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Challenges

Challenges of renewable power generation

March 8th 2014:   Impact of wind 
and solar on net-load at CAISO

Ramp limitations cause price-spikes

Price spike due to high net-load ramping
need when solar production ramped out

Negative prices due to high
mid-day solar production
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Challenges

Challenges of renewable power generation

Increasing needs for ancillary services
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In the past, provided by the generators - high costs!



Challenges

Tracking Grid Signal with Residential Loads

Tracking objective:
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Prior work

Deterministic centralized control:
Sanandaji et al. 2014 [HICSS], Biegel et al. 2013 [IEEE TSG]

Randomized control:
Mathieu, Koch, Callaway 2013 [IEEE TPS] (decisions at the BA)
Meyn, Barooah, B., Chen, Ehren 2015 [IEEE TAC]
(local decisions, restricted load models)



Challenges

Tracking Grid Signal with Residential Loads
Example: 20 pools, 20 kW max load

Each pool consumes 1kW when operating
12 hour cleaning cycle each 24 hours

Power Deviation:
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Meyn, Barooah, B., Chen, Ehren 2015 [IEEE TAC]
using an extension/reinterpretation of Todorov 2007 [NIPS] (linearly solvable MDPs)
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Example: 300,000 pools, 300 MW max load
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Demand Dispatch

Control Goals and Architecture
Local Control: decision rules designed to respect needs of load and grid

Demand Dispatch: Power consumption from loads varies automatically to provide
service to the grid, without impacting QoS to the consumer
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Min. communication: each load monitors its state and a regulation signal
from the grid.

Aggregate must be controllable: randomized policies for finite-state loads.



Mean Field Model

Load Model
Controlled Markovian Dynamics
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Discrete time: ith load Xi(t) evolves on finite state space X

Each load is subject to common controlled Markovian dynamics.

Signal ζ = {ζt} is broadcast to all loads

Controlled transition matrix {Pζ : ζ ∈ R}:

P{Xi
t+1 = x′ | Xi

t = x, ζt = ζ} = Pζ(x, x
′)

Questions

• How to analyze aggregate of similar loads? • Local control design?



Aggregate model



Mean Field Model

How to analyze aggregate?
Mean field model

N loads running independently, each under the command ζ.

Empirical Distributions:

µNt (x) =
1

N

N∑
i=1

I{Xi(t) = x}, x ∈ X

U(x) power consumption in state x,

yNt =
1

N

N∑
i=1

U(Xi
t) =

∑
x

µNt (x)U(x)

Mean-field model:
via Law of Large Numbers for martingales

µt+1 = µtPζt , yt = 〈µt,U〉

ζt = ft(y0, . . . , yt) by design



Local Control Design



Local Control Design

Local Design
Goal: Construct a family of transition matrices {Pζ : ζ ∈ R}

Nominal model
A Markovian model for an individual load, based on its typical behavior.

Finite state space X = {x1, . . . , xd};
Transition matrix P0, with unique invariant pmf π0.

Common structure for design
The family of transition matrices used for distributed control is of the form:

Pζ(x, x
′) := P0(x, x′) exp

(
hζ(x, x

′)− Λhζ (x)
)

with hζ continuously differentiable in ζ, and the normalizing constant

Λhζ (x) := log
(∑
x′

P0(x, x′) exp
(
hζ(x, x

′)
))
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Local Control Design

Local Design
Goal: Construct a family of transition matrices {Pζ : ζ ∈ R}

Construction of the family of functions {hζ : ζ ∈ R}

Step 1: The specification of a function H that takes as input a transition matrix.
H = H(P ) is a real-valued function on X× X.

Step 2: The families {Pζ} and {hζ} are defined by the solution to the ODE:

d
dζhζ = H(Pζ), ζ ∈ R,

in which Pζ is determined by hζ through:

Pζ(x, x
′) := P0(x, x′) exp

(
hζ(x, x

′)− Λhζ (x)
)

The boundary condition: h0 ≡ 0.



Local Control Design

Local Design
Extending local control design to include exogenous disturbances

State space for a load model: X = Xu × Xn.

Components Xn are not subject to direct control
(e.g. impact of the weather on the climate of a building).

Conditional-independence structure of the local transition matrix

P (x, x′) = R(x, x′u)Q0(x, x′n), x′ = (x′u, x
′
n)

Q0 models uncontroled load dynamics and exogenous disturbances.

Assumption: for all x ∈ X, x′ = (x′u, x
′
n) ∈ X, hζ(x, x

′) = hζ(x, x
′
u).
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Local Control Design

Local Design
Extending local control design to include exogenous disturbances

For any function H◦ : X→ R, one can define

H(x, x′u) =
∑
x′
n

Q0(x, x′n)H◦(x′u, x
′
n) (1)

Then functions {hζ} satisfy

hζ(x, x
′
u) =

∑
x′
n

Q0(x, x′n)h◦ζ(x
′
u, x
′
n),

for some h◦ζ : X→ R. Moreover, these functions solve the d-dimensional ODE,

d
dζh
◦
ζ = H◦(Pζ), ζ ∈ R,

with boundary condition h◦0 ≡ 0.



Local Control Design

Individual Perspective Design
From the point of view of a single load

Solves an optimization problem from the point of view of a single load

Local welfare function: Wζ(x, P ) = ζU(x)−D(P‖P0),

where D denotes relative entropy: D(P‖P0) =
∑
x′ P (x, x′) log

( P (x,x′)
P0(x,x′)

)
.

Markov Decision Process: lim supT→∞
1
T

∑T
t=1E[Wζ(Xt, P )]

Average reward optimization equation (AROE):

max
P

{
Wζ(x, P ) +

∑
x′

P (x, x′)h∗ζ(x
′)
}

= h∗ζ(x) + η∗ζ

For a fixed ζ and fully controllable dynamics, solution via an eigenvector problem

using a reinterpretation of Todorov 2007 [NIPS] (linearly solvable MDPs)

Pζ(x, y) = 1
λ
v(y)
v(x) P̂ζ(x, y) , x, y ∈ X,

where P̂ζv = λv, P̂ζ(x, y) = exp(ζU(x))P0(x, y)



Local Control Design

Individual Perspective Design
From the point of view of a single load

Solves an optimization problem from the point of view of a single load

Local welfare function: Wζ(x, P ) = ζU(x)−D(P‖P0),

where D denotes relative entropy: D(P‖P0) =
∑
x′ P (x, x′) log

( P (x,x′)
P0(x,x′)

)
.

Markov Decision Process: lim supT→∞
1
T

∑T
t=1E[Wζ(Xt, P )]

Average reward optimization equation (AROE):

max
P

{
Wζ(x, P ) +

∑
x′

P (x, x′)h∗ζ(x
′)
}

= h∗ζ(x) + η∗ζ

For a fixed ζ and fully controllable dynamics, solution via an eigenvector problem

using a reinterpretation of Todorov 2007 [NIPS] (linearly solvable MDPs)

Pζ(x, y) = 1
λ
v(y)
v(x) P̂ζ(x, y) , x, y ∈ X,

where P̂ζv = λv, P̂ζ(x, y) = exp(ζU(x))P0(x, y)



Local Control Design

Individual Perspective Design
From the point of view of a single load

Solves an optimization problem from the point of view of a single load

Local welfare function: Wζ(x, P ) = ζU(x)−D(P‖P0),

where D denotes relative entropy: D(P‖P0) =
∑
x′ P (x, x′) log

( P (x,x′)
P0(x,x′)

)
.

Markov Decision Process: lim supT→∞
1
T

∑T
t=1E[Wζ(Xt, P )]

Average reward optimization equation (AROE):

max
P

{
Wζ(x, P ) +

∑
x′

P (x, x′)h∗ζ(x
′)
}

= h∗ζ(x) + η∗ζ

For a fixed ζ and fully controllable dynamics, solution via an eigenvector problem

using a reinterpretation of Todorov 2007 [NIPS] (linearly solvable MDPs)

Pζ(x, y) = 1
λ
v(y)
v(x) P̂ζ(x, y) , x, y ∈ X,

where P̂ζv = λv, P̂ζ(x, y) = exp(ζU(x))P0(x, y)



Local Control Design

Individual Perspective Design
From the point of view of a single load

Markov Decision Process: lim supT→∞
1
T

∑T
t=1E[Wζ(Xt, P )]

AROE:
max
R

{
Wζ(x, P ) +

∑
x′

P (x, x′)h∗ζ(x
′)
}

= h∗ζ(x) + η∗ζ

where P (x, x′) = R(x, x′u)Q0(x, x′n), x′ = (x′u, x
′
n)

ODE method for IPD design:

Family {Pζ}: Pζ(x, x′) := P0(x, x′) exp
(
hζ(x, x

′)− Λhζ (x)
)

Functions {hζ}: hζ(x, x′u) =
∑
x′n
Q0(x, x′n)h

◦
ζ(x
′
u, x
′
n),

for h◦ζ : X→ R solutions of the d-dimensional ODE,

d
dζ
h◦ζ = H◦(Pζ), ζ ∈ R,

with boundary condition h◦0 ≡ 0.

H◦ζ (x) = d
dζh
◦
ζ(x) =

∑
x′ [Zζ(x, x

′)− Zζ(x◦, x′)]U(x′), x ∈ X,

where Z = [I − P + 1⊗ π]−1 =
∑∞
n=0[Pζ − 1⊗ π]n is the fundamental matrix.



Local Control Design

Individual Perspective Design
Linearized dynamics
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Proof of positive real condition for reversible load dynamics.
Busic & Meyn [CDC’14] Passive Dynamics in Mean Field Control
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Local Control Design

System Perspective Design
Strictly positive real by design

Goal: The transfer function of the linearized aggregate model is positive real.

SPD design:

PO = P �P, with P � adjoint of P in L2(π):

P �(x, x′) = π(x′)
π(x)

P (x′, x), x, x′ ∈ X.

H◦(x) =
∑
x′ [ZO(x, x′)− ZO(x◦, x′)]U(x′) x ∈ X

where ZO = [I − PO + 1⊗ π]−1 the fundamental matrix for PO

Thm. (SPD design) If PO0 = P �0 P0 is irreducible, and P0 = R0, then the linearized
state-space model at any constant value ζ satisfies

G+
ζ (ejθ) +G+

ζ (e−jθ) ≥ σ2
ζ , θ ∈ R

where σ2
ζ is the variance of U under πζ and G+(z) := zG(z).

The linearized aggregate model is passive:
∑∞
t=0 utyt+1 ≥ 0, ∀{ut}.



Local Control Design

Exponential family
Alternative to solving an ODE

For a function H◦e : X→ R, define for each x, x′u and ζ,

hζ(x, x
′
u) = ζHe(x

′
u | x)

with He(x
′
u | x) :=

∑
x′
n

Q0(x, x′n)H◦e (x′u, x
′
n)

Myopic design: H◦e = U .

Linear approximations to the IPD or SPD solutions, with H◦e = H◦(P0).



Local Control Design

Myopic Design
Linearized dynamics
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Local Control Design

Tracking performance
and the controlled dynamics for an individual load

Heterogeneous setting:

40 000 loads per experiment;

20 different load types in each case

Lower plots show the on/off state for a typical load
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Local Control Design

Unmodeled dynamics

Setting: 0.1% sampling, and

1 Heterogeneous population of loads

2 Load i overrides when QoS is out of bounds

0

0.5−10

−5

0

5

10

M
W

100 120110 130

op
t o

ut
 %

N = 300,000N = 30,000

100 120110 130

Closed-loop tracking

−100

−50

0

50

100

0.5

0

Output deviation Reference

t/hour t/hour

PI control: ζt = kP et + kIe
I
t , et = rt − yt, eIt =

∑t
s=0 es



Conclusions and Future Directions

Control Architecture
Frequency Allocation for Demand Dispatch
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Conclusions and Future Directions

Conclusions
Virtual storage from flexible loads

Approach: creating Virtual Energy Storage through direct control of flexible loads
- helping the grid while respecting user QoS

Challenges:

− Stability properties for IPD and myopic design?

− Information Architecture: ζt = f(?)
Different needs for communication, state estimation and forecast.

− Capacity estimation (time varying)

− Network constraints

− Resource optimization & learning
Integrating VES with traditional generation and batteries.

− Economic issues
Contract design, aggregators, markets . . .
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Conclusions and Future Directions

Conclusions

Thank You!
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Conclusions and Future Directions

Mean Field Model
Linearized Dynamics

Mean-field model: µt+1 = µtPζt , yt = 〈µt,U〉

ζt = ft(y0, . . . , yt)

Linear state space model:
Φt+1 = AΦt +Bζt

γt = CΦt

Interpretations: |ζt| is small, and π denotes invariant measure for P0.

• Φt ∈ R|X|, a column vector with
Φt(x) ≈ µt(x)− π(x), x ∈ X

• γt ≈ yt − y0; deviation from nominal steady-state

• A = P T
0 , C = UT, and input dynamics linearized:

BT =
d

dζ
πPζ

∣∣∣
ζ=0
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