. to simulation and control]
Q lts gradient K = Vh [appl. to nonlinear filtering — Mehta & M.]

Approach: New operator norm for spectral theory.
Stick to discrete time here
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Differential Exponential Ergodicity

Notation and Assumptions

Operator notation for geometric ergodicity (M&T and K&M):
v: X — [1,00) continuous “weighting function”.
For f: X = R,
s ()]
HfH”U T Sl;p v(az) .

Corresponding Banach space:

L :={f: X=>R:|f|l, < oo}
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Differential Exponential Ergodicity

Notation and Assumptions

Operator notation for geometric ergodicity (M&T and K&M):

v: X — [1,00) continuous “weighting function”.
For f: X — R,
|f ()]

| fllo == Sup @)

Corresponding Banach space:

Ly ={f: X=>R:|fll, < oo}

Geometric ergodicity: There is by < 00, gg < 1 such that

IPYl, <boph, t>0; P =P —-1lox.

<= spectral gap in LY,
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Differential Exponential Ergodicity

Notation and Assumptions

1l := sup, | f(z)|/v(x)

New norm

[ f 1o = max 10% flo,

|a| <k

DA
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Differential Exponential Ergodicity

Notation and Assumptions
[ fllv == sup, | f(z)|/v(x)

New norm: || fllyx = m|zi)l§ 10 flvs E>1

New Banach spaces:
LYY = {f € L% : f is continuous}
Lo ={g: X = R:0%f € L2 for all |a| < k}

Induced operator norm, for any kernel P,

Ph
120, 5 == sup{ 1PRlluss L%F ]y g # o}.

1Pl
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New norm: || fllyx = m|zi)l§ 10 flvs E>1

New Banach spaces:
LYY = {f € L% : f is continuous}
Lo ={g: X = R:0%f € L2 for all |a| < k}

Induced operator norm, for any kernel P,

Ph
120, 5 == sup{ 1PRlluss L%F ]y g # o}.

1Pl

We will stick to k = 1:
Il = max{ £, 10 F s - 16" §
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Differential Exponential Ergodicity

Notation and Assumptions

Markovian system dynamics

X(t+1) = a(X(t), N(t+1)),

teZ, Niid
P(z,A) =P(a(z,N(1)) € A)

7/16



Differential Exponential Ergodicity

Notation and Assumptions

Markovian system dynamics
X(t+1)=a(X(t),N({t+1)), te€Zy Niid.
P(z,A) =P(a(z,N(1)) € A)

Al Smooth dynamics: a : R*™ — R% is C! and Lipschitz in
A2 Densities: For some tg > 1 and C! function py,,

Pto(a:,A):/pto(x,y)dy, reEX, AeB
A

A3 1-irreducibility: for some g € X,
P'(z,0) >0 all t = t, > 0 sufficiently large, each nbd O of xg
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Differential Exponential Ergodicity

Notation and Assumptions

Markovian system dynamics

X(t+1)=a(X(t),N(t+1)), teZy Niid
P(z,A) =P(a(z,N(1)) € A)

Al Smooth dynamics: a : R*™ — R% is C! and Lipschitz in
A2 Densities: For some tg > 1 and C! function py,,

Pto(a:,A):/Apto(x,y)dy, reEX, AeB
A3 1-irreducibility: for some xg € X,
P'(z,0) >0 all t = t, > 0 sufficiently large, each nbd O of xg
A4 Donsker-Varadhan drift condition:
H(V) :=log(Pe") =V < —6W + blg, (DV3)
V =log(v) and W e L% coercive, C' compact. [K&M, L. Wu]
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- ) g . ’U,l
Main Result: Separability in LY
Al Smooth dynamics
A2 Densities
A3 -irreducibility
A4 Donsker-Varadhan drift condition:
H(V) < —6W + bl . (DV3)

Theorem: Separability in Ly

The kernel P! is separable in L% for some ¢1 and all ¢ > #1:

n
P!~ E Sk ® Vg, approximation in L&l
k=1
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Differential Exponential Ergodicity

Main Result: Separability in Lg;}

Theorem: Separability in Lt

The kernel Pt is separable in ngl for some ¢ and all ¢t > ¢1:

n

Pt~ Z Sk ® v, approximation in L¥:!
k=1

Corollaries: Discrete spectrum and ... there is by < co and gg < 1 s.t.
|||Pt|”1),1 S bOQéa t Z tl-

Interpretation: for f € L%, P'f(z) — n(f), &P'f(z)— 0,
uniform geometric convergence rate.

Proof: Truncation of P! to compact domain, as in [K&M 200X];
Spectrum .1 (P*) C Spectrum, (P*)
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Differential Exponential Ergodicity

Connection with Lyapunov Exponents

Remains a mystery

Sensitivity process: S'(t) = %@X(t)

S(t+1) = A(t + 1)S(8),
where A'(t) :=V,a (X(t — 1), N(t)).

9/16



Differential Exponential Ergodicity

Connection with Lyapunov Exponents

Remains a mystery

Sensitivity process: S'(t) = 8)?(0)X(t)

S(t+1) = Alt + 1)S(t)

where A'(t) :=Va (XEt —1),N(t)).

1
Lyapunov exponents: A = lim —log ||S(¢)|| a.s.
t—oo t

1
— 15 _ p
Ay = lim ~ logE[S(1)

Gradient representation:

VP =Q'V

Q'g(x) :=E.[ST(t)g(X(1))], g¢=Ve
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Value Function Approximation

Discounted cost value function

Cost function: ¢: R* 5 R
Discount factor: o < 1

Value function: Za Elc )) | X(0) = z]
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Value Function Approximation

Discounted cost value function

Cost function: ¢: R* 5 R
Discount factor: o < 1

Value function: Za Elc ) | X(0) = ]

Goal of TD learning: Approximate h,, in parameterized class {hY : 6 € R}
Goal of V-TD learning: (new)

0* = argmin E[||[ VRS (X) — Vho(X)|?], X~
0

Example: affine parameterization,
ho (x +29¢J ¥ R 5 R
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Value Function Approximation

Discounted cost value function

Value function:  hq(z) = i QE[e(X () | X(0) = 2]
=0

Goal of V-TD learning: 0* = argmin E;[|| VA% (X) — Vha(X)|?]
0

Recover missing constant:
ho(x) = 07(x) + w(6)
k(0) = =077 () + m(c)/(1 — o)

= 7(hg) =n(ha) = 7(c)/(1 — @)
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Value Function Approximation

Gradient Representation

Goal of V-TD learning:

0* = argmin E[||[ VA (X) — Vho(X)|J?], X~
0
Representation:

o)
Vha(z) = Z o'V Pe(x)
t=0
=  Vhy=Q,Vec:= ZatQth(x)
=0

= 'E[ST(H)Ve(X (1) | X(0) = z]
t=0
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Adjoint Representation of 6*
Goal of V-TD learning:
0" = argmin E[||[ VA (X) — Vho (X)|)], X~
0

Solution:
0* = M~1b

M = E-[(VY(X)) V(X))
b= Ex[(VY(X)) Vha(X)]
Vho = Q,Ve
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Adjoint Representation of 6*
Goal of V-TD learning:
0" = argmin E[||[ VA (X) — Vho (X)|)], X~
0

Solution:
0* = M~1b
M = Ex[(VY(X)) VY (X)]
b= E-[(VY(X)) Vha(X)]
Vho = Q,Ve

Adjoint gives causal representation:
bi = (0", Q. Ve)
= (20", Ve)
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Adjoint Representation of 6*
Goal of V-TD learning:
0* = arg min E[|| VA (X) — Vhao(X)||%],
0

Solution:
0* = M~1b
M = E; [(V§(X)) Vi (X)]
b= Ex[(Vi(X)) Vha(X)]
Vhe = Q,Ve

Adjoint gives causal representation:
= @W, Qavc>

= (L"), Ve) = Exlp(t) V(X (#))],

Za (1+t—kA2+t—k)--- A V(X (t —

k),

teZ
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Value Function Approximation

Differential Least Squares Temporal Difference Algorithm

V-LSTD algorithm
o(t) = aA(t)p(t — 1) + V(X (1))
Ye)b(t — 1) +yep(t) "Ve(X (1))

b(t) = (1 =)
M(t) = (1 = y)M(t — 1) + % V(X (1) V(X (t)"
O(t) = M~ (t)b(t)
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Differential Least Squares Temporal Difference Algorithm

V-LSTD algorithm

p(t) = aA’(t)p(t — 1) + V(X (1))
Ye)b(t — 1) + () Ve(X (1))

b(t) = (1 -
M(t) = (1 = y)M(t — 1) + % V(X (1) V(X (t)"
O(t) = M~ (t)b(t)

Algorithm is amazing:

60 60
mm V-LSTD
50 50 == TD-K(0)
40 40
30 30
20 20
10 10
1 15 2 25 6 12 14 16 18 2 22 24 O
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Conclusions
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New Banach space for Markov processes is just right for our goals:
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Gaps:

Relationship with Lyapunov exponents remains a mystery.
Needed for a firmer theory for the V-LSTD algorithm.
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Dh = G(h, Vh)

Relationship with Lyapunov exponents remains a mystery.
Needed for a firmer theory for the V-LSTD algorithm.

Bellman Error Ep(x)

~.

0 12 14 16 18 20T

Thank you!

LSTD

s—= T =10°
== T =10
e T=10°

TD-K(0)

. T=10°

---- T=10*

T=10°

V-LSTD

— T =10°
T =10"
T=10°
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