Exponential Ergodicity in a Sobolev Space

Applications to Reinforcement Learning, and ...

A. M. Devraj, I. Kontoyiannis and S. Meyn

Laboratory for Cognition \& Control in Complex Systems University of Florida, Gainesville

PDE and Probability Methods for Interactions

March 30-31, 2017
Thanks to NSF

Outline

(1) Differential Exponential Ergodicity
(2) Value Function Approximation
(3) Conclusions

Goals

Markov process \boldsymbol{X} on state space $\mathrm{X}=\mathbb{R}^{\ell}$ Transition semigroup: for $t \geq 0, x \in \mathrm{X}, A \in \mathcal{B}$,

$$
P^{t}(x, A):=\mathrm{P}_{x}\{X(t) \in A\}:=\operatorname{Pr}\{X(t) \in A \mid X(0)=x\}
$$

Operator notation: for $f: \mathrm{X} \rightarrow \mathbb{R}$, signed measure ν on $(\mathrm{X}, \mathcal{B})$:

$$
\begin{aligned}
P^{t} f(x) & =\int f(y) P^{t}(x, d y) \\
\nu P^{t}(A) & =\int \nu(d x) P^{t}(x, A)
\end{aligned}
$$

Generator $\mathcal{D} \quad(=P-I$ in discrete time)

Goals

Markov process on $X=\mathbb{R}^{\ell}$ (continuous or discrete time) Generator $\mathcal{D} \quad(=P-I$ in discrete time)

Goals

Markov process on $X=\mathbb{R}^{\ell}$ (continuous or discrete time) Generator $\mathcal{D} \quad(=P-I$ in discrete time)

Compute or bound solution $h: \mathrm{X} \rightarrow \mathbb{C}$
(1) Eigenfunction: $\mathcal{D} h=\lambda h$

Goals

Markov process on $\mathrm{X}=\mathbb{R}^{\ell}$ (continuous or discrete time) Generator $\mathcal{D} \quad(=P-I$ in discrete time)

Compute or bound solution $h: \mathrm{X} \rightarrow \mathbb{C}$
(1) Eigenfunction: $\mathcal{D} h=\lambda h$
(2) Poisson eqn: $\mathcal{D} h=-\tilde{c}$
[appl. to simulation and control]
(3) Dirichlet+: $\mathcal{D} h=\mathcal{G}(h, \nabla h)$

Goals

Markov process on $\mathrm{X}=\mathbb{R}^{\ell}$ (continuous or discrete time) Generator $\mathcal{D} \quad(=P-I$ in discrete time)

Compute or bound solution $h: \mathrm{X} \rightarrow \mathbb{C}$
(1) Eigenfunction: $\mathcal{D} h=\lambda h$
(2) Poisson eqn: $\mathcal{D} h=-\tilde{c}$ [appl. to simulation and control]
(3) Dirichlet+: $\mathcal{D} h=\mathcal{G}(h, \nabla h) \quad$ [appl. to simulation and control]
(9) Its gradient $K=\nabla h \quad$ [appl. to nonlinear filtering - Mehta \& M.]

Goals

Markov process on $\mathrm{X}=\mathbb{R}^{\ell}$ (continuous or discrete time) Generator $\mathcal{D} \quad(=P-I$ in discrete time)

Compute or bound solution $h: \mathrm{X} \rightarrow \mathbb{C}$
(1) Eigenfunction: $\mathcal{D} h=\lambda h$
(2) Poisson eqn: $\mathcal{D} h=-\tilde{c} \quad$ [appl. to simulation and control]
(3) Dirichlet+: $\mathcal{D} h=\mathcal{G}(h, \nabla h) \quad$ [appl. to simulation and control]
(9) Its gradient $K=\nabla h \quad$ [appl. to nonlinear filtering - Mehta \& M.]

Approach: New operator norm for spectral theory.
Stick to discrete time here

Notation and Assumptions

Operator notation for geometric ergodicity (M\&T and K\&M): $v: \mathrm{X} \rightarrow[1, \infty)$ continuous "weighting function".
For $f: \mathrm{X} \rightarrow \mathbb{R}$,

$$
\|f\|_{v}:=\sup _{x} \frac{|f(x)|}{v(x)} .
$$

Corresponding Banach space:

$$
L_{\infty}^{v}:=\left\{f: \mathrm{X} \rightarrow \mathbb{R}:\|f\|_{v}<\infty\right\}
$$

Notation and Assumptions

Operator notation for geometric ergodicity (M\&T and K\&M): $v: \mathrm{X} \rightarrow[1, \infty)$ continuous "weighting function".
For $f: \mathrm{X} \rightarrow \mathbb{R}$,

$$
\|f\|_{v}:=\sup _{x} \frac{|f(x)|}{v(x)} .
$$

Corresponding Banach space:

$$
L_{\infty}^{v}:=\left\{f: \mathrm{X} \rightarrow \mathbb{R}:\|f\|_{v}<\infty\right\}
$$

Geometric ergodicity: There is $b_{0}<\infty, \varrho_{0}<1$ such that

$$
\left\|\widetilde{P}^{t}\right\|_{v} \leq b_{0} \rho_{0}^{t}, \quad t \geq 0 ; \quad \widetilde{P}^{t}=P^{t}-\mathbf{1} \otimes \pi
$$

\Longleftrightarrow spectral gap in L_{∞}^{v}

Notation and Assumptions

$\|f\|_{v}:=\sup _{x}|f(x)| / v(x)$

New norm: $\quad\|f\|_{v, k}=\max _{|\alpha| \leq k}\left\|\partial^{\alpha} f\right\|_{v}, \quad k \geq 1$

Notation and Assumptions

$\|f\|_{v}:=\sup _{x}|f(x)| / v(x)$

$$
\text { New norm: } \quad\|f\|_{v, k}=\max _{|\alpha| \leq k}\left\|\partial^{\alpha} f\right\|_{v}, \quad k \geq 1
$$

New Banach spaces:

$$
\begin{aligned}
& L_{\infty}^{v, 0}=\left\{f \in L_{\infty}^{v}: f \text { is continuous }\right\} \\
& L_{\infty}^{v, k}=\left\{g: X \rightarrow \mathbb{R}: \partial^{\alpha} f \in L_{\infty}^{v, 0} \text { for all }|\alpha| \leq k\right\}
\end{aligned}
$$

Induced operator norm, for any kernel \widehat{P},

$$
\|\widehat{P}\|_{v, k}:=\sup \left\{\frac{\|\widehat{P} h\|_{v, k}}{\|h\|_{v, k}}: h \in L_{\infty}^{v, k},\|h\|_{v, k} \neq 0\right\}
$$

Notation and Assumptions

$\|f\|_{v}:=\sup _{x}|f(x)| / v(x)$

$$
\text { New norm: } \quad\|f\|_{v, k}=\max _{|\alpha| \leq k}\left\|\partial^{\alpha} f\right\|_{v}, \quad k \geq 1
$$

New Banach spaces:

$$
\begin{aligned}
& L_{\infty}^{v, 0}=\left\{f \in L_{\infty}^{v}: f \text { is continuous }\right\} \\
& L_{\infty}^{v, k}=\left\{g: X \rightarrow \mathbb{R}: \partial^{\alpha} f \in L_{\infty}^{v, 0} \text { for all }|\alpha| \leq k\right\}
\end{aligned}
$$

Induced operator norm, for any kernel \widehat{P},

$$
\|\widehat{P}\|_{v, k}:=\sup \left\{\frac{\|\widehat{P} h\|_{v, k}}{\|h\|_{v, k}}: h \in L_{\infty}^{v, k},\|h\|_{v, k} \neq 0\right\}
$$

We will stick to $k=1$:

$$
\|f\|_{v, 1}=\max \left\{\|f\|_{v},\left\|\partial^{1} f\right\|_{v}, \ldots,\left\|\partial^{\ell} f\right\|_{v}\right\}
$$

Notation and Assumptions

Markovian system dynamics

$$
\begin{aligned}
X(t+1) & =a(X(t), N(t+1)), \quad t \in \mathbb{Z}_{+}, \boldsymbol{N} \text { i.i.d. } \\
P(x, A) & =\mathrm{P}(a(x, N(1)) \in A)
\end{aligned}
$$

Notation and Assumptions

Markovian system dynamics

$$
\begin{aligned}
X(t+1) & =a(X(t), N(t+1)), \quad t \in \mathbb{Z}_{+}, \boldsymbol{N} \text { i.i.d. } \\
P(x, A) & =\mathrm{P}(a(x, N(1)) \in A)
\end{aligned}
$$

A1 Smooth dynamics: $a: \mathbb{R}^{d \times m} \rightarrow \mathbb{R}^{d}$ is C^{1} and Lipschitz in x A2 Densities: For some $t_{0} \geq 1$ and C^{1} function $p_{t_{0}}$,

$$
P^{t_{0}}(x, A)=\int_{A} p_{t_{0}}(x, y) d y, \quad x \in \mathrm{X}, A \in \mathcal{B}
$$

A3 ψ-irreducibility: for some $x_{0} \in \mathrm{X}$,

$$
P^{t}(x, O)>0 \quad \text { all } t=t_{x} \geq 0 \text { sufficiently large, each nbd } O \text { of } x_{0}
$$

Notation and Assumptions

Markovian system dynamics

$$
\begin{aligned}
X(t+1) & =a(X(t), N(t+1)), \quad t \in \mathbb{Z}_{+}, \boldsymbol{N} \text { i.i.d. } \\
P(x, A) & =\mathrm{P}(a(x, N(1)) \in A)
\end{aligned}
$$

A1 Smooth dynamics: $a: \mathbb{R}^{d \times m} \rightarrow \mathbb{R}^{d}$ is C^{1} and Lipschitz in x A2 Densities: For some $t_{0} \geq 1$ and C^{1} function $p_{t_{0}}$,

$$
P^{t_{0}}(x, A)=\int_{A} p_{t_{0}}(x, y) d y, \quad x \in \mathrm{X}, A \in \mathcal{B}
$$

A3 ψ-irreducibility: for some $x_{0} \in \mathrm{X}$,

$$
P^{t}(x, O)>0 \quad \text { all } t=t_{x} \geq 0 \text { sufficiently large, each nbd } O \text { of } x_{0}
$$

A4 Donsker-Varadhan drift condition:

$$
\begin{equation*}
\mathcal{H}(V):=\log \left(P e^{V}\right)-V \leq-\delta W+b \mathbb{I}_{C} \tag{DV3}
\end{equation*}
$$

$V=\log (v)$ and $W \in L_{\infty}^{v, 0}$ coercive, C compact. $\quad[K \& M, \mathrm{~L} . \mathrm{Wu}]$

Main Result: Separability in $L_{\infty}^{v, 1}$

A1 Smooth dynamics
A2 Densities
A3 ψ-irreducibility
A4 Donsker-Varadhan drift condition:

$$
\begin{equation*}
\mathcal{H}(V) \leq-\delta W+b \mathbb{I}_{C} \tag{DV3}
\end{equation*}
$$

Theorem: Separability in $L_{\infty}^{v, 1}$
The kernel P^{t} is separable in $L_{\infty}^{v, 1}$ for some t_{1} and all $t \geq t_{1}$:

$$
P^{t} \approx \sum_{k=1}^{n} s_{k} \otimes \nu_{k}, \quad \text { approximation in } L_{\infty}^{v, 1}
$$

Main Result: Separability in $L_{\infty}^{v, 1}$

Theorem: Separability in $L_{\infty}^{v, 1}$
The kernel P^{t} is separable in $L_{\infty}^{v, 1}$ for some t_{1} and all $t \geq t_{1}$:

$$
P^{t} \approx \sum_{k=1}^{n} s_{k} \otimes \nu_{k}, \quad \text { approximation in } L_{\infty}^{v, 1}
$$

Corollaries: Discrete spectrum and \ldots there is $b_{0}<\infty$ and $\varrho_{0}<1$ s.t.

$$
\left\|\widetilde{P}^{t}\right\|_{v, 1} \leq b_{0} \varrho_{0}^{t}, \quad t \geq t_{1}
$$

Main Result: Separability in $L_{\infty}^{v, 1}$

Theorem: Separability in $L_{\infty}^{v, 1}$
The kernel P^{t} is separable in $L_{\infty}^{v, 1}$ for some t_{1} and all $t \geq t_{1}$:

$$
P^{t} \approx \sum_{k=1}^{n} s_{k} \otimes \nu_{k}, \quad \text { approximation in } L_{\infty}^{v, 1}
$$

Corollaries: Discrete spectrum and \ldots there is $b_{0}<\infty$ and $\varrho_{0}<1$ s.t.

$$
\left\|\widetilde{P}^{t}\right\|_{v, 1} \leq b_{0} \varrho_{0}^{t}, \quad t \geq t_{1}
$$

Interpretation: for $f \in L_{\infty}^{v, 1}, \quad P^{t} f(x) \rightarrow \pi(f), \quad \partial^{i} P^{t} f(x) \rightarrow 0$, uniform geometric convergence rate.

Proof: Truncation of $P^{t_{1}}$ to compact domain, as in [K\&M 200X]; $\operatorname{Spectrum}_{L_{\infty}^{v, 1}}\left(P^{t}\right) \subseteq$ Spectrum $_{L_{\infty}^{v}}\left(P^{t}\right)$

Connection with Lyapunov Exponents

Remains a mystery
Sensitivity process: $\quad \mathcal{S}^{\top}(t)=\frac{\partial}{\partial X(0)} X(t)$

$$
\begin{aligned}
& \mathcal{S}(t+1)=\mathcal{A}(t+1) \mathcal{S}(t), \quad \mathcal{S}(0)=I \\
& \text { where } \mathcal{A}^{\top}(t):=\nabla_{x} a(X(t-1), N(t)) .
\end{aligned}
$$

Connection with Lyapunov Exponents

Remains a mystery

Sensitivity process: $\quad \mathcal{S}^{T}(t)=\frac{\partial}{\partial X(0)} X(t)$

$$
\begin{aligned}
& \mathcal{S}(t+1)=\mathcal{A}(t+1) \mathcal{S}(t), \quad \mathcal{S}(0)=I \\
& \text { where } \mathcal{A}^{T}(t):=\nabla_{x} a(X(t-1), N(t)) .
\end{aligned}
$$

Lyapunov exponents: $\quad \Lambda=\lim _{t \rightarrow \infty} \frac{1}{t} \log \|\mathcal{S}(t)\| \quad$ a.s.

$$
\Lambda_{p}=\lim _{t \rightarrow \infty} \frac{1}{t} \log \mathrm{E}\left[\|\mathcal{S}(t)\|^{p}\right]
$$

Gradient representation:

$$
\begin{gathered}
\nabla P^{t}=Q^{t} \nabla \\
Q^{t} g(x):=\mathrm{E}_{x}\left[\mathcal{S}^{T}(t) g(X(t))\right], \quad g=\nabla c .
\end{gathered}
$$

Discounted cost value function

Cost function: $c: \mathbb{R}^{d} \rightarrow \mathbb{R}$
Discount factor: $\alpha<1$
Value function: $\quad h_{\alpha}(x)=\sum_{t=0}^{\infty} \alpha^{t} \mathrm{E}[c(X(t)) \mid X(0)=x]$

Discounted cost value function

Cost function: $c: \mathbb{R}^{d} \rightarrow \mathbb{R}$
Discount factor: $\alpha<1$
Value function: $\quad h_{\alpha}(x)=\sum_{t=0}^{\infty} \alpha^{t} \mathrm{E}[c(X(t)) \mid X(0)=x]$
Goal of TD learning: Approximate h_{α} in parameterized class $\left\{h_{\alpha}^{\theta}: \theta \in \mathbb{R}^{\ell}\right\}$

Discounted cost value function

Cost function: $c: \mathbb{R}^{d} \rightarrow \mathbb{R}$
Discount factor: $\alpha<1$
Value function: $\quad h_{\alpha}(x)=\sum_{t=0}^{\infty} \alpha^{t} \mathrm{E}[c(X(t)) \mid X(0)=x]$
Goal of TD learning: Approximate h_{α} in parameterized class $\left\{h_{\alpha}^{\theta}: \theta \in \mathbb{R}^{\ell}\right\}$ Goal of ∇-TD learning: (new)

$$
\theta^{*}=\underset{\theta}{\arg \min } \mathrm{E}\left[\left\|\nabla h_{\alpha}^{\theta}(X)-\nabla h_{\alpha}(X)\right\|^{2}\right], \quad X \sim \pi
$$

Discounted cost value function

Cost function: $c: \mathbb{R}^{d} \rightarrow \mathbb{R}$
Discount factor: $\alpha<1$
Value function: $\quad h_{\alpha}(x)=\sum_{t=0}^{\infty} \alpha^{t} \mathrm{E}[c(X(t)) \mid X(0)=x]$
Goal of TD learning: Approximate h_{α} in parameterized class $\left\{h_{\alpha}^{\theta}: \theta \in \mathbb{R}^{\ell}\right\}$ Goal of ∇-TD learning: (new)

$$
\theta^{*}=\underset{\theta}{\arg \min } \mathrm{E}\left[\left\|\nabla h_{\alpha}^{\theta}(X)-\nabla h_{\alpha}(X)\right\|^{2}\right], \quad X \sim \pi
$$

Example: affine parameterization,

$$
h_{\alpha}^{\theta}(x)=\kappa(\theta)+\sum_{j=1}^{\ell} \theta_{j} \psi_{j}(x), \quad \psi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{\ell}
$$

Discounted cost value function

Value function: $\quad h_{\alpha}(x)=\sum_{t=0}^{\infty} \alpha^{t} \mathrm{E}[c(X(t)) \mid X(0)=x]$
Goal of ∇-TD learning: $\quad \theta^{*}=\underset{\theta}{\arg \min } \mathrm{E}_{\pi}\left[\left\|\nabla h_{\alpha}^{\theta}(X)-\nabla h_{\alpha}(X)\right\|^{2}\right]$
Recover missing constant:

$$
\begin{aligned}
h_{\alpha}^{\theta}(x) & =\theta^{\top} \psi(x)+\kappa(\theta) \\
\kappa(\theta) & =-\theta^{T} \pi(\psi)+\pi(c) /(1-\alpha) \\
\Longrightarrow \quad \pi\left(h_{\alpha}^{\theta}\right) & =\pi\left(h_{\alpha}\right)=\pi(c) /(1-\alpha)
\end{aligned}
$$

Gradient Representation

Goal of ∇-TD learning:

$$
\theta^{*}=\underset{\theta}{\arg \min } \mathrm{E}\left[\left\|\nabla h_{\alpha}^{\theta}(X)-\nabla h_{\alpha}(X)\right\|^{2}\right], \quad X \sim \pi
$$

Representation:

$$
\begin{aligned}
\nabla h_{\alpha}(x) & =\sum_{t=0}^{\infty} \alpha^{t} \nabla P^{t} c(x) \\
\Longrightarrow \quad \nabla h_{\alpha} & =\Omega_{\alpha} \nabla c:=\sum_{t=0}^{\infty} \alpha^{t} Q^{t} \nabla c(x) \\
& =\sum_{t=0}^{\infty} \alpha^{t} \mathrm{E}\left[\mathcal{S}^{T}(t) \nabla c(X(t)) \mid X(0)=x\right]
\end{aligned}
$$

Adjoint Representation of θ^{*}

Goal of ∇-TD learning:

$$
\theta^{*}=\underset{\theta}{\arg \min } \mathrm{E}\left[\left\|\nabla h_{\alpha}^{\theta}(X)-\nabla h_{\alpha}(X)\right\|^{2}\right], \quad X \sim \pi
$$

Solution:

$$
\begin{aligned}
\theta^{*} & =M^{-1} b \\
M & =\mathrm{E}_{\pi}\left[(\nabla \psi(X))^{T} \nabla \psi(X)\right] \\
b & =\mathrm{E}_{\pi}\left[(\nabla \psi(X))^{T} \nabla h_{\alpha}(X)\right] \\
& \quad \nabla h_{\alpha}=\Omega_{\alpha} \nabla c
\end{aligned}
$$

Adjoint Representation of θ^{*}

Goal of ∇-TD learning:

$$
\theta^{*}=\underset{\theta}{\arg \min } \mathrm{E}\left[\left\|\nabla h_{\alpha}^{\theta}(X)-\nabla h_{\alpha}(X)\right\|^{2}\right], \quad X \sim \pi
$$

Solution:

$$
\begin{aligned}
\theta^{*} & =M^{-1} b \\
M & =\mathrm{E}_{\pi}\left[(\nabla \psi(X))^{T} \nabla \psi(X)\right] \\
b & =\mathrm{E}_{\pi}\left[(\nabla \psi(X))^{T} \nabla h_{\alpha}(X)\right] \\
& \quad \nabla h_{\alpha}=\Omega_{\alpha} \nabla c
\end{aligned}
$$

Adjoint gives causal representation:

$$
\begin{aligned}
b_{i} & =\left\langle\partial^{i} \psi, \Omega_{\alpha} \nabla c\right\rangle \\
& =\left\langle\Omega_{\alpha}^{\dagger} \partial^{i} \psi, \nabla c\right\rangle
\end{aligned}
$$

Adjoint Representation of θ^{*}

Goal of ∇-TD learning:

$$
\theta^{*}=\underset{\theta}{\arg \min } \mathrm{E}\left[\left\|\nabla h_{\alpha}^{\theta}(X)-\nabla h_{\alpha}(X)\right\|^{2}\right], \quad X \sim \pi
$$

Solution:

$$
\begin{aligned}
\theta^{*} & =M^{-1} b \\
M & =\mathrm{E}_{\pi}\left[(\nabla \psi(X))^{T} \nabla \psi(X)\right] \\
b & =\mathrm{E}_{\pi}\left[(\nabla \psi(X))^{T} \nabla h_{\alpha}(X)\right] \\
& \quad \nabla h_{\alpha}=\Omega_{\alpha} \nabla c
\end{aligned}
$$

Adjoint gives causal representation:

$$
\begin{gathered}
b_{i}=\left\langle\partial^{i} \psi, \Omega_{\alpha} \nabla c\right\rangle \\
=\left\langle\Omega_{\alpha}^{\dagger} \partial^{i} \psi, \nabla c\right\rangle=\mathrm{E}_{\pi}\left[\varphi(t)^{T} \nabla c(X(t))\right] \\
\varphi(t)=\sum_{k=0}^{\infty} \alpha^{k}[\mathcal{A}(1+t-k) \mathcal{A}(2+t-k) \cdots \mathcal{A}(t)]^{T} \nabla \psi(X(t-k)), \quad t \in \mathbb{Z}
\end{gathered}
$$

Differential Least Squares Temporal Difference Algorithm

∇-LSTD algorithm

$$
\begin{aligned}
\varphi(t) & =\alpha \mathcal{A}^{T}(t) \varphi(t-1)+\nabla \psi(X(t)) \\
b(t) & =\left(1-\gamma_{t}\right) b(t-1)+\gamma_{t} \varphi(t)^{T} \nabla c(X(t)) \\
M(t) & =\left(1-\gamma_{t}\right) M(t-1)+\gamma_{t} \nabla \psi(X(t)) \nabla \psi(X(t))^{T} \\
\theta(t) & =M^{-1}(t) b(t)
\end{aligned}
$$

Differential Least Squares Temporal Difference Algorithm

∇-LSTD algorithm

$$
\begin{aligned}
\varphi(t) & =\alpha \mathcal{A}^{\top}(t) \varphi(t-1)+\nabla \psi(X(t)) \\
b(t) & =\left(1-\gamma_{t}\right) b(t-1)+\gamma_{t} \varphi(t)^{T} \nabla c(X(t)) \\
M(t) & =\left(1-\gamma_{t}\right) M(t-1)+\gamma_{t} \nabla \psi(X(t)) \nabla \psi(X(t))^{T} \\
\theta(t) & =M^{-1}(t) b(t)
\end{aligned}
$$

Algorithm is amazing:

Conclusions

New Banach space for Markov processes is just right for our goals:

$$
\mathcal{D} h=\mathcal{G}(h, \nabla h)
$$

Conclusions

New Banach space for Markov processes is just right for our goals:

$$
\mathcal{D} h=\mathcal{G}(h, \nabla h)
$$

Gaps:

Relationship with Lyapunov exponents remains a mystery. Needed for a firmer theory for the ∇-LSTD algorithm.

Conclusions

New Banach space for Markov processes is just right for our goals:

$$
\mathcal{D} h=\mathcal{G}(h, \nabla h)
$$

Gaps:
Relationship with Lyapunov exponents remains a mystery. Needed for a firmer theory for the ∇-LSTD algorithm.

$\stackrel{\square}{5}$		$\begin{aligned} & T=10^{3} \\ & T=10^{4} \\ & T=10^{5} \end{aligned}$
¢		$\begin{aligned} T & =10^{3} \\ T & =10^{4} \\ T & =10^{5} \end{aligned}$
$\stackrel{\text { ¢ }}{\text { ¢ }}$		$\begin{aligned} & T=10^{3} \\ & T=10^{4} \\ & T=10^{5} \end{aligned}$

Thank you!

Selected References

A. Devraj, I. Kontoyiannis, and S. P. Meyn, "Exponential ergodicity and Lyapunov exponents Part I: Markov chains in discrete time," In preparation, 2016.
I. Kontoyiannis and S. P. Meyn. "Computable exponential bounds for screened estimation and simulation," Ann. Appl. Probab., 18(4):1491-1518, 2008.
I. Kontoyiannis and S. P. Meyn. "Approximating a diffusion by a finite-state hidden Markov model," Stochastic Proc. and their Appl., 2016.
S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability, 2nd ed. Cambridge Mathematical Library, 2009.
T
A. M. Devraj and S. P. Meyn. Differential TD learning for value function approximation. In 55th Conference on Decision and Control, pages 6347-6354, Dec 2016.
T
S. P. Meyn, Control Techniques for Complex Networks. Cambridge University Press, 2007, pre-publication edition available online.

